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A~trac t - -A  recursive, nonparametric method is developed for performing density estimation derived from 
mixture models, kernel estimation and stochastic approximation. The asymptotic performance of the 
method, dubbed "adaptive mixtures" (Priebe and Marchette, Pattern Recognition 24, 1197-1209 (1991)) for 
its data-driven development of a mixture model approximation to the true density, is investigated using the 
method of sieves. Simulations are included indicating convergence properties for some simple examples. 
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1. I N T R O D U C T I O N  

A fundamental problem in statistics is estimating the 
density from which a set of observations is drawn. 
Among the applications for such an estimate are 
discriminant analysis ~ ~) and unsupervised learning. ~2"3) 
The existence of a (stationary) stochastic process X, 
from which the independent identically distributed 
observations {x~} are drawn, yields the necessity for 
a stochastic approximation procedure. In this paper 
we address the issue of recursive I*'s~ and nonpara- 
metric t6-a~ density estimators. The necessity of non- 
parametric techniques stems from the wide range of 
applications in which no parametric family can be 
assumed for the probability density function cor- 
responding to X. Recursive procedures are often 
required due to the nature of the (classification or 
discrimination) application and the quantity or rate of 
observations. 

By virtue of addressing the types of applications that 
can be termed recursive and nonparametric, we have 
at once made the problem more difficult and more 
interesting. The recursive assumption eliminates the 
possibility of using iterative techniques. It is necessary, 
by hypothesis, to develop our estimate at time t only 
from our previous estimate and the newest observation. 
The nonparametric assumption implies that we cannot 
make any but the simplest assumptions about our 
data. Realistic restrictions on processing and memory, 
as might be imposed in automatic target recognition, 
remote sensing, and automatic control applications, 
in conjunction with high data rates, make such appli- 
cations~ and the procedure discussed herein, an import- 
ant subject in pattern recognition. 

Adaptive mixtures are a nonparametric statisti- 
cal pattern recognition technique developed in refer- 
ence (9) from the methods of kernel estimation tt° ' l l)  

§ Author to whom all correspondence should be addressed. 

and finite mixture modelling. ~4"~ 2,13) Similarities exist 
between adaptive mixtures and potential functions, t ~ 4) 
reduced kernel estimators," 5~ and maximum penalized 
likelihood methods, t6't6~ The scheme employs stoch- 
astic approximation methods to recursively develop 
density estimates for use in classification and discrimi- 
nant analysis. As with conventional Robbins-Monro 
methods,~t 7,1s~ the asymptotic convergence of adaptive 
mixture methods is an important issue. 

In Section 2 we discuss the development of adaptive 
mixtures. In Section 3 we discuss the method of sieves 
and use it to prove some asymptotic theorems related 
to adaptive mixtures. Section 4 gives three simulations 
indicating the performance of adaptive mixtures rela- 
tive to conventional procedures. 

2. ADAPTIVE MIXTURES 

The idea behind the adaptive mixtures approach is 
to approximate the probability density function of a 
stochastic process with a finite mixture of known 
densities. For example, in many clustering problems, 
a mixture of Gaussians may be used, with the intention 
of associating to each component of the mixture a 
group or cluster within the data. Most techniques of 
this sort are parametric, and require a fixed number of 
components for the approximating mixture. Various 
stochastic estimation techniques have been proposed 
to estimate the parameters of such a mixture. The 
approach taken by the adaptive mixture estimator is 
to adapt recursively the number of components to fit 
the data. 

One of the useful properties that might be desired 
of an estimator is consistency. The idea is that the 
estimate should approach the true density as the 
number of data points goes to infinity, and that the 
variance of the estimator should likewise go to zero. 
Thus we require that our estimator be asymptotically 
unbiased, with the variance of the estimator approach- 
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ing zero as the number of data points increases. In 
order for a finite mixture estimator (with a fixed 
number of components) to be consistent, very strong 
assumptions must be placed on the underlying density, 
and on the initial state of the estimator. In particular, 
the underlying density must be a mixture of the same 
type as the estimator. If the number of components in 
the estimator is allowed to grow indefinitely, however, 
these requirements can be relaxed. An extreme case of 
this is the kernel estimator, which is consistent under 
very weak conditions on the underlying density. The 
adaptive mixtures approach is to allow the number of 
components to grow, but at a much slower rate than 
a kernel estimator. This makes the adaptive mixtures 
approach much less computationally and memory 
intensive in practice, and hopefully produces a more 
useful small-sample estimator as well. 

If the number of components of a mixture is fixed, 
then the mixture can be parameterized with a fixed- 
length vector of parameters, 0. Thus, if we write our 
estimate as 

ra 

ct*(x; 0) = ~ nig(x; F,) (1) 
i=1 

where K(x; F) is some fixed density parameterized by 
F, then 

O=(rq . . . . .  nm-l,F1 . . . . .  ~=, Fro). 

(We can assume for much of what follows that K(.) is 
taken to be the normal distribution, in which case Fi 
becomes {#,, tr~ }.) 

The basic stochastic approximation approach is to 
update recursively the estimate 0 of the true parameters 
0o based on the latest estimate 0, and the newest 
observation xt+ 1. That is 

0,+1 = 0, + o , (x ,+ , ;  9,) (2) 

for some update function ®,. This approach is usually 
used in situations where it is known that the true 
distribution of the data is of the form (1). However, one 
can certainly approach the problem from the perspec- 
tive of fitting the data to a given model, where one finds 
the best fit of tbe form (1) to the data. 

The specific form of equation (2) that will be used 
in this work is the one suggested by Titterington, (19) 
Nevel'son and Has'minskii (* 8) and others. If we let I(0) 
be the Fisher information matrix, then the version of 
the recursive update formula we will use is 

0 t + l  =O,+(nl(Ot))- l~log(a*(x ,+l;OJ)  (3) 

where the derivative represents the vector of partial 
derivatives with respect to the components of 0. 

This update function is discussed in, for example, 
reference (19). Basically, it guides a traversal of the 
estimate of the likelihood surface provided by the 
observations {xi}~= 1 and based on the likelihood 
equations. This recursive maximum likelihood tech- 
nique converges to the desired resultant estimator 
when properly constrained. The relationship of this 

estimator to the EM algorithm t2°'211 is noted in 
reference (19). 

In order to extend this approach to a nonparametric 
one with a variable number of components, the algor- 
ithm (3) must be extended to allow the addition of new 
components. The stochastic approximation procedure 

0,+1 = O, + [1 -- Pt(x,+l;Ot)]U,(x,+l;O,) 

+ Pt(x,+ 1; Ot)Ct(x, + 1; Or, t) (4) 

is used to update recursively the density. Pt(') represents 
a (possibly stochastic) create decision and takes on val- 
ues 0 or 1. This "penalty function" serves to constrain 
the addition of new terms, similar to maximum penal- 
ized likelihood, and will allow for the application of 
the constrained optimization technique described in 
Section 3 below. Ut(') updates the current parameters 
using formula (3), while Ct(') adds a new component to 
the model (1) analogous to a kernel estimation approach. 

The addition of new components due to Ct(') adds 
new parameters to 0 (increments m in equation (1)), and 
the character of the likelihood surface is changed. The 
fact that Pt(') may depend on xt+l implies that this 
change can be data driven. Intuitively, this allows (4) 
to add a component if necessary, and allows for more 
efficient maximum likelihood estimation. The creation 
rule Ct(') is chosen so that the proportion and variance 
of the new component decreases with the number of 
components. If the system always creates a component, 
never updating, the form of the estimator is (5), below. 

If Pt(x,+ x; 0J = I for t < T and Pf(xt+ t; Or) = 0 for 
t > T, the algorithm will fit T terms to the data 
(alternately, one could start with T components 
chosen using some a priori knowledge, and then let 
Pt(x,+ x; 0,) = 0 for all t). In particular, if K(-) is the 
normal distribution, then we have a normal mixture 
model. On the other hand, if Pt(Xt+l;Ot) == - 1, the 
algorithm always creates a new component, centered 
at the new data point, and the estimate then becomes 

1 ~ 1 [x -x i '~  

This estimator is consistent under conditions similar 
to those required for the kernel estimator. (Much has 
been written about these kernel-type estimators. See, 
for instance, references (22-24).) Also, the process of 
fitting a mixture to a density can be made consistent 
as the number of components goes to infinity. Thus, it 
is reasonable to conjecture that the combination of the 
two approaches would be consistent, under reasonable 
assumptions about the create decision Pt('). 

Note that although (5) is a recursive estimator, in 
the sense that the estimator at time n + 1 requires only 
the estimator at time n and the new point, it has no 
practical advantage over a kernel estimator, unless the 
estimate is desired at only a finite number of pre- 
determined points. Thus, the idea of adaptive mixtures 
is to reduce the number of components, so that the 
computational requirements necessary to compute the 
estimate at any time is lessened, and the estimate is 
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more compactly represented. One could simply use 
fewer points in the kernel estimator, throwing the ex- 
tra points away, but this is clearly unacceptable. We 
would like to use all the points to improve the estimate. 

Observations for which P,(x,+l;O)= 1 in (4) cor- 
respond to jumps in the likelihood surface, a so-called 
"dynamic dimensionality" which can be useful for 
guiding the estimator toward a "good" solution and 
away from local maxima corresponding to poor sol- 
utions. Theorem 4 below hinges on the fact that these 
jumps do in fact propel our recursive EM-type algorithm 
into a high-quality estimate. As we move into the in- 
finite-dimensional space (as (4) does under this dy- 
namic dimensionality), consideration shifts from the 
parameters 0 to the parameter ~t taking its values in 
the infinite-dimensional parameter space A (a restric- 
tion of the set of all densities, discussed below). 

Simulations and applications indicate that the ap- 
proximation (4) has desirable properties for the re- 
cursive estimation of known densities. In particular, 
it seems to converge quickly to a good estimate of 
the density for a large class of densities. Nevertheless, 
because adaptive mixtures have been designed for 
use in recursive, nonparametric applications, the 
traditional small-sample analysis is not the main 
issue. Asymptotic results will allow a more complete 
understanding of the algorithm, and will be of use 
in evaluating the utility of the approximation (4) for 
particular applications. 

3. R E S U L T S  

Throughout the following, we will denote by A the 
set of density functions containing the true density a o. 
We will assume that A is a metric space with associated 
metric d, and will denote this by (A, d). The method of 
sieves(2 ~-27) is a scheme by which the parameter space 
A is constrained, with the constraint slowly relaxed as 
the number of observations increases, in an effort to 
insure that the estimator remains in some desirable 
subspace of A. This is important, notably, for nonpara- 
metric maximum likelihood (ML) estimation (of which 
adaptive mixtures are an example) in that ML methods 
can yield a discrete estimator with a spike at each 
observation. Examples of sieves include the conven- 
tional histogram as a special case, as well as the more 
sophisticated estimate discussed in reference (28). 

A sieve for A is a sequence of subsets {Sin} of A. We 
often require one or more of the following constraints: 

(i) ~ S~ is dense in A; 
(ii) S~ + ~ _~ S,,; 

(iii) Sm is compact for each m. 

The idea behind the method of sieves is to approximate 
the density ~t o by a succession of densities from S,, with 
m increasing slowly compared to the number of ob- 
servations n. A familiar sieve is the histogram, where 
we increase the number of bins slowly compared to the 
number of data points. 

Consider the parameter space 

A = {~tla ~ ~c¢, S ~t(x) --- 1, or(x) ___ 0 for all x}. 

That is, A is the set of univariate, bounded, continuous 
probability density functions. Let x l , x z , . . . b e  inde- 
pendent, identically distributed points drawn from the 
distribution a o E A. Consider the following set of"sieves 
of mixtures" contained in A: 

1 - {a,.:cem(x) = m -~ Sm - ~b(x; #~, a2); 
i = l  

&, < a2 < )'m; I/~il < zm t (6) 

Sm - n/~(x; #i, 
i = 1  

~ hi= 1;e,,<_ni<_ 1 -era(i= 1 . . . . .  m); 
i = 1  

cS,.<aE <y,.;l#il<zm} (7) 

3 -  {~t,n:ctm(x) = m - 1  Sm -- ~(X; ~, ~);  
i = 1  

~m _< ~# _< y,.; I#~1 _< r . }  (8) 

f " S.-'- ~,,:~.(x)= Y, n~¢~(x;.~,~2); 
i = 1  

~ni=l;e~<ni<l-e~(i=l  . . . . .  m); 
i = 1  

(9) 

m = 1, 2, . . . ,  where ~b is the standard normal probability 
density function, e,  > 0 for m > 1, 0 < &, < ~'m < oo 
and 0 < z m <  oo Vm. The sequence 1 2 a Sin, S,,  Sm can be 
seen to be progressively more general sieves. 

We wish to discuss maximum likelihood estima- 
tion in terms of these sieves. Following Geman and 
Hwang, ~26) Theorem 1, we show that under appropriate 
conditions on the true density ~t o and the sequence 
{m,} = {m}, these are "consistent sieves". 

Sieves (6) and (7) have a single smoothing parameter 
a 2, while (8) and (9) have a separate parameter a 2 for 
each term in the mixture. It is this more complex model 
of data-driven smoothing that causes trouble in maxi- 
mum likelihood estimation, and that we shall inves- 
tigate herein. Note that ~teS~,,ie{1,2,3,4},~ct is a 
probability density function. For  ~teS,, note that the 
Radon-Nikodym derivative of the probability measure 
induced by ct with respect to Lebesgue measure is just 
~(x). Let L,(~) be the likelihood function 

n 

L.I~) = H ~(x,). 
i = l  

Let M~, = M~,(co) be the set of all maximum likelihood 
estimators in Sm=Si,., i~{1,2,3,4}, given a sample 



774 C.E. PRIEBE and D. J. MARCHETTE 

size n 

M~, = {~teSm:L.(~)= sup L.(fl)}. 
#eS~ 

Let the entropy 

H(~, fl) = $ ct(x) In fl(x) dx. 

Then the Kul lback-Leibler  information J(ct, f l )=  
H(ct, ~t) - H(at, fl). Let Am be the set of all maximum 
entropy estimators in S .  = S~, ie { 1, 2, 3, 4} 

Am = {~ • S,. : n ( a  o, ~t) = sup n(cto, fl) }. 
#eS~ 

Let Bm(ct, e )=  {fl~Sm:d(~t, f l )< e} for cteSm, where d(') 
is the L~ metric. Let ~b(x;m,~t,e)= sup fl(x). Not- 

ationally, we say that a sequence of sets Cm--* ¢t, if 
sup d(~, fl) ~ 0. 
peC~ 

Lemma 1. For  ~oeA,  if H(c%,~o)<Oo, then for 
Sm=S~,ie{1,2,3,4} 

Am -* So in L 1 as m ~ 0o. 

Proof. As noted in reference (26), it suffices to show 
(i) H(~o,~.)--,H(~o,~o) implies ~ . - ' ~ o  in L~, and (ii) 
q {~m e Sin} ~H(~o, ~m)--' H(~o, So). Statement (i) follows 
from the fact that we are operating in basically the 
same parameter space as Geman and Hwang, (26) and 
the Kul lback-Leibler  information J(~t, fl) = 0 ~  ~t = ft. 
See Proposit ion 2 of reference (27), for proof. For  (ii), 
we consider 

f " } {~tm}= mh~ ~ ~ ~P(X;~j, hrn)eSm 
j = l  

where the ~ / ( j  = 1 . . . . .  m) are a random subsample of 
the observations xi(i = 1 .. . . .  n). That (ii) holds for these 
standard, nonrecursive kernel estimators is well known 
(see, for example, references (29, 30)). 

In light of the above lemma, we consider A' ~ A, 
where 

A ' =  {~xeAlH(a,a)< oo and ~teC#o}. 

That  is, A' is the restriction of A to densities with finite 
formal entropy and sufficiently regular tail behavior. 
(c# o denotes functions that "vanish at oo".) 

Theorem 1. If ct o e A', then for S,. = S~, ie { 1, 2, 3, 4}, S 
n 

sequence m , oo such that M~,--* ~t o in L1 a.s. 

Proof 

(1) S,. is compact for each m. 
(2) V m, ct • Sin, e > 0, ~b(x; m, ~t, e) is measurable in x. 
(3) Vm,~teS,,,~e>O~ 

S ~to(X ) In ~O(x) dx < oo. 
- o o  

(1)-(3), together within Lemma 1, Theorem 1 of Geman 
and Hwang (26) and Proposition 2 of Geman, (~ v) imply 
M~, is almost surely nonempty and M~, --*~t o in L~ a.s. 
for m increasing slowly enough with respect to n, as 
desired. 

Similarly, letting qM~, = {cte Sm:L.(~t) _> q sup L.(fl)} 
#eS~ 

and using Theorem 2 of Wald, (31) we have: 

Corollary 1. If ct o e A', 0 < q < 1, 3 m " , oo such that 

qM~--*ct o in L 1 a.s. 

It is in this form that the theorem becomes most 
useful, as in practice we are sometimes able to meet 
these relaxed conditions. 

N 

Theorem 2. If ct o = ~ nick(x;#i,a 2) for some N < oo 
i = 1  

(that is, So is a finite mixture model), then, for sieve S~, 
with m increasing slowly enough with respect to n, 
M~,--* ct'. and n(1/2)(ct'.- Cto) is asymptotically normal 
with optimal variance. 

Proof Lemma 1 and Theorem 1 hold and thus, as 
noted on p. 406 of reference (26), our result follows 
since ~toeSaV2 > m. (See, for example, Chapters 31-33 
of reference (32).) 

In Theorems 1 and 2, the conditions on m are that 
it "increase slowly enough w.r.t, n ' .  Theorem 3 allows 
us to be a bit more specific. We consider the parameter 
space A" c A' c A, where 

A" = {ct e A'I supp(~t) ~ [ - k, k] for some k < oo }. 

That  is, A" is the restriction of A' to densities with 
compact (but possibly unknown) support. For  6 > 0, 
let D,. = {cteS,.:n(at0, ct ) < n(cto, Ctm)- 6}, where {ct,.} 

={mhf,  l ~ ( o ( x ; , j ,  hm)eS.} is thekerneles t imator  
j = l  

used above in Lemma 1. Using ct" as a baseline, D,. is 
the set of all estimators in Sm which are at least &-worse 
than ct,. (in entropy). Given { ~}~=1, for each set 
Sm ~ (gK, let if(x; C.) = sup fl(x). Let 

p~ = max inf ~ Cto(X) ex p [ t in  {~(x; (9,)/Otm(X)} ] dx. 
t > _ O  

Note Pm= Pr,. and 2~ = 2~. are dependent on n as 
{m} = {m.}. For  Theorem 3 below we consider condi- 
tions (A)uJ_9~ _ D,., and (B) E.2m(p,.)" < oo. 

"lheorem 3. For  CtoeA", a sequence m = m .  can be 
specified such that 

MT. --* Cto in Lx a.s. for Sm= S~, i e { 1, 2, 3, 4}. 

Proof Using Lemma 1 and Theorem 1 above, it suf- 
rices to describe an appropriate sequence {m} = {m.} 
and corresponding sequence of sets { {O}~"=l}m satis- 
fying (A) and (B) and apply Theorem 2 of Geman and 
Hwang. (26) For  S~,m. = O(n ~/s-') for e > 0. (26"27) A 
similar argument applies for the other mixture sieves. 

We will proceed for S~, letting 6,. = 1/m,7. = m, 
T m = m .  

We b e g i n  by d e s c r i b i n g  a p p r o p r i a t e  sets  
~)  3.m oO { { K}~ =~ },. =~, such that (A) holds. Given a positive in- 

4 teger am, let N = {~teS.,:ct(x)= ~ n~ck(x:taj, ak)} 1 ~ i.j.k ~.," 
b~ is then a finite set, with I~1 -- a,..a Associate with each 
~teN all fl such that Ll(ct, fl) < An,. Call each set C~. The 
set of such d3 is also finite. Now, choose Am large 
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enough s.t. w~(~ ___ Sin. Finally, let C~ = ( ~ n  D,.. Then 
3 _  2~) and (A) is {C~} is a finite set (of size, say, a m -  

satisfied. It remains to determine a choice of a ,  ~ A ,  
2,. such that (B) holds. (Note that, by choosing am large 
enough, we can make A ,  as small as we wish, at the 
expense of larger 2m, since all :t~S~ are well behaved•) 
This is analogous to the "small ball" argument used in 
Geman. (27) IfC is small enough in L~, and 3 :teC, then 
~(x; C ) =  sup fl(x) will behave much like :t. That is, 

3A,  > 0 s.t. for : teC 

I:t(x) - ~(x)l < ~ Vx 

~:to In @/:t,~ < ~:to In (:t + ea)/:t~ 

< (~.~) ~ % In :t/:t,. 

= (~)( - 6 ) .  

Since aa is arbitrary, we can make a~ _< 1/2, and hence 
:to In ~/:tm < -- 6/2. Thus 

H(%, :t) -- H(~o, :tr,) < -- 6 

H(:to, d/) - H(ao, :t,.) < - 5/2. 

But then p,, < 1 ( ~ :to In ~/:ts < - 6/2 ~ ~ :to In ~/am 
< 0), and hence there exists a sequence {m} = {m,} 
such that (B) is satisfied. The maximum rate of increase 
of m, in terms of n, for which (B) is convergent, gives 
us our sequence. 

Corollary 2. For  %cA" ,  a sequence m = m ,  can be 
specified such that 

qM~ ~ :to in L 1 a.s, for S,, = S~, i ~ { 1, 2, 3, 4}. 

Once the consistency of S~ is established, it is neces- 
sary to investigate the relationship of the adaptive mix- 
ture process to these sieves. It is a simple matter to con- 
strain the adaptive mixture so that it lies in S~, and we 
assume that this is done. Thus, writing (4) in terms of 
sieve S 4 we have 

~*(x) = ~ ~j¢,(x; ~j,~r~) (10) 
j = l  

:t*+ 1 = :t~+ [1 - P,(x,+ 1; :t*)-} U,(x,+ l; :t*) 

+ P,(X,+l;Ot*)C,(x,+l,%,n). (11) 

The sieve parameter m is the number  of terms in the 
mixture, and the decision to move to the next higher 
sieve parameter is governed by P(.). The above the- 
orems will be applied to the adaptive mixtures proce- 
dure. If we knew that the adaptive mixture attained 
a maximum likelihood estimate between creations of 
new components,  then Theorems 1 and 3 would apply 
and say that the adaptive mixture is consistent. In fact, 
we only need to come within a fixed proport ion of 
the maximum likelihood estimate, as noted in the cor- 
ollaries above. 

The adaptive mixtures procedure thus has an ap- 
proximation theorem derived from the method of 
sieves, and the dynamics of the create decision P(.) and 
the create rule C(.) in equations (10) and (11) make the 
complexity of the model data-driven, while the recur- 

sive maximum likelihood estimation of the individual 
variances, inherent in U(.), yields the data-driven 
smoothing described at the outset. Specifically, C(.) 
must perform as a recursive kernel estimator, while 
U(') performs as recursive maximum likelihood esti- 
mation. We recall, in the c a s e  Pt(xt  + 1;/~,) - 0 V t > z,  w e  

have a recursive maximum likelihood EM algorithm 
with known convergence properties, and if P,(xf+ 1; Or) 
= 1 (that is, if we always create and never update), the 
recursive kernel estimator (5) is a consistent estimator. 

The assumptions placed on the create rule P(.) are 
that one "waits long enough" between c rea t ions- - tha t  
is, m increases slowly enough with respect to n - - a n d  
that, when there are local maxima of the likelihood 
surface, P(-) propels ~t* into a sufficiently small neigh- 
borhood of a sufficiently good maxima. The second 
assumption assures one of eventually being near a 
good (possibly local) maximum, while the first stipu- 
lation is necessary in order to allow the estimate to 
approach its asymptotic value at each step in the sieve 
and is the subject of Corollaries 1 and 2 above. 

Theorem 4. If % c A '  [resp. A"], then the sequence of 
estimates {:t*} produced by the adaptive mixture 
procedure ((10),(11)), under the conditions described 
above for P(.), is consistent. That is, : t*~ :t o in L 1 a.s. 

Proof In light of Corollaries 1 and 2 above, it suffices 
to argue that, for some M and all m > M, there exists 

* n Nm such that n > Nm~: t ,  eqM,,, a.s. With P(') = 0 and 
U(') in effect, :t* is a recursive version of the EM 
algorithm, t19'21) In this case we are assured that, for 
any :teqMT,, there exists a sufficiently small neighbor- 
hood f~, such that : t ' in  t),  implies the existence of such 
an N,.. (See Theorems 1 and 2 of Titterington ~19) and 
Sections 3 and 4 of Redner and Walker. t21)) Thus any 
P(.) which propels :t* into such an ~ ,  will suffice. 

Note 1: Grenander  ~25) contains an alternate formu- 
lation of much of the relevant work found in Geman 
and Hwang t26) and Wald (31) used above• 

Note 2: No explicit formulation of P(.) is given here, 
only the existence of such a procedure. However, for 
:t o e B' [resp. B"], where 

B'[resp. B"] = {:t e A'[resp. A"]: 

there exists a fixed 0 < q < 1 and 
M such that m > M 
there exists N,. such that n > N,~ 
{all local maxima in S,.} c qM~ 
a.s .}  

the identification of P(.) is trivial; Sm= t~,. 

The use of the sieve (9), and the set of maximum 
likelihood estimators M,~, in the consideration of the 
large-sample behavior of (10),(11) is appealing. As a 
recursive maximum likelihood estimator, the adaptive 
mixture procedure traverses the estimate of the likeli- 
hood surface provided by the sample in much the same 
way as the EM algorithm. When (11) adds a new term 
to its estimate (P,(x,+ 1; 0~) = 1), the sieve index m in (9) is 
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incremented. This increases the dimensionality of the 
likelihood surface, allowing the estimate to improve its 
likelihood, to "jump out" of local maxima of the likelihood 
surface. As the number of components increases, the 
local maxima into which the estimator may fall gets 
closer and closer to the true maximum, allowing the 
estimator to converge to no. 

These results (most notably Theorems 3 and 4) lend 
asymptotic validity to the use of the recursive formula 
(4), or (10), (11), for density estimation problems. While 
analytical rates of convergence are not provided here 
(Bahadur t33) is of interest in this respect), it is noted 
that asymptotic results are, by hypothesis, our highest 
concern. Nevertheless, simulations indicate that the 
estimator is good enough for practical requirements in 
a wide range of problems. In practice, the assumptions 
placed on P(-) in Theorem 4 do not appear overly 
restrictive. 

4. SIMULATION ANALYSIS 

The following simulation examples, using the adap- 
tive mixtures algorithm described above and in refer- 
ence (9) indicate convergence properties and compu- 
tational complexity for adaptive mixtures. To ana- 
lyze these simulation results from the viewpoint of 
conventional estimator convergence rates, we consider 
three simulations, each of which points out different 
qualities of the estimator and its relation to standard 
techniques. 

Simulation 1. Normal p.d.f.: ~0 = ~b(0, I). 
S imula t ion  2. S imple  no rma l  mixture:  no = 

1/2 4 , ( -2 ,  1/2) + 1/2 4,(1/2, 3/2). 
Simulation 3. Log-normal p.d.f.: no = x -  1(2n)- 1/2 

x exp ( -  1/2 (in x) 2) - 5 for 0 < x < oo. 

For  each of these three simulation examples, we 
show the true distribution ~o, curves for L 1 and L 2 
convergence vs. number of observations, a curve for 

number of terms used in the model vs. number of 
observations (as a measure of computational com- 
plexity), and an example of the model produced by 
the procedure. 

Simulation 1 indicates quite fast convergence of 
the adaptive mixtures procedure for the normal case 
(Fig. l(a)) as one might expect. Specifically, both the 
mean LI and L2 errors and the variance of the 
estimator under both norms appear to be decreasing 
to zero (Figs l(b) and (c)), indicating consistency. For 
the purposes of preliminary comparisons, we consi- 
der an estimated rate of convergence for the adap- 
tive mixtures based on a regression of the curves 
in Figs l(b) and (c) to the model O(n-~). We obtain 
7(L1) = 0.4856 and 7(L2) = 0.9144. The relevant num- 
bers for L2 comparison (see references (11, 34, 35)) are 
1.0,0.8, and 0.5. That is, a convergence rate of O(n-1) 
is the best one can expect even with a parametric 
estimator, O(n-o.s) with an optimal kernel estimator, 
and O(n -°'5) with a simple function approach. Thus 
the adaptive mixture performs quite well. While the 
procedure is nonparametric, this particular implemen- 
tation is inherently based on the normal model, and 
this performance may not be completely unexpected. 
Figure l(d) indicates the computational complexity of 
the model in number of terms used in the data-driven 
adaptive mixtures development. Here we see that this 
complexity grows quite slowly with n, with an average 
of less than eight terms used for 1000 observations. 
This is compared to the kernel estimator, which re- 
quires a separate term for each observation. (Recall 
that this complexity increase is the sieve parameter in 
equation (9)). Figure l(e) is a single example of the 
estimate produced after 1000 observations using seven 
terms. 

Simulation 2 indicates a similarly impressive, 
although slower, rate of convergence for the adaptive 
mixtures procedure in the normal mixture case (Fig. 2(a)). 
Again, both the mean L1 and L2 errors and the var- 



0 3031 

0 2 2 7 5  

0 .1516 .  

0 0758 ,  

O. 
-50 0 2 5 510 

/ 
-25 

Adaptive mixture density estimation 779 

(a) 

0 . 5  i 'E  

0.45 t 

0.4 

0,35 

0.3 

0.25 

0.2 

0.15 ... .  , 

0.1 

i 
0"050 100 21111 

k I I i t ~ ~ -  - r  . . . . . . . . . . .  

3 ~  4 ~  5 ~  600 7 ~  800 900 1000 

Number of Observations 

(b) 

Fig. 2. % = 1/2 5 ( - 2 ,  1/2) + 1/25(1/2, 3/2). (a) The true finite mixture model distribution % from which 
the observations are drawn for Simulation 2. (b) L~ convergence in mean and standard deviation based 
on 100 runs of 1000 observations. (c) L2 convergence in mean and standard deviation based on 100 runs 
of 1000 observations. (d) Computational complexity in mean and standard deviation. The plot is num- 
ber of terms in the model vs. number of observations based on 100 runs of 1000 observations. (e) An 
example of the model produced after 1000 observations. The solid curve is the true distribution % = 
1/2 5 ( -  2, 1/2) + 1/25(1/2, 3/2), the dashed line is the estimate ~t*. To put this particular model in the pers- 
pective of the curves shown in (b)-(d), we note that this model has nine terms, an ISE of 0.002200, and an 
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iance of the estimator under both norms appear to 
be decreasing to zero (Figs 2(b) and (c)), indicating con- 
sistency. The estimated rate of convergence for the 
adaptive mixtures based on a regression of the curves 
in Figs 2(b) and (c) to the model O(n -~) yields 7(LJ = 
0.3734 and ~(L2) = 0.6926. Thus, the adaptive mixture 
performs better than the simple function's O(n -°'5) 
and nearly as well as the optimal kernel estimator's 
O(n -°'8) for this mixture case. The computational 
complexity (Fig. 2(d)) again grows quite slowly with n, 
with an average of 9.5 terms used for 1000 observations. 
Figure 2(e) depicts a single example of the estimate 
produced after 1000 observations with nine terms. This 
estimate is by no means the best produced and is in 
fact about one standard deviation worse, in both L 1 
and L2, than the mean. 

Simulation 3 indicates the performance of the system 
on a much more difficult problem: that of a log- 
normal distribution (Fig. 3(a)). The convergence of the 
adaptive mixtures procedure is not nearly as clear in 
this example. Here we use simulations of 10,000 ob- 
servations (as compared to 1000 in Simulations 1 and 
2), and the convergence is much slower. This is, of 
course, to be expected since the procedure is a sieve of 
normal mixtures. The estimated rate of convergence 
for the adaptive mixtures based on a regression of the 
curves in Figs 3(b) and (c) to the model O(n-~) yields 
7(L1) = 0.1158 and ~'(L2) = 0.0919. Again, this deterio- 
ration of performance from the normal and mix- 
ture cases is expected. The computational complexity 
(Fig. 3(d)) grows to an average of 28.75 terms for 10,000 
observations (and less than 47 terms for 100,000 ob- 
servations) which, for performance like that depicted 
in Fig. 3(e) (a single example of the estimate produced 
after 100,000 observations with 46 terms) seems out- 
standing. 

Figure 3(f) depicts the three largest terms in a 
preliminary model of Simulation 3, based on only 1000 
observations. Here we see the data-driven smoothing 

about which we have spoken. In the region of support 
where the true density spikes, the terms in our model 
have relatively small variances. Conversely, in the 
broad tail of the support of the true density, our model 
gravitates toward terms with a large variance. The 
individual variances in our adaptive mixture model, 
allowed under sieve S~ (equation (9)), give us the ability 
to fit the local smoothness of the true density. 

These results compare favorably to the "transformed 
kernel estimator" approach of Wand et al. (36) Their 
approach is to use a transformation to normality and 
then perform a standard kernel estimator in the 
transformation space. The inverse transformation then 
yields an estimator with non-uniform smoothing para- 
meters superficially similar to the results in Fig. 3(f). 
However, it should be noted that their approach is not 
designed to reduce the computational complexity of 
kernel estimation, and hence does not directly address 
our concerns. 

While these simulation results are based upon quali- 
tative analysis, they nevertheless lend credence to the 
conclusions developed in Section 3: that adaptive 
mixtures density estimation has desirable large-sample 
properties. 

Experimental studies of the performance of the 
technique for situations in which the data are decidedly 
non-normal, and in which the feature space is two- and 
three-dimensional, is ongoing. Preliminary results have 
been published, ~37) and a more detailed study has been 
concluded indicating performance comparable to the 
kernel estimator with a significant savings in compu- 
tation complexity, t38) 

5. DISCUSSION 

The method of sieves, applied to the adaptive mix- 
ture density estimation procedure, indicates that the 
procedure is consistent under appropria te  condi- 
tions. The algorithm gives a useful method of recur- 
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this  pa r t i cu la r  mode l  in the perspect ive  of the curves  shown  in (b)-(d), we note  tha t  this  model  has  46 terms, 
an  ISE of 0.005811, and  an  IAE of 0.093628. (f) A pre l iminary  example  of the da ta -d r iven  smooth ing ,  
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x ( l n x ) 2 ) - 5  for 0 < x <  ~ ,  the dashed  lines are the three ma jo r  terms in the es t imate  ~t*. No te  the 

cor respondence  between the var iances  in the model  t e rms  and  the charac te r  of the t rue d i s t r ibu t ion  near  
the m e a n  of the terms. 
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sively developing the estimate. When considered as a 
recursive instantiation of the method of sieves, adaptive 
mixtures provides a data-driven relaxation of the sieve 
constraints. One might wish to view this procedure 
in conjunction with a sieve approach described in 
Wegman t2s) in which the sieve depends on the random 
sample itself. 

Considered as a combination of sieves and an ex- 
tension of a recursive version of the EM algorithm, 
adaptive mixtures as a maximum likelihood estimator 
shows potential for both small- and large-sample 
estimation applications. The main applications of 
the procedure, however, should come in large-sample 
problems for which iterative techniques are not feasible. 
In view of the discussion in Section 6 of Geman and 
Hwang, 126) an advantage of the adaptive mixture pro- 
cedure is that the individual masses rq and variances 
a 2 yield more flexibility. In some real sense, we have a 
more powerful sieve. 

Similarities between adaptive mixtures and maximum 
penalized likelihood are clear. The slow addition of 
mixture terms corresponds to a desire to keep the 
estimator simple (and in some sense smooth). That is, 
P(') acts as a penalty function. 

Regardless of asymptotic performance, any recursive 
estimation procedure will face a susceptibility to data- 
ordering problems for small-sample applications. 
While it must be remembered that adaptive mixtures 
are developed as an approach to problems in which 
a recursive solution is desired, there is an obvious 
iterative procedure which can be formulated in an 
analogous manner. 

It is argued that the ability to model a rich class of 
densities, inherent in the adaptive mixture procedure, 
provides more powerful pattern recognition capabili- 
ties than simple parametric approaches. Modeling 
complicated probability density functions can translate 

into sophisticated discriminant procedures. Prelimi- 
nary work in this area has appeared previouslyJ 37~ 
Modeling complex discriminant surfaces is a major 
focus of the neural network field. ~39~ The relationship 
between the techniques described above and neural 
networks is easily seen. In particular, kernel esti- 
mators 14°} and finite mixture models t41~ have been 
discussed from the perspective of artificial neural 
implementation, as has adaptive mixtures. ~42} The 
method of adding terms to our model corresponds to 
the "automatic node creation" receiving attention in 
neural networks. 

Among the ongoing work with adaptive mixtures, 
we have the extension of the method to the multi-class 
discrimination problem, unsupervised learning prob- 
lems and situations in which the stochastic process X 
is not assumed to be stationary. 
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