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Abstract--We develop a method of performing pattern recognition (discrimination and classification) 
using a recursive technique derived from mixture models, kernel estimation and stochastic approxi- 
mation. 
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I. INTRODUCTION 

A large number of applications require the ability to 
recognize patterns within data, where the character 
of the patterns may change with time. Example 
applications include remote sensing, autonomous 
control, and automatic target recognition in a chang- 
ing environment. (Titterington et al.,{~ Chapter 2, 
gives a list of applications to which mixture models 
have been applied. Many of these problems, and 
their variants, fall into the above categories.) These 
applications have a common requirement: the need 
to recognize new entities as they enter the environ- 
ment. A pattern recognition system in this type of 
environment must be able to change its rep- 
resentation of the classes dynamically in order to 
conform to changes in the classes themselves, as well 
as recognize, and develop a representation for, a 
new class in the environment. 

The adaptive mixtures approach presented herein 
uses density estimation to develop decision functions 
for supervised and unsupervised learning. Much 
work in performing density estimation in supervised 
and unsupervised situations has been done. For the 
most part, this research has centered on approaches 
that use a great deal of a priori information about 
the structure of the data. In particular, parametric 
assumptions are often made concerning the under- 
lying model of the data. While these approaches 
yield impressive results, nonparametric 
approaches ~23~ free of a priori assumptions can be 
considered more powerful due to their increased 
generality and therefore wider applicability. Dev- 
eloping a system for performing unsupervised learn- 
ing nonparametrically (that is, devoid of restricting 
assumptions) is a daunting task. In fact, there are 
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many instances in which no system can be assured 
of proper performance. For example, two classes 
with identical distributions cannot be identified as 
such based on purely unsupervised learning. Never- 
theless, a nonparametric density estimation 
approach to unsupervised learning can, in many 
cases, lead to a general and powerful pattern rec- 
ognition tool. 

(The adaptive mixtures approach considered 
herein is described as nonparametric. While there is 
some blurring of distinction between parametric, 
semiparametric, and nonparametric approaches, an 
estimation approach which intermittently changes 
the list of parameters to be estimated, based on the 
incoming observations, and which has no a priori 
upper bound on this parameter list, can rightfully be 
called nonparametric.) 

In addition to the nonparametric assumption, we 
also consider the problem of recursive estimation 
(reference (1), Chapter 6). 1451 That is, it is assumed 
that, due to high data rates or time constraints, we 
must develop our estimates in such a way that they 
do not require the storage or processing of all obser- 
vations to date. This also limits the ability to develop 
optimal estimates, but often is the only approach for 
a given application. 

By virtue of addressing the types of applications 
that can be termed recursive and nonparametric, we 
have at once made the problem more difficult and 
more interesting. The recursive assumption elim- 
inates the possibility of using iterative techniques. It 
is necessary, by hypothesis, to develop our estimate 
at time t only from our previous estimate and the 
newest observation. The nonparametric assumption 
implies that we cannot make any but the simplest 
assumptions about our data. Realistic restrictions on 
processing and memory, as might be imposed on 
automatic target recognition, remote sensing, and 
automatic control applications, in conjunction with 
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high data rates, make such applications, and the 
procedure discussed herein, an important subject in 
pattern recognition. 

In this work, we apply statistical pattern rec- 
ognition concepts to the problem of recursive non- 
parametric pattern recognition in dynamic 
environments. We begin with a description of pattern 
recognition in this context. Adaptive mixtures, a 
method for performing both supervised and unsuper- 
vised learning, is then developed. Simulation results 
are provided to show the performance of the system 
for a few examples. 

Similarities exist between adaptive mixtures and 
potential functions, ~6~ maximum penalized 
likelihood, 12.7) and reduced kernel estimatorsfl) The 
two category problem is considered throughout, with 
the exception of some of the examples. The results 
can be extended to multi-category problems easily 
(e.g. successive dichotomies). In addition, univariate 
assumptions are made in places for clarity. The 
sequel will, we hope, allow for meaningful discussion 
of recursive nonparametric learning as well as pro- 
vide a useful problem definition and approach from 
which to begin addressing specific applications. 

2.  P A T T E R N  R E C O ( ; N I T I O N  

Learning techniques are useful in a broad class 
of pattern recognition problems. In this section we 
motivate their application to problems requiring 
recursive and nonparametric processing. 

Let Q = {O l), C ~2~ . . . . .  C ~'~} be a set of classes, 
or patterns. Given an observation (measurement of 
a set of features) xt, indexed by time, of an object 
from one of the classes C ~0, we wish to determine 
which class, or pattern, is represented by the obser- 
vation. 

To this end, we construct an estimate of the prob- 
ability density functions associated with the indi- 
vidual classes, and then take our decision based on 
their relative height. Thus we consider the density 
of the overall distribution to be 

N 

xt ~ D = ~'~ ~(i) D(i), 
i = 1  

were rd 0 is the prior probability for the class and the 
D 0) is the density for the individual class. The system 
will respond with class i, where i is chosen so that 

yr(i)D (i) = max rt(J)D ~i). 
l 

For pattern recognition, we are concerned with the 
problem of constructing estimates of the individual 
class densities D ti), and the prior probabilities ~i). 

Following Kendall, ¢9) we define two distinct 
approaches to the tasks to be performed: classifi- 
cation and discrimination. Discrimination can be 
described as a supervised task. Based on a set of 
observations for which the true class of origin is 
known (the teaching set), we wish to construct a 

method for assigning a new observation of unknown 
origin to the correct class, that is, we wish to construct 
the individual densities D °~ and probabilities ~i). 
Classification, on the other hand, is an inherently 
unsupervised task. Based on a set of observations of 
unknown class, one decides whether groups exist 
within this data set. If so, one attempts to construct 
a method of assigning new observations to the correct 
class, again constructing a decision function. This 
corresponds to constructing the density D from 
observations for which the true class is unknown, 
and determining a partitioning of the density into 
individual class densities D ~0. This is, as one would 
imagine, a much more difficult (and under some 
conditions, impossible) task. 

Much of what follows pertains to classification 
and discrimination. While the nature of tasks to be 
performed becomes more complicated as we build 
to the dynamic environment scenario, the require- 
ments of our pattern recognition system S can nor- 
mally be thought of as analogous to these two tasks. 
In general, we have available a teaching data set 
{xt}~= l for which the true class is known and untagged 
observations {xt}~=,+~, for which the true class is 
unknown. We wish to perform discrimination based 
on {x,}~ 1 and use the decision function d(.  ) derived 
during this process to assign a class to the obser- 
vations {xt}~'=,, i. We would like. if possible, to use 
{x,}L,~-l to update (and improve) d ( . ) .  Using this 
data for which the true class is unknown entails 
unsupervised learning. 

It should be noted that in the simpler case of 
stationary distributions, it is the case that convergent 
estimates, Dl')(x)--, DI0(x) as n ~ : ~ ,  can yield 
Pd(e)--* Pu(e )  = Poor(e), that is, the probability of 
error approaches the Bayes optimal (see, e.g. ref- 
erences (10) and (11)). This adds justification to 
the use of density estimates in constructing decision 
functions. 

Let us now consider the extended problem in 
which the total number of classes, and thus the 
distributions D li) from which our xt can be drawn, is 
finite but not constant over time. For simplicity of 
exposition, we will assume that the densities D (i) are 
stationary. We will consider Q to be the set of all 
classes which appear during the operation of the 
classifier, with If~l = N. Let N, be the number of 
classes present at time t, that is the number of classes 
C ~'~ for which the class probability ~0  is nonzero. 
Then a new class entering the environment at time 
t = r corresponds to N~ = N~_ ~ + 1, Let class C(N0 
enter into ~ at time t = r, and remain a member of 
C2 until time t = r'. Then 

N r 

xt ~ Z .'~(i) D(i) 
i = 1  

for t E (r, r ') .  That is to say, the observations x~ can 
be drawn from distribution D¢'~', ) for r - t < 3'. For 
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N t -  I 

t ~ (~', r ' ) ,  xt - ~ .rr(0D (0 , 
i ~ l  

and xt will not be drawn from distribution D (N,). 
Note that, since we are assuming the ~i) sum to 1. 
the proportions ~i) (i = 1 . . . . .  Nr) must be adjusted 
during the period of time C ~N,~ is in our environment 
(t E (r, r ')).  For the simplest case, the class prob- 
abilities ~ ' )  remain constant in the regions 
t E  (0, r -  1], and t E  [r, r ') .  This corresponds to a 
simple kind of nonstationarity in the overall dis- 
tribution D that can be termed a "jump" non- 
stationarity. A good deal of work has been done in 
detecting changes such as these in stochastic pro- 
cesses (see, e.g. references (12) and (13)). 

Let us now consider additionally that the indi- 
vidual D ~i~ be nonstationary (that is time dependent,  
or drifting). Thus, D I° is a function of time, and 
is allowed to change with time, and therefore the 
capability to track such a change (or drift) is necess- 
ary. This condition, together with a dynamic N,, 
yields what will be termed a dynamic environment. 

It should be noted that it is impossible to design a 
system that both recognizes when a new class has 
appeared and tracks the nonstationarity of existing 
classes, unless some assumptions are made. Either 
there must be some model of the densities, in order 
to decide if an existing class is starting to violate its 
model, or there must be a model of the nonsta- 
tionarity, or a measure of distance from classes must 
be used to identify new classes as masses "far enough 
away" from existing classes. Since the approach 
taken here is a nonparametric one, we do not wish 
to make assumptions about the character of the class 
densities. Instead, we will use a measure of distance 
to assign a new class to points "far enough away" 
from existing classes, as will be described below. 
This assumes a measure of separation between 
classes, which may not be desirable in some appli- 
cations. It also assumes that the drift is slow enough 
to distinguish between a new class and the movement 
of an old class. 

These two assumptions are a result of our restric- 
tion to problems requiring recursive, nonparametric 
techniques. While it may be possible in many situ- 
ations to make distributional assumptions, or 
assumptions about the character of the nonsta- 
tionarity, or to retain a collection of data points for 
iterative processing, we are concerned with problems 
which do not allow these assumptions. Thus, though 
we must make some assumptions about the problem, 
the above seem to us to be the last restrictive within 
the context of pattern recognition. 

3. DEVELOPMENT OF ADAPTIVE MIXTURE APPROACH 

We now introduce an approach capable of per- 
forming recursive nonparametric learning in each of 
the categories described above: adaptive mixtures. 

We will develop the adaptive mixture from density 

estimation techniques of finite mixture modelling 
and stochastic approximation (s.a.). The extension 
of the adaptive mixture beyond these techniques will 
allow for the modelling of dynamic environments. 
For simplicity of exposition, we will focus first on the 
estimation of a single density. This should be thought 
of as one of the class densities D (0. 

Finite mixtures 

Consider for the moment the problem of esti- 
mating the components of a Gaussian mixture, That 
is, we assume that our density is of the form 

n 

D(x) = ~ Z i~(x ;p i ,  o,), (1) 
1 = 1  

where n is known, and the ~,~ sum to 1 for each t. We 
are implicitly assuming here that the data come from 
a single class, and we are trying to estimate the 
density for that class. We wish to estimate the par- 
ameter vector O r which consists of ;t,/~, and a. Let 
us also assume for the moment that D is stationary. 
A standard technique for estimating the parameter  
vector O r is to maximize the (log)likelihood. We will 
write an estimate for D(x) with parameter vector 0 
as D(x; 0). Following Titterington, (14~ we set 

3 
S(x, 0) = ~-~ log(O(x; 0)), (2) 

and use these likelihood equations to obtain the 
update formula 

~),÷, = 0, + tr, S(x, ,  ~ ; 0,). (3) 

This can be seen to be a gradient ascent on the 
loglikelihood surface, and under certain conditions 
on tr, and D we will have convergence to the target 
density (see reference (14)). In theory, trt should be 
(tl(Ot)) -~, where I is the Fisher information matrix, 
but in practice an approximation of / is used. An 
example of this kind of approximation formula which 
will be used below is the following set of recursive 
update equations: 

b}')(x,+,)  

,u!'21 = 

(4)  

(5) 

(6) 

~.I '> + a l~ , ( pP ] l  - ~.l ° )  

~ ' )  + ,~'] , p l ' l ( x , . ,  - ~i,>) 

~i> + a~'],p~0((x,.,  - ~ i0 ) (x , . ,  (7) 

this "update rule" (Equations (4)-(7)) We will call 
Ut(xt+l; /)t)- The idea behind this update rule is 
to proportion the new data point out to all the 
components, in proportion to their respective like- 
lihoods. The mean and covariance are then updated 
by this proportion. In the case of a single component, 
these update rules are just recursive versions of the 
sample mean and sample covariance calculations. 
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An obvious choice for al'21 (in the stationary case) 
is 

t - I  - 1  

If n, the number of components in the mixture, is 1, 
this is just I / ( t  + I), which is the inverse of the 
number of data points. In general, this can be thought 
of as the "number of points" used to updatw com- 
ponent i. If the density D is not known to be a 
mixture of Gaussians, however, one might still wish 
to use the above formulation to find an approxi- 
mation to the density by such a mixture. In some 
sense, the kernel estimator (15) is an extreme of this 
point of view. Thus, one could choose m "large 
enough", start the estimate with some initial 0, and 
then recursively update the estimate using the above 
formula. Assuming that the density is well approxi- 
mated by such a mixture (which is the case of m is 
large) and a reasonable initial estimate is used, this 
procedure will result in a good estimate of the 
density. 

If an approximation of the density D by a mixture 
as above is used, the number of components, m, 
and an initial estimate must be chosen. It would be 
helpful (and in fact is essential in the nonstationary 
case) if the algorithm could choose m and the initial 
estimate recursively from the data. It is this which 
motivates the algorithm described below. 

In order to develop an estimate of the form in 
Equation (1), we will use a combination of the above 
finite mixture modelling algorithm (the update rule) 
and a dynamic allocation procedure which allows the 
algorithm to increase the number of terms in our 
model if our current estimate fails to account for the 
current observation. That is, we will add a new term 
to the mixture, with mean #, = x, if circumstances 
indicate this is necessary. (It is this process which 
lends the process its "nonparametn~c" label.) Other- 
wise, we will update our estimate O, (and hence / ) ) .  
We will call this "create rule" Ct(xt+ t; Or), and will 
describe it shortly. Our s.a. procedure now becomes 

O,+~ = 0, + 11 - P , (x ,+ l ;  0,)1U,(x,_~; O,) 

+ P,(x,+ l; 0,) C,(x,+ ~; 0,). (8) 

P( . )  in Equation (8) is the "decision-to-add-com- 
ponent" function, and takes on values 1 or 0, dep- 
ending on whether the decision is to add a component 
or not. 

Assuming that the system has decided to add a 
component, the create rule C,( .)  is then, for the 
single-class case: 

~ ( m + l )  ,+, = xt+l (9) 

olYi~ 1) = ~ (10) 

X~'21 = Z~ i) (1 - at) (i = 1 . . . . .  m)  (11) 

,~)1 = a, (12) 

m = m + 1. (13) 

Thus, the new component is centered at the obser- 
vation, given an initial covariance (which may be 
user-defined, or derived from the components in 
the neighborhood of the observation) and a small 
proportion. All the other proportions must be 
updated so that they sum to 1, but otherwise the 
other components are unaffected. For the multi-class 
modelling case, C( . )  becomes a bit more involved. 
This situation will be discussed below. 

In the case where the decision is made to add a 
component for each data point, the estimate is similar 
to the kernel estimator (1D densities are used for 
clarity, and the explicit dependence on time is indi- 
cated): 

li 
Dr(x) = t ~P(x; xi ,  oi). (14) 

i = 1  

Putting this into a more standard kernel estimation 
notation, we have 

1 " 1 ( x -  x,~ 
O.(x) = ~,E E ~ ~ - - - ~ - , / '  (~5) 

where K is the Gaussian with mean 0 and variance 
1. 

Dn(x) is the estimator considered in Wolverton 
and Wagner (l°) and Wegman and Davies. 1~6) Its con- 
sistency is easily established. Thus, in this extreme 
case, the algorithm is consistent for reasonable 
choices of the system variables (in this case a, a, and 
K). It is reasonable, therefore, that since the update 
rule is a recursive maximum likelihood 
estimator,(14.17.18) and so in some sense improves the 
estimate between the addition of new components, 
that if the decision to add a component is properly 
chosen the overall system will be consistent. The 
performance of the estimator obtained by using 
recursive updates, as opposed to merely always add- 
ing another term, is important. The reduction in the 
number of terms required in the estimate is a storage 
and computational advantage. 

The decision to add a component P ( . )  can be 
made in a number of ways. The simplest way is to 
check the Mahalanobis distance from the observation 
to each of the components, and if the minimum of 
these exceeds a threshold (called the create threshold 
Tc), then the point is in some sense "too far away" 
from the other components, and a new component 
should be created. Recall that the Mahalanobis dis- 
tance between a point x and a component with mean 
#x ~i) and covariance 0 ~i) is defined by 

MIi)(x) = (x - l l ( O ) T o ( i ) - I ( X  - -  //(il). (16) 

(Note: this is actually the square of the Mahalanobis 
distance, but this is unimportant to the discussion.) 
Thus, if the create threshold is Tc, then we create a 
new component at the point x, ,  ~ if 

M(Xt+l)min(MIi ) (x ,+l) )  > T c. (17) 
t 
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Other approaches would be to create stochastically 
with probability inversely proportional to M(xt+l) 
(scaled appropriately so that the probabilities lie in 
the range [0, 1]), or use the estimated density directly 
rather than the individual components. The stoch- 
astic threshold Tc is used in the results described 
below. In this case, the "Mahalanobis distance" is 
scaled by the exponential: A(i)(x) = exp(-½M(i)(x)) .  
This is the "distance" used to compare with 7"(. in 
the sequel. 

Windowing  

The most common technique for modifying a 
recursive system to allow the estimation of a non- 
stationary distribution is to use a window on the 
observations. This amounts, in the simple case, to 
setting ar to some small constant. This puts an 
exponential window on the data, forcing the system 
to always treat the newest observation with a certain 
amount of respect. This approach obviously pre- 
cludes a system from being consistent, but con- 
sistency in modelling nonstationary distributions is 
generally unobtainable. Consider the general update 
formula mentioned above, namely 

Or-I = Ot + t~"rS(x,+ l ;  0r)" (18) 

The conditions placed upon a~r in order for Equation 
(18) to be a consistent estimator are basically (a) 
Za, = ~,  and (b) y ~  < oo. For example, oct = t- 1. To 
implement a windowed estimator and address non- 
stationarities, consider the perturbation of Equation 
(18) to 

Ot-~, = 0r + flrS(xr+ l; 0r), (19) 

where the fir are such that B > 0 is a lower bound for 
fl,. Then Equation (19) is a windowed s.a. scheme 
suitable for modelling nonstationarity densities. 
Note that Zfl  2 = 0% so consistency is unobtainable. 
However, this provides a window on the data, 
allowing the estimator to adapt to changes in the 
underlying density. As an example, let fir = 
max{t - l ,  B -1} for constant B > 0. 

It is important to note that asymptotic con- 
siderations, as detailed above, become moot when 
dealing with nonstationarities. What is of importance 
is the level of performance that can be expected 
under given conditions. For instance, what variance 
and bias can be expected for given window widths 
under stationary assumptions. This information 
allows one to evaluate the output of the system. 

Extension to the multi-class case 

The preceding discussion involved modelling a 
single-class distribution. For the general pattern rec- 
ognition problem this is clearly insufficient. We must 
have a method for modelling N classes within the 

framework of Equation (1). Consider N separate 
distributions of the form (1). That is, 

N 
D(x) = ' ~  :t(/)D(/)(x). (20) 

/=1 

Each of the component densities will be modelled as 
a mixture as above. Assume that a supervised train- 
ing set is available, so that an initial estimate can be 
made for each of the classes. Assume further that all 
the classes are represented in the initial training set. 
We can then model the individual class densities as 
mixtures as above. However, in the general case, 
where there may be classes which are not represented 
by the initial training set, we need a mechanism for 
determining whether a point belongs to an existing 
class, or whether a new "unknown" class should be 
created. 

Let A be the scaled normal, or scaled Mahalanobis 
distance as above. We now require that the create 
function C( . )  utilize an inclusion test I(A (i). x,_ 1), 
which will be used to allow Equation (20) to develop 
new, unknown classes /.~/) recursively. (Note that, 
for our purposes, a decision to update ( P ( . ) =  0) 
implies no need for any consideration of inclusion: 
proportional update takes care of itself, i ( - )  can be 
thought of as a "coveredness-coefficient", and is used 
to determine if the present observation is predicted 
by one of the terms in the summation (20). (This is 
analogous to a tail-test, with the proviso that we are 
testing individual terms in the mixture (20) rather 
than the classes.) If the model (20) fails this test for 
all components of all classes, and the creation of a 
new term is indicated by Equation (17), then the 
newly created term will be considered the first mem- 
ber of a new unknown class ~ x -  1). In this case. ( ' ( - )  
is the same as in the single-class case. If, on the other 
hand, the model passes the inclusion test for the 
current observation for one or more classes, then the 
new term will be incorporated into the class(cs) for 
which the observation passes the test. This case will 
be discussed further. 

Specifically, we let I(A °), x,+ ~) be a random vari- 
able such that I(A u), x,+ 1) = 1 if A(i)(x,_ 1) -> T/and 
I(A (0, xr+l) = 0 if Ali)(x,+ 1) < Tt for some include 
threshold Tt -< 1. If Z,I(A (i), xr+ 1) = 0, an "unknown 
class" will be created, as described above, if, on the 
other hand. Eil(A °~, xt. ~) is nonzero, C(. ) then is as 
in the single-class case (Equations (9)-(13)) with the 
following exception: Cr+ 1 = Z,I( AI0, xt+ 1) terms are 
created, one corresponding to each class 
C (0 ~ I(A (i), xr+l) = 1, each with ). = ). = at(C, ,  I) 
(compare Equation (12)). 

l(At0, xr) attempts to recursively identify the 
modes or terms in the unsupervised data, and as such 
cannot be perfect. In implementation, it is possible 
to use a number of parameters to develop I ( . ) .  In 
particular, a "minimum variance" parameter,  o ~, 
can be used to aid in making the inclusion decisions. 
For nonasymptotic reasons, a minimum distance 
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(Mahalanobis) can be useful. (Note that these par- 
ameters need not be constant over the entire feature 
space!) Finally, uncertainty considerations can be 
made. For instance, when many observations (super- 
vised or unsupervised) have been made in a given 
sector of feature space, we have more confidence in 
our estimate. We can therefore reduce our depen- 
dence on unsupervised learning (u.l.) in these cases. 
This is for the stationary case. In the nonstationary 
case, we may indeed wish to suspend u.i. in certain 
instances until a "change detector" (such as in ref- 
erences (12) and (13)) indicates that our estimate is 
no longer valid. While these considerations are 
indeed important, they deal mainly with application- 
specific issues. The point of mentioning them is that 
they are imperative precisely because there can be 
no "perfect" u.I. machine! 

As an aside, a discrimination threshold To may be 
beneficial for the ultimate response of the system, 
although this is technically unnecessary. The prob- 
lem arises when no known class is "close" to the 
current observation. In this case (which, by the way, 
may or may not imply the creation of a new, unknown 
class) the probability that the observation originates 
from the closest class (in a Mahalanobis sense) can 
be high while the likelihood is quite low. This 
scenario, not uncommon in practice, can yield mis- 
leading system responses. However, a discrimination 
threshold 0 <-To can be implemented such that 
max,/)(0(xt) < T o implies that the system response 
will include, along with the probabilistic ranking of 
the classes of origin, the proviso that the observation 
is either an outlier or originates from an unknown 
and as yet unmodelled class. 

4.  R E S U L T S  

The algorithm 

We now present a pseudo-code algorithm for the 
Adaptive Mixture Model (AMM) pattern rec- 
ognition paradigm for performing both supervised 
and unsupervised learning recursively and non- 
parametrically in a potentially nonstationary 
environment. The simulations presented are all uni- 
variate, although the algorithm presented is not 
restricted to this case. 

Assumptions: 
(A1) Gaussian kernel. 
(A2) There are (or will be) C known classes, or 

choose C so large that there will be no more than C 
known classes. That is, Q = {C n), C (~) . . . . .  C(C')} is 
the set of known classes. 

(A3)Choose U so large that there will be no more 
than U unknown classes. That is, f 2 ' =  {U (c+l), 
U~C-2) . . . . .  U~C+ to} is the set of unknown classes. 
(If U = 0, no new classes will be created.) 

The model (estimate) we develop for each class i is 
of the form 

tl I 

/")(x) = E x}i)#,(x; W ), o i %  
j = l  

where n, is the number of terms in the model for 
class i and / i s  the standard normal (Gaussian) p.d.f. 
The overall estimate is of the form 

C+U n, 

i = 1  1=1 

C n, 

= E E W), o '1) 
i = 1 / = 1  

C + U  n, 

i = C ' + l j = l  

C C + U  

= Z + E 0 
i=I i = C + l  

c 

= t(')(x) + O(x), 
i = l  

with the requirement that 

C+U n, 

i = l  j=1 

The ~i) represent known classes and the ~i) rep- 
resent unknown classes (classes the AMM has devel- 
oped on its own, in the unsupervised mode). 0 
represents the overall "unknown" distribution. Let 

(i) be the "unnormalized weight". We write 
~)--q0(x; ~t!'), o}i)). Let A be the scaled normal: 

(2n) ifi det[5:]¢)i). Let N be the weighted nor- / 
mal: N: ° = n)i)ep) o. The input {x,, c,}L1 to the sys- 
tem is in the form of {observation, class} pairs, where 
the observation is assumed to be a univariate inde- 
pendent random sample and the class is an element 
of {0, 1 . . . . .  C}. A value of 0 for class (c, = 0) implies 
an untagged observation, while any other value 
implies an observation for which the true class is 
known and reported. 

Begin 
Step 0: Choose C = total number of supervised 

classes 
Choose parameters dd) (i = 1 . . . . .  C), 

Tc, Tt, To. 
Set n~= 0 for i =  1 . . . . .  C + U. 
Choose U =  total number of unsupervised 
classes possible. 
Choose B = window size. 

While input {xt, ct} is available 
Step 1: Classify observation x,. 
Step 2: If c, > 0 Then 

SupervisedLearn 
Else 

UnsupervisedLearn 
Endif 

Step 3: Normalize 
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EndWhile 
End 

Classify: 
Step 1: For each class C (i) E f2 tO f2' determine 

value 

n I 

DIi)(x,)  = ~ ~!i)~(x', - .  , -,u! i), o} i)) 
)=1 

Step 2: If max DI°(xt) < To Then class is unknown 
(no class is above discrimination threshold) 

Step 3: Calculate probabilities D(i)(xt)/D(x,) and 
P " s i n g l  . . . .  k . . . .  ,. if desired 

Step 4: Return vector of probabilities. 

SupervisedLearn: 
If max A!",)(x,) > T,. Then 

1 -"s i < n r  t 

SupervisedUpdate 
Else 

SupervisedCreate 

Unsupervisedkearn: 
I f U = O o r  max max A l O ( x , ) > T ~ T h e n  

CIt )E~U 0 I<-i-<n! 

UnsupervisedUpdate 
(same condition as SupervisedLearn, only taken 
over all classes) 

Else 
UnsupervisedCreate 

SupervisedUpdate: 
For each component of class ct (i = 1 . . . . .  n¢,) 

update lt!c, ) , o~c, ) , p }~,) proportionately 
(Equations (4)-(7)), incorporating window 

SupervisedCreate: 
Allocate component N,~, ,, to class C I~,) with 

u ( C , )  
, nc~. I : X t ,  

o4,'~1 = o (',1 = weighted average (over i = 1 . . . . .  

n~,) of all ~ , )  

(if n,. = O, o (~,) = o ° ) .  
nct~ I 

nc~ , l  = n c ,  + I .  

¢t-i l"ntc 

(if n~_  = O, nl,,I = 1). 
.t~ gl(t ÷ I 

UnsupervisedUpdate: 
For all comonents, update /~}J3, ~t ) ,p ! i )  pro- 
portionately. 

(Same as SupervisedUpdate,  except over all 
classes, not just c,). 

UnsupervisedCreate: 
If max m a x  A}/)(x,) --> TI Then 

( ( / ) E  ~ LJ f2'  I ~ J ~ n l  

For each . ~ '  such that max A~/)(x,) ~ TI, 
l~ i '~n  I 

Proportionately Allocate node N(,~)+~ to class 
)~J) with 

~l(J)+l ~ X t ,  

atg~÷l = o ~j) = weighted average (over i) of all 
O~/)  , 

nj+l = n / +  1, 
p(,'?+, = p(," + I. 

Else Allocate node N~½~ to new unknown class 
C ti) with 

~.!~+ ~ = x , ,  

,,(;) = o ~j) = weighted average (over i and j )  V n / +  

of all ~J), 
Set n I = 1, 
Set p(,J)+~ = 1. 

Normalize: Normalize the priors ,'r~ il. Choices 
include 

(a) making the overall estimate a density, so that 
the sum over all classes is unity, assuming estimated 
priors (ONED),  or 

(b) making each class estimate a density, so that 
the sum over each class is unity, assuming equal 
priors (EACHD).  

Simulations 

We consider the four situations of interest: (1) 
approximation of an arbitrary probability density; 
(2) discrimination in a stationary environment of 
supervised and unsupervised data; (3) approximation 
of a nonstationary density; and (4) the appearance 
of a new class. The simulations below show the 
abilities and limitations of the adaptive mixtures 
approach. It should be noted that, while rates of 
convergence are not yet available for this algorithm, 
simulations indicate that processing requirements 
are similar to those for a straightforward mixture 
approximation, implying the practicability of the 
algorithm. 

In the examples below, Tc ~ U[0, 1], Tl = 0.5, 
To = 0.0, o0 = ~i) = 1.0 (i = 1 . . . . .  C). In addition, 
normalization is performed via ONED. 

Some explanation of Tc is needed. Instead of fixing 
a create threshold, a "stochastic create threshold" is 
used. For each point, a uniform random number is 
drawn to be used as the create threshold. This is 
equivalent to deciding to create with probability 
equal to 1 -max(A!/ l (x , ) ) .  So the system is more 
likely to create a component if the data point is far 
from any current component, and less likely to create 
for points close to current components. The absence 
of a hard threshold allows the system to create even 
for points close to a current component. 

Example  1: stationary single-class distribution--  
example  o f  density estimation. The data are 
drawn from a mixture of two normals, 
pdp(x; I~l, ol)  + (1 - p)q)(x; ~2, oz), with parameters 
p = 0 . 3 ,  /~1=0.25, o1=1.25 ,  ~2=2 .0 ,  o2=  1.0. 
(See Fig. l(a).)  Note that the components do not 
show up as distinct modes. In this simulation, U = 
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Fig. 1. Mixture of two normals: 0.3 ~x;  0.25, 1.25) + 0.7 ~x;  2.0, 1.0), U = 0, C = 1: (a) B = ~o. The 
dotted line represents the true distribution, the solid line represents the estimate after 10,00~ supervised 
observations. 50 components were created; (b) B = 10. The dotted line represents the true distribution, 
the solid line represents the estimate after 10,000 supervised observations. 72 comonents were created; 
(c) mean integrate square-error (MISE). 50 runs were made and the average MISE is plotted. The solid 
line corresponds to B = ~, the dash-dot line corresponds to B = 10, and the dashed line corresponds 
to a kernel estimator; (d) standard deviations for the MISE curves in (c). Only the adaptive mixtures 

are shown. 

0, so no unknown classes are created, and C = 1, so 
only one class is possible. This is the problem of 
estimating the stationary density of a single class. It 
can also be thought of as supervised learning in a 
stationary environment. 

If no distributional assumptions can be made, nor 
iterative processing performed, adaptive mixtures is 
a viable approach to density estimation. While much 
in the algorithm is superfluous to simple stationary 
density estimation, this example is presented due to 
its fundamental importance to the adaptive mixtures 
approach to pattern recognition. It must be (and 
is) necessary to do a credible job in basic density 
estimation. 

Figure l(a) shows the adaptive mixture model 
after 10,000 observations drawn from the distri- 
bution. The estimate, made up of 50 components, is 
quite good. Analysis indicates that, under suitable 
conditions, the single density estimation procedure 

is, in fact, consistent• Figure 1 (b) is analogous to the 
first example, but with a windowed system. Here 
we see that, as expected, the estimate reaches a 
minimum-error limit, based on the window, around 
which it oscillates. Pattern recognition based on such 
estimates gain the ability to track nonstationarities 
(see below), but are limited in their asymptotic per- 
formance. An iterative reduced kernel estimation 
algorithm might produce a similar estimate with 
fewer terms, but under the recursive nonparametric 
assumptions we know of no analogous approach. 

Note that a reasonably large number (10,000) of 
data points is used. This is typical of recursive 
systems: they tend to require large data sets, and are 
typically used in applications where the amount of 
data precludes the use of iterative techniques. 

Figures 1(c) and (d) give mean integrated squared- 
error (MISE) results for the above examples. Here, 
50 runs were made in which data were drawn from 
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the distribution, and the mean integrated squared- 
error was computed between the true distribution 
and the estimate. The average of these runs is plotted 
in Fig. 1 (c), with comparison with a kernel estimator 
of the same data, and standard deviation bars for 
the windowed and nonwindowed AM estimators are 
shown in Fig. l(d). The kernel estimator uses the 
bandwidth that would be optimal under the normal 
assumption (this is a reasonable conclusion to jump 
to since the data look normal, and so this is probably 
the bandwidth that would be chosen in practice). As 
expected, the windowed version has a higher error 
and variability, but as will be shown below, this 
variability allows the windowed estimator to track 
nonstationary distributions. This points out the 
trade-off between estimation of the distribution, and 
the ability to track nonstationary distributions. 

Example 2: stationary discrimination--supervised 
vs unsupervised vs fully supervised. These data come 
from two classes, C = 2, two normals, q~(x; gl,  ol) 
and ~p(x; l~2, o2), with parameters .ul = - 3 . 0 ,  ol = 
1.0, u.~ = 0.0, a:  = 1.0. The data consist of both 
supervised and unsupervised points. As in Example 
1 above, U = 0, rendering much of the algorithm 
unused. The basic tenet of unsupervised learning is 
that the model can be improved based on untagged 
observations. This simplified example illustrates that 
ability. 

Figure 2(a) depicts the adaptive mixture estimate 
based on a small set of teaching observations, 
Equation (10). The estimate for the individual classes 
leaves something to be desired, a result of the small 
teaching set. Figure 2(b) shows this same model after 
it has been augmented by unsupervised learning. 
Finally, Fig. 2(c) shows the estimate produced when 
the entire data set is used in supervised learning. 
Compare Figs 2(a) and (b) with (c). We note that, 
while the model utilizing unsupervised learning may 
not be as good in general as the fully supervised 
estimate (in this case the unsupervised estimate is 
arguably as good as the supervised), the unsuper- 
vised learning has none the less improved the esti- 
mate. The adaptive mixtures procedure has (as it 
must) the ability to utilize information in untagged 
observations. It is of interest to note that the initial 
supervised estimate (Fig. 2(a)) uses 6 components 
(overall), while model Fig. 2(b), after unsupervised 
learning, uses 35 components. An additional 29 com- 
ponents were created by the algorithm to better 
model the observations. 

Note: This performance can be improved, in this 
example, by using the information that the classes 
consist of single Gaussians. The AM can be set to 
allow only a single component for each class, and it 
will then produce (nearly) the optimal estimate (in 
the single normal case, the mean and covariance 
estimates are the sample mean and sample covari- 
ance, though the sample covariance is biased by the 

initial covariance). This is only true in the case of 
single normal distributions, of course. 

Example 3: nonstationary, single density. The abil- 
ity to follow nonstationarities in the data is examined 
in this example. While this example is limited to a 
single density, C = 1, with no unsupervised learning, 
it none the less illustrates a basic ability necessary for 
pattern recognition in nonstationary environments. 
The freedom to create a new term in a previously 
uncovered area of the input space when an obser- 
vation is recorded in that area allows the model to 
drift based on the data. In addition, simple outliers 
will be largely ignored, due to the proportional 
updating of the priors, if there is little to support 
the hypothesis that they represent significant density 
mass. The window here is 10 (B = 10) and no 
unknown classes are allowed (U = 0). 

Figure 3(a) shows the (windowed) adaptive mix- 
tures for D = pq)(x:/t t, 01) + (1 - p)cp(x; t, 2, a2), 
with parameters p = 0.6, .u~ = -1 .5 ,  o~ = 1.5, .u2 = 
1.5, 02 = 1.0, after 2000 observations (compare Fig. 
l(c)). At this point, there is a jump in the distribution 
from which the observations are drawn, to D ' =  
qcp(x; #3, 0"3) + (1 -- q)q~(x; #4, oa), with parameters 
p = 0 . 3 ,  /,/3=0.25, o3=1.25  , / t4=2.0 ,  o4=1.(I .  
Figures 3(b)-(d) depict the drifting of the estimate 
to account for this jump. At Fig. 3(d) we are again 
approaching the minimum-error limit defined by the 
window size. (As noted above, work has been done 
in recognizing and following nonstationarities. Much 
of this work, however, requires a model of the non- 
stationarities to be encountered. Here, the window 
size incorporates the only assumptions made on the 
character of the nonstationarities.) 

Example 4: nottstationary, new class. It is here, 
when a new class may enter the environment, that 
the need for an algorithm like adaptive mixtures can 
be most readily seen. The unsupervised learning part 
of the algorithm is finally given free reign and allowed 
to create new terms, allocated to new classes, based 
upon the data. The nonstationary abilities have been 
depicted above, but here we allow (based on the 
parameters, most notably Tc and TI) the algorithm 
to indicate a new class has been recognized. In fact. 
numerous new classes have been recognized. Herein 
lies a major problem with unsupervised learning. 
There is no reliable way, devoid of a priori knowl- 
edge, to determine the connection between different 
unknown classes. In this example we consider two 
options: coalescing all unknown classes into a 
"single-unknown',  and considering each unknown 
separately. The window width used is 10 (B = 10) 
and U = 100 to allow for the creation of unknown 
classes. 

Figure 4(a) shows the two-class model after super- 
vised learning based on observations drawn from 
Dl = q~(x;/tl,ol), D2 = q~(x;/~_,, o~.), with par- 
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Fig. 2. Two classes (C = 2) from ¢(x; -3.0, 1.0) and ¢(x; 0.0, 1.0), U = 0, C = 2: (a) estimate after 10 
supervised observations. The dotted lines correspond to the estimates, the solid lines to the true 
distributions. The left-most estimate consists of 4 components, the right most consists of 2; (b) the 
estimates from (a) after unsupervised learning on an additional 1000 observations (500 from each class). 
The left-most estimate consists of 18 components, the right-most consists of 17 components; (c) estimate 
after supervised learning on the full 1010 observations. The left-most estimate consists of 13 components, 

the right-most consists of 16 components. 

ameters ~1 = -3 .0 ,  al = 1.0, #2 = 0.0, o2 = 1.0. At  
this point, unsupervised learning is attempted, but 
the distribution from which observations are drawn 
jumps to the three class distribution: D], D2 as 
above, and D 3 = t~(x; ~3, 03), with /~3 = 5.0, o3 = 
1.0. Figure 4(b) depicts the estimate after unsuper- 

vised learning, with all the unknown classes shown 
as "single-unknown". This estimate has in fact recog- 
nized the unknown class, without significantly deg- 
grading the model of the two known classes. Figure 
4(c) shows this "single-unknown" as the combination 
of unknown classes that were created by the algor- 
ithm. It should be noted that coalescing these 
unknowns into one or more composite unknown 
class is impossible without prior knowledge or 
assumptions. Nevertheless, the model developed can 
allow the system to indicate that an observation is 
drawn, with high probability, from some class other 
than the two known classes. 

A final note regarding Example 4: should the new 

class(es) be two close to existing classes, unsuper- 
vised learning techniques with no prior assumptions 
will be unable to distinguish the new class. A similar 
statement holds for Example 2: if the classes upon 
which unsupervised learning is being performed are 
too close, the results are unreliable. This will be true 
for any unsupervised learning algorithm. It is clear 
that without some prior knowledge, it is impossible 
to distinguish between a drifting distribution and the 
emergence of a new class. Thus, assumptions about 
the separation of classes (Tc, Tl) and the rate of 
change of the distributions (B) are made, and within 
reasonable bounds these are modifiable by the user 
to achieve the desired performance. 

In all the examples above, emphasis is placed on 
the quality of the model developed. Implicitly, this 
translates into the quality of pattern recognition that 
can be performed, as a good model can be expected 
to yield reliable classification results. The four 
examples, taken as a whole, indicate the viability of 
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Fig. 3. Jump nonstationarity. U =  0, C =  1, B = 10: (a) estimate after 2000 observations from 
0.6¢(x; -1.5,  1.5) + 0.4¢(x; 1.5, 1.0). Dotted line corresponds to estimate (37 components), solid line 
corresponds to true distribution; (b) the true distribution jumps to 0.3¢(x; 0.25, 1.25) + 0.7¢(x; 2.0, 1.0); 
(c) estimate after 1000 observations from the new distribution. The estimate consists of 52 components; 
(d) estimate after 10,000 observations from the new distributions. The estimate consists of 92 components. 

using adaptive mixtures for developing the model 
when recursive nonparametrics are called for. The 
assumption of nonstationarity, and consequential 
selection of B < o% limits the estimation ability in 
the event of truly stationary data. However, for 
nonstationary data, this is irrelevant. The learning 
procedure allows the improvement of the model 
based on untagged (unsupervised) data, and the 
ability to create new terms based on the data allows 
both the tracking of nonstationarities and the de- 
velopment of new, previously unknown classes. 

While comparisons between adaptive mixtures and 
conventional  methods (such as kernel  estimation) 
could be made for the simpler examples, no current 
method we know of attempts to recursively and 
nonparametrically perform the unsupervised learn- 
ing in Example 4. The question "How well does it 
perform?" must therefore be answered in an ad hoc 
fashion, based on the cumulative abilities demon- 
strated. The basic density estimation capabilities 

(touched upon in Examples 1-3) together with the 
ability to detect new classes depicted in Example 4 
indicate, we believe, the usefulness of the adaptive 
mixture procedure. 

5. DISCUSSION 

We have formulated the learning problem from a 
statistical pattern recognition viewpoint, motivated 
by developing the dynamic environment scenario, 
and presented an approach to both supervised and 
unsupervised learning which allows a system to 
update and improve its model of the dynamic 
envi ronment  based on observations for which truth 
is unknown.  The adaptive mixtures presented herein 
are interesting in terms of basic density estimation 
as well as learning applications. While unsupervised 
learning can never be completely reliable, it is 
believed that the approach outlined above can be 
tailored to individual applications in such a way as 
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distributed as @(x: -3.0, 1.0) and tp(x; 0.0, 1.0). The left-most estimate consists of 12 components, the 
right-most consists of 10 components; (b) the distribution jumps to a three class problem with the third 
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components. 

to allow a new dimension in pattern recognition 
systems. 

For the supervised case, analysis of the asymptotic 
performance of Equation (8) as a density estimation 
technique is performed in Priebe and Marchette (tg). 
The formal relationship of this density estimation 
to discrimination is the subject of ongoing work. 
Analysis of the extension of this work to the more 
general problem that we call classification (unsuper- 
vised learning) is also ongoing. While general per- 
formance statements in this area will require severe 
restrictions on the true densities D ul, we have shown 
that in specific instances Equation (8) is capable of 
the three stages of unsupervised learning 
necessary for dynamic environments: (i) updating 
density estimates ~i~ associated with known classes 
C ti), (ii) developing estimate f.J for the overall density 
of unknown observations; and (iii) partitioning U 
into/~P) corresponding to individual unknown classes 

U ~n. However, in (i) and (iii) especially, there are 
no guarantees, based solely on unsupervised learn- 
ing, that the estimated model corresponds to the true 
D(i). 

We have stressed throughout that the problem 
addressed here is in some sense the most difficult of 
all. We are attempting to do recursive nonparametric 
classification. Thus, we have made assumptions 
about the environment in which the estimation is 
taking place which may not hold in many appli- 
cations. If information is available about the dis- 
tributional families of the classes, the character of 
the nonstationarity (if any), or if there is time to 
retain samples and do distributional tests to deter- 
mine, for instance, that a new class has appeared, 
then this information should certainly be used in the 
estimator. The adaptive mixtures approach shows 
that in the absence of this information, a creditable 
estimator can be produced in many situations. 



Recursive nonparametric pattern recognition 12(19 

6. SUMMARY 

The nonparametr ic  est imation of probability den- 
sity functions allows the computat ion of decision 
regions without explicit assumptions about the 
character of  these regions. There  are many tech- 
niques for nonparametr ic  density estimation. Some 
have large storage requirements  (kernel estimators).  
some are non-smooth (histograms). and many are 
not recursive in nature. We have developed a recur- 
sive, nonparametr ic  method for performing density 
estimation derived from mixture models,  kernel 
estimation and stochastic approximation.  This tech- 
nique, called adaptive mixtures, rcquircs less storage 
than kernel estimators,  yet does not make the dis- 
tributional assumptions about the density that mix- 
ture models do. 

The adaptive mixtures est imator  recursively fits a 
mixture of Gaussian densities to the data. This mix- 
ture is not constrained to be of a given size, and in 
fact the number  of components  of the mixture is 
allowed to grow with the data. Thus the est imator is 
truly nonparametr ic .  

The asymptotic performance of the adaptive mix- 
tures est imator  has been investigated using the 
method of sieves. The est imator  has been shown to 
be consistent for a large class of densities. 
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