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1. Introduction

Throughout this paper, we focus on classification in the two-class case.
We are given as training data X and A&, two finite non-empty sets of class-
conditional observations with elements from a set . The set X may be any
such that it admits a dissimilarity measure as defined in Section 1.1. In partic-
ular, X may be a vector space. For j = 0,1, we denote the class-conditional
distributions by F; and the class-conditional sample sizes by n; = |&;|. Our
goal is to design a classifier g : X x X™ x X™ — {0,1} such that, when
presented with training data Xp,X; and an unlabelled X'-valued observation
Z with true but unobserved class label Y in {0, 1}, the (conditional) proba-
bility of misclassification L(g) := P[g(Z; &y, X1) # Y|Ap, A1] is close to
Bayes optimal L*. That is, we want the probability of misclassification to
be as low as possible. See for instance Devroye, Gyorfi and Lugosi (1996) or
Kulkarni, Lugosi and Venkatesh (1998).

Class cover catch digraphs, introduced in Priebe, DeVinney and Mar-
chette (2001) and studied further in DeVinney and Priebe (2001+), are proxim-
ity graphs defined via the relationship between class-labeled observations. Each
class j gives rise to a digraph D;. The vertices of D; are the class-conditional
observations X; and a directed edge between two vertices exists if the proxim-
ity of the two vertices is small compared to the proximity of the vertices to the
observations from class 1 — j. We use these digraphs to determine a classifier
g. :
The classifier described in this paper utilizes the proximity digraphs to
construct a low-complexity representation of each class, which can then be used
as a set of prototypes in a reduced nearest-neighbor classifier. The representa-
tion modelling each class takes the form of a union of balls — appropriately
defined in Section 1.1 — whose radii depend on the distribution of & and A
about the center of the ball. The radii are such that any given ball will cover
mostly same-class observations. While we may have a large amount of training
data for each class, we seek a compact representation, both in order to improve
generalization ability of the classifier and to lower the computational burden of
classification. We achieve a low-complexity model by selecting a small subset
of the training data in each class such that the union of balls about that subset
covers all but a small fraction of the training data. By considering the proximity
digraphs for each class in Section 2.2, we cast subset selection as the problem of
finding a minimum dominating set for the digraphs. A greedy algorithm is used
to produce an approximate solution to this NP-hard graph-theoretic problem in
polynomial time.

There are several methods in the literature that have a similar flavor to
the class cover catch digraph approach. Perhaps most closely related is the
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reduced Coulomb energy network (see Duda, Hart and Stork 2001) which in its
simplest form corresponds to a class cover catch digraph classifier without our
complexity-reducing subset optimization. Our selection of the covering sub-
set of balls is a kind of training set reduction, reminiscent of nearest neighbor
editing. For example, Dasrathy and Sanchez (2000) provides a methodology
for nearest neighbor editing using proximity graphs, where the criterion for se-
lecting the prototypes is classification directly, rather than coverage as in the
class cover catch digraphs. See also Skalak (1997) for related work on proto-
type selection for nearest neighbor classifiers. Ho and Basu (2002) describes
a method of Lebourgeois and Emptoz (1996) in which the classes are covered
by balls and the decision boundary is described in terms of a small number of
the balls which are close to the boundary. Radial basis function neural net-
works (see Jain, Mao and Hohluddin 1996) for an introduction to these and
other neural network models) relax the requirement that the balls be centered
at observations, and seek to find a small number of balls that provide good
classification. Thus there is a relationship between class cover catch digraph
classification and k-means clustering (Duda, Hart and Stork 2001) as well as
support vector machines (Joachims 1999; Vapnik 1995) using radial kernels.

We present results from applying our proposed classifier in synthetic and
real-world classification examples. For the synthetic examples, we have full
knowldege of the class-conditional densities, and thus can compare the results
obtained with our classifier to the Bayes optimal bound. In these cases, we show
that the new semi-parametric method can perform nearly as well as the optimal
parametric classifier, and significantly better than nearest neighbor and support
vector machine classifiers. As a real-world example, we use the well-known
COBRA dataset, widely used for mine and minefield detection research (Smith
1995; Witherspoon et al. 1995). For this challenging dataset, we demonstrate
performance superior to optimized k-nearest neighbors, as well as support vec-
tor machines with linear, polynomial and radial kernels.

1.1 Notation

Let X be aset,andlet p : X x X — R, be a dissimilarity measure (e.g.,
a distance function) on X’; that is, for all z,y € X we require 0 < p(z,y) =
p(y, ) < oo and p(z,y) = 0 if and only if x = y. Note that we do not require
p to be a distance, in particular the triangle inequality need not be satisfied.

For z € X and r > 0 we define the open ball of radius r centered at z to
be B(z,r) = {z' € X : p(z,2") < r}. The balls of radius zero are the empty
set; B(z,0) = 0. If p is a distance function, then our open balls agree with the
open spheres defined by that distance.
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For z € X and a finite subset S C X we define
plz, S) i= minges p(z, 7).
More generally, for k¥ = 1,---,|S| we define the order statistic p()(z, S) to
be k' smallest of the p(x, '), z' € S. Here and hereafter, |S| denotes the
cardinality of the set S. For notational purposes we set p(q) (z,S) := 0 and

p(s|+1)(x, S) = oo.

2. Class Cover Catch Digraphs

The proposed method involves the construction of data-random digraphs
Dy, Dy for the supervised two-class classification problem, followed by com-
plexity reduction via dominating sets Sp, S; for these digraphs. Classification
is then approached via mixtures based on these sets. The present section intro-
duces the necessary graph-theoretic background and terminology.

2.1 Digraphs

A digraph D = (V, A) consists of a vertex set V' and an edge (or arc) set
A. The set A is a collection of ordered pairs (z,z') € V x V indicating an edge
from vertex z to vertex z’. We identify the vertex set with the set of target class
observations, so that V; = &;. The class cover catch digraph (cccd) D; for
X; against & _; is defined by first specifying A; as the target class and X _;
as the non-target class. Thus the definition of the cccds Dy, D, are identical,
except that the roles of Ay, A} are swapped.

For the cced Dj, we consider open balls of radius r(z) centered at each
target class observation z € Xj;. For distinct z,2’' € X; the digraph has an
edge from z to z’ if and only if z’ is in the ball about z; (z,7') € A <~
z' € B(z,r(z)). In order to fully define D;, it remains to specify r(z) for each
S Xj.

We specify a “robustness to contamination” parameter J3; € {0,--- ,
ni—; — 1} which determines how many non-target class observations each ball
may contain. The proposed classification strategy leverages the property that
each ball cover as many target observations as possible while covering at most
f; non-target class observations; r(z; ;) = p(g,+1)(z, X1—;) satisfies these
covering requirements. Note that 3; = —1 = D is the empty digraph — no
edges —and 8; = n1_; == D; is the complete digraph — all edges. It is not
the case that each ball will necessarily cover 3; non-target class observations,
however. In Section 3. we show these radii may be reduced appropriately so
that no more non-target observations are covered than is necessary

In addition to depending on the data &p, A7 and the dissimilarity p, the
digraph pair Dy, D, depends on the (possibly different) choices of 3y, 8.
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The cccds defined above are a special case of Maehara’s sphere digraphs
(Maehara 1984). Because Dy, D; are defined by identifying the random sets of
points Xp, X7 with the vertex sets Vg, V1, the digraphs are themselves random,
of a type termed vertex random digraphs (Karonski et al. 1999).

2.2 Dominating Sets

The support for each class-conditional distribution can now be modeled
as a mixture of balls. We have two collections of class-conditional observations,
and a radius associated with each observation. Our estimate for support(F})
is given by Ugex, B(z,7(z; B;)). Note that that this may be interpreted as a
kernel density estimate, where the kernel is spherical — with respect to the
dissimilarity measure — and its bandwidth varies adaptively with the training
data. We now wish to reduce the complexity of the model by selecting an
appropriate subset of the balls in the class cover. Such a complexity reduction
is accomplished by choosing appropriate subsets — small dominating sets —
S; C X; of the vertices of cccd digraphs.

For a digraph D = (V, A), the open neighborhood of a vertex v € V,
denoted N (v), is the collection of vertices w € V such that (v,w) € A. The
closed neighborhood is defined by N(v) = N(v) U {v}. For a set of vertices
S C V, we have N(S) = UyesN(v) and N(S) = UyesN(v). A dominating
set S for the digraph D = (V, A) isaset S C V such that, for allw € V/, either
w € S or (v,w) € A for some v € S. Thatis, S is a dominating set for D if
and only if N(S) = V. The graph invariant y(D) is defined as the cardinality
of the smallest dominating set(s) of D. Clearly, 1 < (D) < |V|. A minimum
dominating set for D is defined as a dominating set with cardinality (D).

Finding a minimum dominating set is, in general, an NP-Hard optimiza-
tion problem (Karp 1972; Arora and Lund 1997). An approximately minimum
dominating set S can be obtained in O(|V'|2) using a well-known greedy al-
gorithm (Chvatal 1979; Parekh 1991). The greedy algorithm begins by select-
ing the vertex with the largest cardinality neighborhood: $* = {v'}, where
v! € arg maxyey |N(v)|. Throughout this procedure, cardinality ties are bro-
ken by randomization. Then, for iteration ¢ > 2 and until U,¢ g-1N@w) =V
the algorithm selects v € arg max,ey\ge-1 |V (v) \ Uyese-1 N (v')] and sets
St = §t=1 U {v’}. This process is guaranteed to terminate after at most |V'|
iterations. If the algorithm terminates after t* iterations, the set § = S is a
dominating set. The approximation for the domination number +y of the digraph
Disy =184 >7.

When applied to the class digraphs defined above, at each iteration the
greedy algorithm selects from among the vertices whose ball covers the most as
yet unaccounted for target-class observations. We use the greedy algorithm to
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identify (hopefully small) dominating sets S’j C &; for cceds Dy = (X}, A;),
j = 0,1. This provides a reduced complexity mixture of balls which still
model the class-conditional distribution supports. Our estimate for support(F’;)
is given by Umeng(a:, r(z; B5))-

For the purposes of classification, and to further reduce model complex-
ity, we wish to obtain an estimate of the high probability region of the class-
conditional distribution supports (Scholkopf, et al. 2001). Toward this end,
we define parameters 0 < a; < n; — 1 and halt the greedy algorithm when
IN(3;)| > nj — a. (Note that for a; > nj, S; = 0.) That is, we do not
require a proper dominating set, but are willing to settle for an approximate
dominating set in order to reduce model complexity. The parameters a; allow
for “robustness to outliers”, as measured by the “improperness” n; — | N (S'])l
For example, setting ;; > 0 may leave singletons — target class j observations
z for which X; N B(z,r(x; f;)) = {z} — uncovered.

Figure 1 shows how the number of balls in each class-cover grows as
the number of training samples per class increases. Data points for each class
are shown along with the respective log-linear fit, the correlation coefficient
of which is above 0.97 for both classes. We see how the complexity of the
class-cover — and as seen below, of the resulting classifier — grows roughly
with the logarithm of the training sample size. The data used to generate these
results lies on the unit sphere in R**!, and comes from vectorized images of
faces (class 0) and non-faces (class 1). (See Socolinsky et al. 2003 for further
details regarding this application.)

3. Classification

The approximate dominating sets 80,51 depend on the training data
X, X1, on the dissimilarity p, and on the choice of ;,3;. Selecting a; > 0
allows the model U__ S,jB(ac, r(z; B;)) to neglect a few “outlying” target class
training observations, while 8; > 0 allows the model to ignore a few “contam-
inating” non-target class training observations. These are precisely the types of
“robustness” that classification models require. Furthermore, non-zero choices
for the parameters «;,03; serve to reduce the complexity of the model used to
define class-conditional discriminant regions in X for the classification prob-
lem.

The requirement that the ball about class j training observation z cover
as many target class observations as possible while covering at most 3; non-
target class observations allows — unless ties occur — some flexibility in the
choice of ball radius. Clearly, r(z) must be at least large enough so that

X; N B(z, pg,+1) (T, X1-5)) C Bz, r(z)).
Let rj(z; B;) = MAXy € XN B (2,05, 41 (3 X1—5) p(z,z"). Then, for 7; € (0,1],
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Figure 1. Number of balls in class cover versus logarithm of training sample size for
441-dimensional data.

the radii r(z; B, 7;) = rj(z; B;) + 75 - (p(8;+1) (%, Xy_;) — rj(z; B;)) satisfy
the covering requirements. For 7; = 0 we define r(z; §;, 0) = rj(=z; B;) +efor
0 < € < minj mingex,_; P(8;+1) (T, X1- ;) to avoid the possibility of vanishing
radius.

Note that the digraphs are independent of the choice of 7o, 71, 50 that the
selection of S'j does not require prior selection of 7;. However, the classifier
constructed based on the digraphs will depend on the 7;.

3.1 Preclassifier

The sets S'j and the radii depend on the choice of &, B, 755 We suppress
this dependency for notational clarity. Elements of Sj are selected prototypes
for the problem of modelling the class-conditional discriminant regions via col-
lections of balls. The associated radii represent an estimate of the domain of
influence, or region in which a given prototype should influence class labelling.
This is the region where the density of class j observations is high relative to
the density of class 1 — j observations. Let Cj :== U, ¢ B (z,7(z)) be the class

coverfor class j. We define the preclassifierm tobem(z) = jif z € C;\C1—j>
m(z) = —1ifz € C;jNCi_jand m(z) = —2if z € (C; U C1—;)°. Thatis,
the preclassifier m allows for two types of “no decision”; m(z) = —1 means 2z
may well be from either class 0 or class 1, while m(z) = —2 means the answer
may be neither.
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Such “no decision” decisions can be quite valuable in practical classifi-
cation applications. In particular, it may be the case that a well-founded “no de-
cision” will compel the investigator to collect additional data. To investigate the
relative performance of such preclassifiers, one may resort to decision-theoretic
considerations and define a loss function which prescribes appropriate relative
costs for the various misclassifications and no decisions. However, there are
cases in which we wish to demand that a decision be made for all z € X. Fur-
thermore, in such cases and with the additional assumption that all classification
errors be treated equally, it can be easier to compare competing procedures.

3.2 A Reduced Nearest Neighbor Classifier

A reduced (or “edited”) nearest neighbor classifier (Devroye, Gyorfi and
Lugosi 1996) based on the prototypes S; is given by

grNN(2) := I{min p(z, z) < min p(z, 2)}.
€S z€So

With .S’j = A&}, grnn is in fact the standard one-nearest neighbor classifier
g91nnN (Cover and Hart 1967). Thus our methodology can be used for the se-
lection of a reduced set of exemplars for nearest neighbor classification. This
is a canonical problem in classification. However, our S‘j are not chosen so as
to be good sets of reduced nearest neighbor exemplars. On the contrary, our
S are chosen to provide a good “class cover” estimate of the discriminant re-
gions, in the sense of the preclassifier m described above. The classifier gcecq
proposed in the next subsection, rather than gryy, is the appropriate classifier
for investigation based on our S'j.

3.3 The Class Cover Catch Digraph Classifier

We propose a classifier g..cq which is consistent with the class covers C;.
That is, we require that g...q agree with the preclassifier m whenever m makes
a decision (whenever m(z) € {0,1}). For z € (Co N Cy) U (C§ N CE) — the
cases in which m chooses not to decide — we choose a class label based on the
locally scaled distances defined by the ball radii 7. The classifer ge..q is given
by

geced(2) := I{min p(z, z)/r(z) < min p(z, ) /r(z)}.
TES €Sy

The distances to the observations in the prototype sets Sj are scaled by the as-
sociated ball radius. Note that if Sj = A&, and all the radii are identical, the
classifier g.c.q reduces to gy . Also note that if the dissimilarity measure is
the standard L? norm, the class cover may be interpreted as a mixture of Gaus-
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sians with spherical covariance with the classifier determined by the smallest
Mabhalanobis distance.

For sets of observations Xy and Xj, we define their dissimilarity by
p(Xo, X)) = min{p(zi,z;) | z; € Xo,z; € A1}. By construction, we
have the following result regarding the empirical, or resubstitution, error rate

f’(R) (gcccd) = (n0+n1)_1 [ZxEXo I{gcccd(x) 76 0}+Zz€X1 I{gCCCd(m) # 1}] .

Theorem 1 Let Sj be dominating sets for cccds D; with oj = 5 = 0 and
7; € (0,1]. If p(Xy, A1) > O then L) (geeea) = 0. That is, the resubstitution
error rate for the cccd classifier is zero if the dissimilarity between the training
sets is strictly positive.

Theorem 1 holds for any dissimilarity p. This result follows from the facts
that 8; = 0 implies that the covers C; are pure (contain no class 1 — j training
observations), a; = 0 implies that the covers C; are proper (contain all class j
training observations), and g...q agrees with the preclassifier m on the training
data.

Recall that a classifier is consistent if its error rate approches that of the
Bayes optimal classifier as the size of the training set grows to infinity (De-
broye, Gyorfi and Lugosi 1996). For consistency, a general dissimilarity is not
sufficient. A simple consistency result assumes that p is a distance function
satisfying the continuity condition

Prlp(X,2) < €] > 0forany z € s(F) and € > 0, (CO)

where s(F) denotes the support of distribution F'. This condition rules out the
discrete metric (p(z,y) = 1 for z # y, under which g...q is not consistent)
but allows for instance the L, distances. We say class-conditional distributions
Fy, Fy are strictly separable (Devroye, Gyorfi and Lugosi 1996) if

inf zg,21) = 0 > 0.

xo,ml:ijS(Fj)p( 0 1)
Weak consistency for strictly separable class-conditional distributions Fj is es-
tablished for i.i.d. training data by demonstrating that, for a random variable
Z distributed according to Fj, limmin__z p(z,2)/r(z) — ¢; < 1 as. and
limmin g p(z,z)/r(z) = c1—; > L as.
Theorem 2 Assume that the training data arei.i.d. F = noFy+(1—mo) Fy with
0 < mg < 1, and that the class-conditional distributions F; are continuous, fi-
nite dimensional, compactly supported and strictly separable. Assume further
that p is a distance function which satisfies the continuity condition (CC). Let
S; be dominating sets for cceds D; with aj = B = 0 and 75 € (0, 1]. Then
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Geced s consistent. That is, L(gcceq) = L* = 0 as |Ay), |X1| — oo, where L*
is the Bayes optimal probability of misclassification.

Proof: Consider Z ~ Fj for j € {0,1}. The proof for Theorem 2 begins
by noting that the continuity condition (CC) implies that X} := limy,_,e0 &
is dense in s(Fj) almost surely. Let C(n) be such that &; C C(n); e.g.,
C(n) = Cj or C(n) = Cf_; for any sequence of covers C; and C;_;. (&},
Cj, and C;_; are implicitly indexed by n.) Define C* := liminf C(n), and
note that X; C C* and hence C* is dense in s(F;). Then Z € C*, the clo-
sure of C¥, for with probability one there exists a subsequence of X/, and
hence a subsequence of C*, converging to Z. Taking C* = liminf C7_; yields
Pllim min e p(Z,s)/rs > 1] = 1. The proof is completed by taking C* =
lim inf C; and showing that, for the boundary 0C*, P;{0C*] = 0. This implies
that Z € C*°, the interior of C*, and P[limminsegj p(Z,s)[rs < 1] = 1.
Thus g,(Z) = j eventually and evermore.

The restrictions of continuous distributions, finite dimensionality, and
compact support can be relaxed. For instance, for any atom a of F}, g,(a) = j
eventually and evermore with probability one so long as there are no shared
atoms. However, the strictly separable assumption is key; for overlapping den-
sities it may be the case that P;[0C*] > 0. Theorem 2 relies on the fact that
strictly separable class-conditional densities imply P;[0C*] = 0. A more gen-
eral result, such as universal consistency, requires a data-adaptive selection of
the a; = a;(z) and B; = B;(z) and will be pursued elsewhere.

We investigate the performance of g...q4 through simulations and experi-
ments in Section 4.

3.4 Multi-Class Problems

To address the multi-class classification problem, in which the class la-
bels take values j € {1,---,J} for J > 2, one can simply adapt the methodol-
ogy presented above by building cceds D1, - - - , Dy by considering each class
J in turn as the target class and U; ;X as the non-target class. The class j
cover is once again given by C; := Uweng(z, r(z; B, 7;)). Note that, unless
we add additional parameters, this model treats all non-target class observations
the same. It is possible that when considering target class 7, one would wish
to treat non-target subclass j' different than non-target subclass 5. This could
be accomplished by having different values for §; ;- and 3; ;. This will not be
pursued further here.

The preclassifier m in the multi-class problem is defined via

m(z) = [I{z € C1},--- ,I{zEC’J}]'.
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That is, m(z) is a binary vector of length J, the j** component of which in-
dicates whether z is in the j* cover; ||z||; = 1 implies that a classification is
made, while ||z||; = 0 suggests that z be labelled as coming from none of the
target classes and ||z||; > 1 suggests that z be labelled as coming from more
than one of the target classes.

Given the multi-class prototype sets S’j and the associated radii 7 (z; 8;, 75),
the two-class classifiers g defined above can be applied, mutatis mutandis, to the
multi-class case:

Jeeed(2) = arg min min p(z, z)/r(z).
J .’EESJ

There are two canonical methods for addressing the multi-class classifica-
tion problem in terms of (multiple) two-class problems: J two-class problems
class 7 against class “not 57, or J (J — 1)/2 two-class problems class j against
class j' (Friedman 1996; Hastie and Tibshirani 1998). The former can be ap-
proached as J versions of the multi-class approach described above, while the
latter can be approached as J (J — 1)/2 versions of the two-class approach
described above. In either case, results from the multiple classifiers must be
combined after the fact.

4. Simulations and Experiments

4.1 Examplel

In this first simulation example, we consider two-dimensional (X = R?)
two-class data with the Euclidean distance function as dissimilarity. The class-
conditional training data &; are i.i.d. bivariate normal, N (u;,I) where I is
the 2 x 2 identity matrix. Ay and A} are mutually independent. We set g =
[0,0) and p1 = [2,0]'. We assume that the unlabelled observations Z come
from a mixture of these two normals with equal priors: Z ~ (1/2)N(po,I) +
(1/2)N(uq1,I). The Bayes optimal classifier for this case is linear, with L* =
1 —&(1) ~ 0.159.

We vary the class-conditional training sample sizes, considering ny =
n; € {5,10,20,50,100}. Independent test samples of size 100 are used to
estimate the probability of misclassification Ly, (g) for each Monte Carlo repli-
cation for two versions of the cccd classifier gq..q, the asymptotically opti-
mal Fisher’s linear discriminant g7, and the nearest neighbor classifier g1y .
While the nearest neighbor classifier is not consistent for this case, we include
it as a benchmark for comparison because it is so commonly used and because
its limiting performance is guaranteed to be less than 2L*. At each stage, 100
Monte Carlo replications are performed.
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The performance for the four classifiers is plotted in Figure 2 as proba-
bility of misclassification against class-conditional training sample size. Stan-
dard errors for the curves are small compared to the separation between curves;
i.e. performance differentials are statistically significant. L* and 2L* are plot-
ted as horizontal lines. The two Xs curves are the cccd classifiers — “vanilla”
Geced (With a; = B; = 0 and 7 = 1) is the top Xs curve, and “optimized”
Geced (With parameters chosen based on a separate training set) is the bottom Xs
curve; grc is denoted in the figure by triangles; g; y v is denoted in the figure
by pluses. We see that, as expected, the linear classifier is best. The cccd clas-
sifiers out-perform the nearest neighbor classifier. The vanilla cccd classifier is
slightly better than the nearest neighbor classifier, while optimizing over cccd
parameters greatly improves the performance of geccq.

Figure 3 presents the relative complexity ¢ = (|Sg| + |S1])/(no + n1) of
the two cced classifiers applied to this example. While both reduce complexity
as compared to the one nearest neighbor classifier (¢ = 1), the classifier which
performs best in terms of probability of misclassification is the classifier which
reduces complexity the most. Namely, the gc..q With o;,5; > 0. At each
class-conditional sample size n; € {5, 10, 20, 50, 100}, the leftmost boxplot in
each pair is for 100 Monte Carlo replications of “vanilla” g...q (top Xs curve
in Figure 2) and the rightmost boxplot in each pair is for 100 Monte Carlo
replications of “optimized” g..q (bottom Xs curve in Figure 2). Note that the
linear classifier can be viewed as a particular ball classifier with ].§]| = 1. Thus,
for this simple example wherein the optimal complexity is minimal (the optimal
discriminant is linear) the performance results (Figure 2) follow precisely the
complexity ranking.

Figure 4 displays the two cccd models for a representative example with
n; = 50. The second row in the figure is for vanilla g¢..q With o; = 8; = 0,
yielding L = 0.21, and the bottom row is for optimized g.ccq4 yielding L ~0.16.
Here, it is apparent that the robustness to outliers and contamination provided
by choosing «, 8; > 0 is desirable; «; = B; = 0 yields overfitting and an
overly complex model.

Our conclusion is that, for this example, the semiparametric cccd
approach performs significantly better than the simple nonparametric nearest
neighbor classifier and can perform nearly as well as the optimal parametric
classifier.

4.2 Example 2

In Example 2, we again consider two-dimensional (X = R?) two
class data with the Euclidean distance function. The class O data Ay are
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Figure 2. Classification performance curves for two versions of the cccd classifier for
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Figure 3. The relative complexity of the two cced classifiers applied to Example 1.
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‘ i.4.d. U([0,1]%) while the class 1 data X; are 7.i.d.
() = (1/2) U(-; B([0.25,0.25]', ) + (1/2) U(-; B([0.6,0.6]', 2r)

where r =~ 0.113 is chosen so that L* = 0.1. (Again, &p and X; are mutually
independent.)

An abridged version of the results for this case is given by considering
class conditional training sample sizes ny = ny = 1000: L1 NN ~ 0.169, while
Lcccd ~ 0.166 for the “vanilla” version and L,..g ~ 0.130 for the ¢ ‘optimized”
version. The “optimized” cccd eliminates more than 50% of the avoidable 1NN
error: Leeeq = L* + (3/7) (Liny — L*). In addition, the superiority of opti-
mized g...q compared to both k-nearest neighbors optimized over k (Devroye,
Gyorfi, and Lugosi 1996) and support vector machines with linear, polynomial,
or radial kernels (Joachims 1999; Vapnik 1995) is statistically significant. The
linear classifier, of course, does not perform well.

The relative complexity for optimized g...q for this case is ¢ =~ 1/10.
That is, |So| + | 51| & 200. However, |Sg| ~ 12|S;|. This is as expected, since
class 1 is easy to model with a mixture of balls, while class 0 is not.

Higher dimensional versions of Example 2 are investigated in DeVinney
(2003) with the result that the class cover catch digraph classifier continues to
be competitive.

4.3 Example 3: Mine Classification

Minefield detection and localization is an important problem receiving
much attention in the engineering and scientific literature. The Coastal Bat-
tlefield Reconnaissance and Analysis (COBRA) Program has as its goal the
development of detection technologies for mines and minefields (Smith 1995;
Witherspoon et al. 1995). Data collected under this program has been made
available by NSWC Coastal Systems Station, Dahlgren Division, Panama City,
Florida, to aid in the analysis of algorithms and approaches. The observations
are detections of mines and minelike targets obtained from an unmanned aerial
vehicle via multispectral sensors. An operational imperative imposed on the
detector to find nearly all true mines implies that the number of false detections
may be relatively high.

We denote true mines as class O and false detections as class 1. For
the data set considered here, n = ng + n1 = 39 with ng = 12, n; = 27.
The original multispectral data set consists of 6-dimensional imagery. Priebe,
Pang and Olson (1999) and Olson, Pang and Priebe (2001+) demonstrate that
dimensions 3 and 5 are the most valuable for the classification task at hand. For
this example, therefore, we consider each observation z; € R?.
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dim#5

dim # 3

Figure 5. Discriminant regions produced by the cced classifier applied to the COBRA
mine data. True mines are black filled squares, false detections are gray filled diamonds.
The true mine discriminant region is the lightly shaded region.

Figure 5 displays the discriminant regions produced by g.ccq With (ag, Bo)
= (4,1), (o1,51) = (2,2), and 7; = 1/2 for both classes. The complexity
for this cced model is |Sy| = 2 and |S;| = 3 and classification performance
is L (geeca) = 7/39 =~ 0.179 with L) (geeea) = 8/39 = 0.205. (L(P)
is the deleted, or leave-one-out, error rate estimate (Devroye, Gyorfi and Lu-
gosi 1996). This performance is in fact superior to competing approaches. For
instance, k-nearest neighbors optimized over k£ (Devroye, Gyorfi and Lugosi
1996) yields LP)(gn,) = 10/39, and support vector machines with linear,
polynomial, or radial kernels (Joachims 1999; Vapnik 1995) yield L(D) (gsom) =
12/39. (None of the classifiers perform as well in the original six-dimensional
space; the dimensionality reduction improves performance for this example.)

Figure 6 displays the ROC curve—P[g(Z) = 0|Z ~ Fy] vs. P[g(Z) =
1|Z ~ Fy]—for geccq on this data set. To obtain this ROC curve we replace the
radii {r(z) : z € S'J} with 7/(z) = r(z) - t for z € Sy and r'(z) = r(z)/t
for z € Si, and allow ¢ to range in (0,00). This allows us to sweep out a
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Figure 6. ROC curve for the cccd classifier applied to the COBRA mine data. Sensitiv-
ity := P[g(Z) = 0|Z ~ Fp] and specificity := P[g(Z) = 1|Z ~ Fy}, where class O is
true mines. The original cced (t = 1) is marked with a diamond.

performance curve ranging from P[g(Z) = 0|Z ~ Fy] = 1fort 1 oo to
Plg(Z) = 1|Z ~ F1] = 1 fort | 0. Choosing ¢t = 1 yields the result re-
ported above, L (g.eeq) = 7/39, in which Plg(Z) = 0|Z ~ Fo] = 10/12
and Plg(Z) = 1|1Z ~ Fi] = 22/27. We see from the ROC curve that cor-
rectly classifying one of the two misclassified mines can be accomplished with
a relatively modest increase (from 5 of 27 to 7 of 27) in the number of false
detections incorrectly classified as mines, while correctly classifying the sec-
ond of the two misclassified mines is accomplished only at the expense of an
enormous additional increase (from 7 of 27 to 23 of 27) in the number of false
detections incorrectly classified as mines. We conclude that cccd classification
can reduce the false detection rate from 27 to 7, while eliminating just one true
mine. This can be of significant value as a preprocessor prior to spatial point
pattern analysis aimed at minefield detection and localization (Priebe, Naiman
and Cope 2001).

The approach described above is not the only — nor even necessarily the
best — way to obtain ROC curves for ccced classifiers. This is a simple approach
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which both satisfies ROC requirements and does not require building a separate
cced model for each choice of ROC parameter.

5. Discussion

The classification methodology we propose herein is semiparametric.
The data-adaptive choice of the sets S'j determines the complexity of
the mixture-of-balls class covers, and hence the complexity of the classifier.
This complexity is unbounded as sample size increases, but grows slowly with
sample size when appropriate.

A major stumbling block to the use of g.cq is the choice of parameters.
In addition to providing a reduction in model complexity, the interpretation of
a; and 3; as robustness parameters provides some guidance. As with, for in-
stance, the trimmed mean or the minimum volume ellipse, choosing a;; > 0
provides benefit in terms of breakdown point by allowing the model to ignore
outliers which degrade performance. Another approach to building in robust-
ness to outliers is to consider «; a threshold for individual iterations in the
greedy dominating set selection algorithm rather than a total number of tar-
get class observations to leave uncovered. We may choose to halt the greedy
algorithm when arg max,cy;\ -1 |N(v) \ lees;—lN(U,” < «;. While this
implementation of a; provides no bound on the total number of uncovered tar-
get class observations — in particular, we may have gj = () — it does have
the effect of eliminating balls covering no more than «; otherwise-uncovered
observations — singletons in the case o; = 1 — from the model.

The parameter j3; is more problematic. Each target class observation’s
ball will cover ; non-target class observation (when 7; = 1). It is clear that this
is undesirable behavior, and that the number of non-target class observations
covered should be a function of how valuable it is to cover them; i.e., how
many additional target class observations are covered as a result of covering
the non-target class observations. We can achieve this effect to some degree by
letting 7; < 1. More generally, the desired behavior can be modeled for target
class observation z € X; by considering |B(z,r) N &;| — |B(z,r) N X1_;] as
a function of the radius r. This is pursued in detail in DeVinney et al. (2002).

The selection of 7 = 1/2 can be seen as analogous to “maximizing the
margin” in large-margin classifiers, however, 7 ~ 0 appears to provide superior
results in practice. In a slightly different context, Marchette and Priebe (2003)
provides guidance for automating the selection of these parameters. A major
focus of our continuing efforts involves developing a methodology for the data-
adaptive selection of these parameters. This is the subject of DeVinney et al.
(2002).

Another approach to improving the basic model is to recognize that “not
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all balls are created equal.” Consider, for example, the fitness statistics T
T(z) = max{|X; N B(z,r(z))| — |X1-; N B(z,r(2))], 1}

for z € S;, which specifies the fitness of a ball to be the difference of the
number of target class observations and the number of non-target class obser-
vations in the ball, thresholded so that T > 1. We place more stock in balls
for which T is larger. This extension yields the classifer given by g(z) :=
H{min g (p(z, z)/r(z))T®) < min_ ¢ (o(z, z)/r(z))T(®)}, which remains
consistent with the preclassifier rn (and Theorems 1 and 2 hold) as long as
T(z) > 1 for all z. For instance, we find that the error for the “optimized” ver-
sion of geceq decreases from 0.130 to 0.122 for the case presented as Example
2 in Section 4.2 above, when using the classifier which takes into account the
value of T. This improvement is statistically significant.

A note about priors. The cccd model as presented assumes that the train-
ing sample sizes are representative of the true prior class membership proba-
bilities. If this is not the case, knowledge of the priors must be assumed. Our
methodology can be adapted to this latter case by altering the counting of non-
target class observations in the specification of the proximity regions (the ball
radii). For instance, if the non-target class 1 — j prior is smaller than the empir-
ical prior ny_;/(ni—; + n;), each non-target class observation should count as
less than one when choosing the radius for target class observation z to cover
“as many target class observations as possible while covering at most 3; non-
target class observations” (see Section 2.1).

Finally, we note that our methodology is quite general. The classifier
eced Tequires only a dissimilarity matrix and class labels for J-class training
data. Therefore, any reasonable approach to determining dissimilarities for cat-
egorical and/or missing data will allow classification using class cover catch
digraphs.
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