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Abstract

We describe and investigate a data-driven procedure for obtaining parsimonious mixture model esti-
mates or, conversely, kernel estimates with data-driven local smoothing properties. The main idea is to
obtain a semiparametric estimate by alternating between the parametric and nonparametric viewpoints.
c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

A ubiquitous and practical problem in statistics, data analysis, and many engineer-
ing disciplines is that of estimating the common probability density function f0 for
n identically distributed random variables X = [X1; : : : ; Xn]

′. While technical issues
abound when consideration shifts to multivariate or dependent samples, there are
nonetheless numerous di�culties associated with this practice even for independent
univariate samples. Of particular interest in this article is the parametric=nonparametric
quandary: nonparametric estimates are often asymptotically ‘safer’, while parametric
estimators can perform better ‘when they work’ and can o�er advantages in terms
of model interpretability.
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In this article we address speci�cally semiparametric density estimation, in the
sense of estimating the complexity of the parametric estimator one should employ.
We present an iterative procedure, alternating between parametric and nonparametric
estimates, which ultimately yields a parametric model with data-driven complexity
and a nonparametric estimate with data-driven smoothing. This approach can be
considered a frequentist competitor for the Bayesian procedure described by Roeder
and Wasserman (1997).
The fundamental building blocks of our approach are the dual probability density

estimation techniques of the parametric �nite mixture estimator and the nonparametric
kernel estimator. It is the interplay between these two methodologies that we exploit
in this article.

1.1. Finite mixture models

The m component �nite mixture model (FMM) is given by f(x;m; �) =
∑m

t=1

�t’(x;  t) where the mixing coe�cients �t are nonnegative and sum to unity (see,
e.g., Titterington et al., 1985). The probability density function f is a mixture of
elements of � = {’(x;  ) |  ∈ 	}, the family of probability density functions pa-
rameterized by  ; for instance, ’(x;  ) is commonly taken to be the normal density,
with  = [�; �2]′ where � ∈ R and �2 ∈ (0;∞). The number of components m
represents the complexity of the mixture. Given m, the overall parameter vector for
the mixture is �=[�1; : : : ; �m−1;  1; : : : ;  m]

′. For example, given m the maximum like-
lihood �nite mixture estimator based on an i.i.d. sample X of size n is obtained by
maximizing the likelihood function LX (f)=LX (m; �)=

∏n
i=1 f(Xi;m; �) with respect

to � ∈ �; �̂ = argmax�∈� LX (m; �). Then f(x;m; �̂) =
∑m

t=1 �̂t’(x;  ̂ t). When the
assumed model is correct this estimate converges in mean integrated squared error
at the parametric rate O(n−1) and can allow for interpretation of the model through
the assignment of physical meaning to the individual components ’(x;  t) and their
‘priors’ �t (Table 2:1:3 of Titterington et al. (1985) presents examples for which
the physical interpretability of the mixture model is of interest.) Misspeci�cation of
the parametric model, of course, can result in misinterpretation as well as a lack of
consistency.
While mixtures of normals are dense in the space of well-behaved probability

density functions under various distance functions and therefore comprise a rich class
of estimators, a major practical problem which must be addressed when employing
mixture modelling as a density estimation technique is determining the complexity
of the model — estimating the number of components m to use in the mixture. This
problem has been addressed in the literature by numerous authors, including but
not limited to Everitt and Hand (1981), Titterington et al. (1985), McLachlan and
Basford (1988), Henna (1988), and, more recently, Chen and Kalbeisch (1996),
Roeder and Wasserman (1997), Dacunha-Castelle and Gassiat (1997), and Solka et
al. (1998). One result of the methodology presented herein is a �nite mixture model
with data-driven complexity estimate m̂.
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1.2. Kernel estimators

The standard kernel estimator (KE) based on X is given by ĝ(x; h) =
(nh)−1

∑n
i=1 ’((x − Xi)=h) (see, e.g. Silverman, 1986). Again, the kernel function

’ is commonly taken to be the normal density with standard deviation (bandwidth)
h. Convergence for this nonparametric procedure is slower than for the parametric
FMM method – O(n−4=5) in mean integrated squared error – but consistency for KE
holds much more generally than for FMM.
A major practical problem which must be addressed when employing KE as a

density estimation technique is determining the smoothing parameter h. This prob-
lem has been addressed in the literature by numerous authors, including but not
limited to Abramson (1982), Silverman (1986), Wand et al. (1991), Scott (1992),
Sheather (1992), Terrell and Scott (1992), and Wand and Jones (1995). This KE
literature strongly suggests that a single bandwidth provides insu�cient exibility in
many situations. A second interpretation of the methodology presented herein is a
multiple-bandwidth kernel estimator with data-driven smoothing.

1.3. Filtered kernel estimators

Fundamental to combining kernel and mixture estimates in an alternating re�ne-
ment fashion is the idea of the �ltered kernel estimator (FKE) (Marchette 1996;
Marchette et al., 1996), one version of which uses a pilot (normal) ‘�ltering mixture’
estimate with estimated complexity m̂ to construct a multiple-bandwidth KE. Given
f(x; m̂; �̂) =

∑m̂
t=1 �̂t’(x; �̂t ; �̂

2
t ), the �ltered kernel estimator is de�ned to be

ĝ(x; h; m̂; �̂) = n−1
n∑

i=1

m̂∑

t=1

�̂t’(Xi; �̂t ; �̂
2
t )

h�̂tf(Xi; m̂; �̂)
’((x − Xi)=(h�̂t)):

Note from the above equation that the �ltered kernel estimator encompasses the
standard kernel estimator, with ĝ(x; h) = ĝ(x; h; 1; [0; 1]′).
For the FKE the selection of the bandwidth h is no longer as crucial as for KE,

since the posterior ‘�lter functions’ �t(x) = �̂t’(x; �̂t ; �̂
2
t )=f(x; m̂; �̂) and the local

standard deviations �̂t provide data-driven weighting and smoothing according to
the individual components of the �ltering mixture. This single bandwidth h can
be chosen to minimize the asymptotic mean integrated squared error (AMISE) of
ĝ(x; h; m̂; �̂) under the assumption that the �ltering mixture f(x; m̂; �̂) is true; hopt =
argminh AMISE(ĝ(x; h; m̂; �̂) |f0=f(x; m̂; �̂)). See Marchette et al. (1996) for details.
This choice for the single bandwidth parameter in the FKE will be used throughout.
Therefore the FKE takes the data X and the �ltering mixture f(x; m̂; �̂) and, with
no parameter settings required, produces the estimate ĝ(x; h; m̂; �̂).

1.4. Alternating kernel and mixture estimators

The motivation behind the proposed algorithm is that the nonparametric estimator
will suggest (potential) structure which is not yet accounted for in the parametric
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model. One manifestation of this additional structure is mismatch between the �l-
tered kernel estimate and the m component mixture. Mismatch suggests adding a
component to the mixture model to account for the discrepancy. The signi�cance
of the change between the original m component mixture estimate and the new
m + 1 component mixture is tested, with the null hypothesis being that the simpler
mixture is preferred. Rejection suggests performing another iteration, beginning with
the m + 1 component mixture. Thus the nonparametric portion of the alternating
kernel and mixture procedure serves as a ‘feature detector’ while the parametric por-
tion of the algorithm acts as ‘Occam’s Razor’ to disregard those features which are
not supported by su�cient evidence. Related e�orts involving the interplay between
parametric and nonparametric estimators include Hjort and Glad (1995), Rudzkis
and Radavicius (1995), Cao et al. (1995), Cao and Devroye (1996), and Chen and
Kalbeisch (1996).
In Section 2 we present the alternating kernel and mixture (AKM) algorithm for

developing a hybrid semiparametric density estimate by iteratively increasing the
complexity of the mixture toward eliminating the mismatch between the mixture
and the �ltered kernel estimator. Section 3 presents simulation and experimental re-
sults for the AKM. As an aid to assessing the performance of AKM the simulation
analysis includes comparisons with the Bayesian procedure described by Roeder and
Wasserman (1997). Experimental analysis includes one application in which the de-
sired output of the AKM is the multiple-bandwidth �ltered kernel estimator with
data-driven smoothing and one application in which it is the �nite mixture model
estimate with data-driven complexity that we seek. We conclude in Section 4 with
a discussion of our results and their rami�cations.

2. AKM algorithm

Given X , the idea of the AKM algorithm is to alternate between parametric esti-
mates f̂m and nonparametric estimates ĝ m, basing each on the other in turn. At each
iteration m, the m component �nite mixture estimate f̂m is selected to minimize the
mismatch between f̂m and the �ltered kernel estimate ĝ m−1 based on the �ltering
mixture f̂m−1. Then ĝ m is de�ned as the �ltered kernel estimator using the parameter
estimates �̂ m from the �ltering mixture f̂m.
Let d(·; ·) represent a distance function de�ned on the space of probability density

functions, and let Fm denote the family of m component normal mixtures with

lower bound lm and upper bound um on term variances; �2t ∈ [lm; um]. Let �̂
1 ≡

[ �X ; S2]′; f̂1(x) ≡ ’(x; �̂ 1) be the standard normal density estimate, and ĝ 1(x) ≡
ĝ(x; hopt; 1; �̂ 1) be the standard kernel density estimate with bandwidth chosen via the
normal reference rule. For m=2; : : : ; n de�ne f̂m ≡ argminFm

d(f; ĝ m−1), and de�ne
f̂n+1 ≡ f̂n. The algorithm described above can now be presented in pseudocode as
follows:
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Algorithm AKM(X)

f̂
1
(x) ≡ ’(x; [ �X ; S2]′)

ĝ 1(x) ≡ ĝ(x; hopt; 1; �̂
1
)

f̂
2 ≡ argminF2

d(f; ĝ 1)
m← 1

While d(f̂
m
; f̂

m+1
) ≥ c¿ 0

m← m+ 1
ĝ m(x) ≡ ĝ(x; hopt; 1; �̂

m
)

f̂
m+1 ≡ argminFm+1

d(f; ĝ m)
EndWhile
Return m̂n ← m

EndAlgorithm

The algorithm returns a mixture complexity estimate m̂n ≤ n. The resultant para-
metric mixture estimate is f̂m̂n

n ∈ Fm̂n , and ĝ m̂n is the nonparametric �ltered kernel
estimate which uses f̂m̂n

n as the �ltering mixture.
The iteration termination criterion requires a choice of the constant c; a large value

of c will result in relatively fewer components in the resultant mixture. Convergence
results require cn → 0 slowly enough with respect to n. We also require that {Fm}∞m=1
be a sieve dense in the class of continuous density functions, so lm → 0 and um →∞
as m→∞.
Theoretical properties of the sequence of mixture estimators f̂m̂n

n = f(x; m̂n; �̂n)
produced by the AKM algorithm are established in the following two theorems,
where d(f; g) ≡ ∫

(f − g)2 is the integrated squared error.

Theorem 1. Let f0 ∈ C; the class of continuous densities on R .

Thend(f0; f̂m̂n
n )→ 0 a:s:

Theorem 2. Let f0 = f(x;m0; �0) =
∑m0

t=1 �t’(x; �t; �2t ) such that ’ represents the
normal density; m0¡∞ represents the number of components in the mixture, the
mixing coe�cients satisfy 0 ≤ �t ≤ 1 and ∑m0

t=1 �t = 1; the �t ∈ R are component
means; the �2t ∈ [lm0 ; um0 ] are component variances for some speci�ed bounds lm0
and um0 on the component variances allowed in an m0 component mixture; and
�0 = [�1; : : : ; �m0−1; �1; : : : ; �m0 ; �

2
1; : : : ; �

2
m0 ]

′. Then m̂n → m0 a.s. and �̂n → �0 a.s.

That is, the AKM mixture estimator is consistent. Moreover, if the target density is
a �nite mixture of normals then the algorithm successfully estimates the true mixture
complexity and parameters. The proofs are given in the appendix.
The theoretical properties established for the AKM estimator in Theorems 1 and

2 hold when the FKE is replaced by the KE. It is our experience, however, that this
simpli�ed version of the algorithm does not perform well in practice. This is due
to the fact that a single bandwidth kernel estimator often provides a poor estimate
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of the local structure of the density for a given sample. Even allowing the KE to
adjust its single bandwidth with reference to the current mixture model often does
not provide su�cient improvement in the KE. Clearly, a variable kernel estimator of
some type is preferable. The coupling of FMM and KE inherent in FKE improves the
AKM estimator obtained via iteration between the parametric and the nonparametric
approaches, as compared with an analogous AKM estimator which uses a single
bandwidth KE rather than the FKE. Selecting a FMM produces a new FKE (with
the new smoothing parameters) which then, in turn, drives the selection of a new
FMM. As long as the FMM is at least somewhat successful in capturing the local
smoothness properties inherent in the data, the FKE will improve from iteration to
iteration. In the end, the AKM is attempting to �t a mixture to a more appropriate
nonparametric estimator.
Given the �ltered kernel estimate ĝ m, the problem of identifying f̂m+1 ≡

argminFm+1
d(f; ĝ m) represents a di�cult nonlinear optimization task (see, e.g., Bert-

sekas, 1995; McLachlan and Krishnan, 1997). Stochastic optimization, multiple op-
timization attempts using di�erent starting points, or a procedure for identifying a
good starting point for the optimization are required. We present an approach to pro-
viding a ‘smart start’ from which to begin the optimization through the consideration
of ‘excess mass’ (see, e.g., Muller and Sawitzki, 1991).

To obtain the starting mixture f̃
m+1

for the optimization at iteration m + 1 we
consider the mismatch em between the FKE and the FMM at iteration m; em(x) =
ĝ m(x)−f̂m(x). Then f̃

m+1
is obtained by adding a new component to f̂m in the region

with the greatest excess mass em+(x)=�{em¿0}em(x). (Here �S represents the indicator
function on the set S.) Letting R= {R1; : : : ; RK}(1 ≤ K ¡∞) be the set of maximal
(open) intervals of positive excess mass and R∗=argmaxRk∈R

∫
Rk

em+ be the region with

maximum excess mass (see Fig. 1) we de�ne f̃
m+1
=(1−w)f̂m(x)+w’(x; �; �) where

w=
∫
R∗ em; �=

∫
R∗ xem=w, and �=

∫
R∗(x−�)2em=w. That is, the starting mixture f̃

m+1

updates f̂m with the mixture component appropriate for matching the size w, shape
�, and location � of the region with maximum excess mass R∗. The optimization to
�nd a (possibly local) minimum of d(f; ĝ m) over f ∈Fm+1 proceeds from f̃

m+1
in

a straightforward manner. (This approach to providing a ‘smart start’ is, of course,
not the only possible choice. This is the approach used in the implementation from
which the results presented in Section 3 are obtained.)
The iteration termination decision is an exercise in model selection (see, e.g.,

George and Foster, 1997). The value of d(f̂m; f̂m+1) is employed to evaluate the
signi�cance of the improvement realized by employing the m+1 component mixture;
d(f̂m; f̂m+1)¡c indicates that the simpler m component model is to be preferred and
the iteration terminated with an estimated complexity m̂n = m, while d(f̂m; f̂m+1) ≥
c indicates that the more complex model is appropriate and the iteration should
continue. Thus c acts as a critical value in the test of signi�cance. The consistency
result of Theorem 1 requires only that c = cn → 0 as n → ∞ and therefore places
a constraint on the powers of the sequence of tests: for �xed m the sequence of
probabilities of rejection attains unity as n→∞ whenever the true target density is
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Fig. 1. Excess mass. The optimization involved in the AKM procedure is based on the location and
size of the region of greatest excess mass of the �nite mixture estimate subtracted from the �ltered

kernel estimate.

not an m component mixture. Theorem 2 requires, essentially, that cn → 0 slowly
enough so that the sequence of signi�cance levels goes to zero su�ciently fast to
ensure that the probability of type I error (adding an (m+1)th component when the
true target density is an m component mixture) vanishes.
In practice, we can consider c = cn;m provided cn;m satis�es the requirements for

each �xed m. For a �nite sample of size n, knowledge of the null distribution of
T = d(f̂m; f̂m+1) for each m (obtained analytically or via simulation) would allow
the critical values in the algorithm to be tailored to satisfy desired power and signi�-
cance probabilities. In particular, the bootstrap likelihood ratio test for the number of
components (see, e.g., McLachlan, 1987) could be used. Unfortunately, the statistic
T is not distribution-free. Thus, for simplicity, we employ the following altered form
of the algorithm using a simplistic model selection methodology. (The approach de-
scribed here is used for the simulations presented in Section 3.) The decision on
continuing the iteration uses an AIC penalized likelihood criterion (Akaike, 1974):
the iteration continues provided

dAIC(f̂m; f̂m+1) = log LX (f̂m+1)− log LX (f̂m) ≥ 3:
(The value of dAIC can be negative, and is therefore not actually a distance.) Given
an initial sample of size n∗, the result of the AIC-based algorithm is a complexity
estimate m̂′ ≤ n∗. We then choose cn∗ such that m̂n∗=m̂′ to begin a sequence cn → 0
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slowly enough as required by Theorem 2; that is, we let the complexity estimate m̂n∗
obtained by running the original algorithm be determined by AIC model selection.
It is noteworthy that the AKM estimate f̂m̂n

n is not a maximum likelihood estimate.
The data enters into the estimate through the �ltered kernel estimate only. Given an
estimate m̂n of the complexity, one might be tempted to consider using as the �nal
estimate an m̂n component maximum likelihood estimate. However, the consistency
of such an estimator requires more severe constraints on the rate of growth of m̂n as
a function of n (see, e.g., Geman and Hwang, 1982; Roeder and Wasserman, 1997).
The constraints on the rate of increase of m̂n for the AKM algorithm are implicit
and probabilistic. The requirement in Theorem 2 that cn → 0 slowly constraints the
allowable rate of increase for m̂n with respect to n for this result.

3. Simulation and experimental results

In this section we present an investigation of the performance of the AKM es-
timators f̂m̂n and ĝ m̂n involving Monte Carlo simulation and experimental analysis.
As an aid to understanding the reported performance numbers we also provide de-
tailed comparative results with the Bayesian competitor described in Roeder and
Wasserman (1997) and denoted as R&W. Section 3.1 investigates, via Monte Carlo
simulation, the performance of AKM and R&W on normal mixture target densities.
Section 3.2 presents a similar simulation in which the target density is not a mixture
of normals (lognormal, in this case). In Sections 3.3 and 3.4 the two procedures are
compared experimentally on the UK income data and a digital mammography texture
data set, respectively. For these last two examples we consider bootstrap resamples
from a kernel estimator to allow for quantitative performance comparisons.

3.1. Monte Carlo simulation: normal mixture target densities

Fig. 2a depicts the Marron and Wand (1992) test suite of 15 normal mixture
target densities as M&W#1 through M&W#15. Figs. 2b and c present represen-
tative mixture estimation results for the M&W target densities for the AKM and
R&W algorithms, respectively. For each estimator, the representative result is the
estimate with the median integrated squared error (ISE) among 1000 Monte Carlo
replications for a sample size of n = 1000. (For n = 1000 the results for ĝ m̂n are
indistinguishable from those presented in Fig. 2b for f̂m̂n .) Tables 1–3 present re-
sults from Monte Carlo simulations comparing the performance of AKM and R&W
on the test suite for three sample sizes, n = 50; 250; 1000. Each result is based on
1000 Monte Carlo replications. In all simulations the maximum value allowed for
the estimated mixture model complexity – the number of terms m̂ – is 10 for both
f̂m̂n and f̂R&W. Monte Carlo estimates for the relative mean integrated squared er-
ror (RMISE(f̂) =MISE(f̂)=MISE(f̂ KE)) and standard error thereof are reported for
f̂m̂n ; ĝ m̂n ; f̂R&W, and f̂ Parametric in Tables 1a, 2a and 3a. The f̂ KE estimate used in the
de�nition of RMISE is the optimal (normal theory) kernel estimator, and f̂ Parametric
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Table 1a
RMISEa performance of AKM for n= 50

M&W m f̂m̂n ĝ m̂n f̂R&W f̂ Parametric

#1 1 0.531 (0.016) 1.011 (0.004) 0.537 (0.018) 0.508 (0.015)
#2 3 1.099 (0.020) 1.033 (0.008) 1.342 (0.03) 0.573 (0.018)
#3 8 0.593 (0.007) 0.455 (0.006) 0.841 (0.008) 0.263 (0.007)
#4 2 0.921 (0.011) 0.734 (0.010) 1.102 (0.011) 0.119 (0.004)
#5 2 0.325 (0.007) 0.270 (0.007) 0.298 (0.011) 0.121 (0.004)
#6 2 1.769 (0.027) 1.064 (0.007) 2.121 (0.030) 0.846 (0.014)
#7 2 0.419 (0.004) 0.413 (0.006) 0.300 (0.007) 0.307 (0.007)
#8 2 1.494 (0.019) 1.028 (0.005) 1.751 (0.026) 0.536 (0.011)
#9 3 1.627 (0.024) 1.033 (0.006) 2.035 (0.03) 0.936 (0.016)
#10 6 1.028 (0.005) 1.008 (0.001) 1.043 (0.006) 0.582 (0.008)
#11 9 1.708 (0.025) 1.065 (0.008) 2.065 (0.029) 0.941 (0.017)
#12 6 1.103 (0.006) 1.013 (0.002) 1.157 (0.012) 0.828 (0.054)
#13 8 1.565 (0.019) 1.031 (0.006) 1.821 (0.021) 0.782 (0.015)
#14 6 0.885 (0.003) 0.779 (0.003) 0.695 (0.007) 0.890 (0.196)
#15 6 1.026 (0.005) 0.896 (0.004) 0.513 (0.006) 0.540 (0.010)

aReported are RMISE(f̂) (standard error) based on 1000 Monte Carlo replications.

Table 1b
Model complexitya performance of AKM for n= 50

f̂m̂n f̂R&W
M&W m P= P¡ P¿ P(||) ≤ 1 P= P¡ P¿ P(||) ≤ 1

#1 1 0.987 0 0.013 1 0.997 0 0.003 1
#2 3 0.005 0.994 0.001 0.265 0.002 0.998 0 0.123
#3 8 0 1 0 0.001 0 1 0 0
#4 2 0.237 0.435 0.328 0.829 0.039 0.751 0.210 0.961
#5 2 0.190 0.036 0.774 0.781 0.492 0.059 0.449 0.943
#6 2 0.303 0.667 0.030 0.996 0.277 0.721 0.002 1
#7 2 0 0 1 0.618 0.996 0 0.004 1
#8 2 0.234 0.742 0.024 0.999 0.148 0.846 0.006 1
#9 3 0.070 0.929 0.001 0.493 0.012 0.988 0 0.414
#10 6 0 1 0 0 0 1 0 0
#11 9 0 1 0 0 0 1 0 0
#12 6 0 1 0 0 0 1 0 0.002
#13 8 0 1 0 0 0 1 0 0
#14 6 0.007 0.991 0.002 0.019 0.001 0.999 0 0.010
#15 6 0.035 0.948 0.017 0.097 0 1 0 0.007
aReported are estimated probabilities that estimated model complexity m̂ equals (P=), is less than
(P¡), is greater than (P¿) and is within one of (P(||) ≤ 1) true model complexity m.

is the parametric estimate assuming the number of terms to be known and obtained
by starting the iterative EM algorithm at the true parameters. Note that an exact
result is available for MISE(f̂ KE) (Marron and Wand, 1992) and thus the ISEs
for f̂m̂n ; ĝ m̂n ; f̂R&W, and f̂ Parametric have been obtained in closed form rather than
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Table 2a
RMISEa performance of AKM for n= 250

M&W m f̂m̂n ĝ m̂n f̂R&W f̂ Parametric

#1 1 0.359 (0.014) 1.021 (0.004) 0.324 (0.010) 0.313 (0.010)
#2 3 0.853 (0.011) 0.998 (0.009) 2.723 (0.046) 0.339 (0.009)
#3 8 0.142 (0.002) 0.121 (0.002) 0.620 (0.005) 0.066 (0.001)
#4 2 0.195 (0.004) 0.142 (0.003) 0.504 (0.009) 0.031 (0.001)
#5 2 0.142 (0.003) 0.149 (0.004) 0.164 (0.005) 0.041 (0.002)
#6 2 1.011 (0.008) 1.019 (0.010) 1.232 (0.032) 0.453 (0.010)
#7 2 0.234 (0.003) 0.275 (0.005) 0.130 (0.003) 0.123 (0.003)
#8 2 0.877 (0.007) 0.740 (0.007) 2.651 (0.027) 0.242 (0.006)
#9 3 0.943 (0.006) 0.860 (0.006) 1.250 (0.021) 0.404 (0.007)
#10 6 1.073 (0.003) 0.964 (0.002) 1.132 (0.002) 0.125 (0.002)
#11 9 1.014 (0.008) 1.005 (0.006) 1.205 (0.027) 0.495 (0.008)
#12 6 1.121 (0.003) 1.012 (0.002) 1.395 (0.006) 0.219 (0.004)
#13 8 1.003 (0.005) 0.961 (0.005) 0.989 (0.016) 0.324 (0.006)
#14 6 0.385 (0.004) 0.347 (0.004) 0.515 (0.002) 0.178 (0.003)
#15 6 0.270 (0.002) 0.259 (0.002) 0.268 (0.001) 0.127 (0.002)

aReported are RMISE(f̂) (standard error) based on 1000 Monte Carlo replications.

Table 2b
Model complexity performancea of AKM for n= 250

f̂m̂n f̂R&W
M&W m P= P¡ P¿ P(||) ≤ 1 P= P¡ P¿ P(||) ≤ 1

#1 1 0.969 0 0.031 0.999 1 0 0 1
#2 3 0.053 0.946 0.001 0.955 0.014 0.986 0 0.375
#3 8 0.001 0.999 0 0.014 0 1 0 0.006
#4 2 0 0 1 0.025 0 0.033 0.967 0.594
#5 2 0.001 0 0.999 0.743 0.280 0 0.720 0.926
#6 2 0.642 0.001 0.357 0.988 0.949 0.051 0 1
#7 2 0 0 1 0.510 1 0 0 1
#8 2 0.638 0.004 0.358 0.981 0.575 0.389 0.036 1
#9 3 0.653 0.302 0.045 0.995 0.016 0.984 0 0.993
#10 6 0.017 0.974 0.009 0.070 0 1 0 0
#11 9 0 1 0 0 0 1 0 0
#12 6 0.002 0.998 0 0.007 0 1 0 0.012
#13 8 0 1 0 0 0 1 0 0
#14 6 0.098 0.142 0.760 0.294 0.040 0.959 0.001 0.155
#15 6 0.027 0 0.973 0.306 0 1 0 0.001
aReported are estimated probabilities that estimated model complexity m̂ equals (P=), is less than
(P¡), is greater than (P¿) and is within one of (P(||) ≤ 1) true model complexity m.

calculated numerically. Investigation of these RMISE tables indicates that each of
the procedures in the class C = {f̂m̂n ; ĝ m̂n ; f̂R&W} appears to be admissible (relative
to C) in that each procedure is signi�cantly better than the other two for at least one
of the target mixtures. Tables 1b, 2b and 3b present the results of the two mixture
estimates f̂m̂n and f̂R&W in terms of the complexity of the estimated mixtures.
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Table 3a
RMISE performance of AKM for n= 1000a

M&W m f̂m̂n ĝ m̂n f̂R&W f̂ Parametric

#1 1 0.259 (0.010) 1.027 (0.004) 0.201 (0.006) 0.193 (0.006)
#2 3 0.730 (0.008) 0.990 (0.009) 5.671 (0.105) 0.183 (0.006)
#3 8 0.055 (0.001) 0.052 (0.001) 0.430 (0.004) 0.019 (0.000)
#4 2 0.072 (0.001) 0.060 (0.001) 0.197 (0.002) 0.009 (0.000)
#5 2 0.083 (0.002) 0.105 (0.002) 0.140 (0.003) 0.019 (0.001)
#6 2 0.693 (0.008) 0.910 (0.008) 1.091 (0.027) 0.242 (0.007)
#7 2 0.136 (0.002) 0.186 (0.002) 0.059 (0.001) 0.055 (0.001)
#8 2 0.488 (0.006) 0.536 (0.007) 3.405 (0.039) 0.113 (0.003)
#9 3 0.776 (0.007) 0.679 (0.005) 1.903 (0.021) 0.196 (0.005)
#10 6 0.451 (0.006) 0.375 (0.005) 0.412 (0.014) 0.034 (0.001)
#11 9 0.845 (0.004) 0.945 (0.004) 1.064 (0.012) 0.208 (0.004)
#12 6 0.931 (0.007) 0.809 (0.006) 1.113 (0.011) 0.065 (0.001)
#13 8 0.904 (0.002) 0.855 (0.002) 0.981 (0.006) 0.106 (0.002)
#14 6 0.129 (0.002) 0.111 (0.001) 0.430 (0.001) 0.049 (0.001)
#15 6 0.105 (0.002) 0.085 (0.001) 0.297 (0.000) 0.038 (0.001)
aReported are RMISE(f̂) (standard error) based on 1000 Monte Carlo replications.

Table 3b
Model complexity performance of AKM for n= 1000a

f̂m̂n f̂R&W
M&W m P= P¡ P¿ P(||) ≤ 1 P= P¡ P¿ P(||) ≤ 1

#1 1 0.946 0 0.054 0.997 1 0 0 1
#2 3 0.230 0.750 0.020 1 0.016 0.984 0 0.826
#3 8 0.010 0.987 0.003 0.183 0.072 0.905 0.023 0.297
#4 2 0 0 1 0 0 0 1 0.002
#5 2 0 0 1 0.658 0.072 0 0.928 0.9
#6 2 0.059 0 0.941 0.948 1 0 0 1
#7 2 0 0 1 0.538 1 0 0 1
#8 2 0.034 0 0.966 0.907 0.831 0.004 0.165 0.998
#9 3 0.443 0 0.557 0.923 0.060 0.940 0 1
#10 6 0.032 0.037 0.931 0.092 0 0.184 0.816 0.334
#11 9 0 1 0 0 0 1 0 0
#12 6 0.068 0.527 0.405 0.299 0.125 0.855 0.020 0.575
#13 8 0.001 0.999 0 0.002 0 1 0 0
#14 6 0.007 0 0.993 0.008 0.829 0.125 0.046 0.984
#15 6 0.001 0 0.999 0.001 0 1 0 0
aReported are estimated probabilities that estimated model complexity m̂ equals (P=), is less than
(P¡), is greater than (P¿) and is within one of (P(||) ≤ 1) true model complexity m.

Target mixtures M&W#11 through M&W#15 are di�cult to estimate, even for
f̂ parametric where the mixture complexity is assumed known, given the sample sizes
under consideration in the simulations. The results we present for these �ve challeng-
ing standard �nite mixture densities indicate the (reasonable) limitations of estimation
with small-to-moderate sample sizes when the number of components is unknown.
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Table 4
Signi�cance testing for H0: Median[ISE(f̂R&W)− ISE(f̂m̂n)] ≤ 0a

M&W n= 50 n= 250 n= 1000

#1 0.004 0.253 0.012
#2 0.000 0.000 0.000
#3 0.000 0.000 0.000
#4 0.000 0.000 0.000
#5 1.000 0.726 0.000
#6 0.000 0.015 0.000
#7 1.000 1.000 1.000
#8 0.004 0.000 0.000
#9 0.000 0.000 0.000
#10 0.180 0.000 1.000
#11 0.000 0.020 0.000
#12 0.747 0.000 0.000
#13 0.000 1.000 0.000
#14 1.000 0.000 0.000
#15 1.000 0.985 0.000
aThe table of p-values for the sign test, based on 1000 paired Monte Carlo samples,
indicates admissibility for both estimator.

Table 4 presents the results of testing H0: Median[ISE(f̂R&W) − ISE(f̂m̂n)] ≤ 0
based on the 1000 paired samples and allows a quick and quantitative analysis of
the signi�cance of the RMISE results discussed above. A small p-value indicates
superiority of the AKM procedure. Results of the one-sided sign test are presented.
Investigation of Table 4 indicates that neither procedure uniformly outperforms the
other. At n= 50 there are 6 of 15 mixtures for which f̂R&W outperforms f̂m̂n under
this criterion, at n=250 the ratio drops to 5=15, and for n=1000 there are 2 of the
15 mixtures for which one would choose f̂R&W over f̂m̂n .
A discrepancy exists between the results reported in Tables 1 and 2 for R&W and

those originally reported in Table 1 of Roeder and Wasserman (1997). The results
presented here for R&W are obtained using their code (personal communication,
KR). The discrepancy is due to a bookkeeping error in Table 1 of Roeder and
Wasserman (1997) (personal communication, LW).

3.2. Monte Carlo simulation: non-normal mixture target density

Table 5 presents results from Monte Carlo simulations comparing the perfor-
mance of AKM and R&W on the standard lognormal target density (E[logX ] =
0; Var[logX ] = 1) at sample sizes n= 100 and n= 1000. The results are based on
100 Monte Carlo replicates. We see that (a) AKM allocates more terms, and (b)
AKM performs better in terms of MISE. The sign test of H0: Median[ISE(f̂R&W)−
ISE(f̂m̂n)] ≤ 0 based on the 100 paired samples yields p = 0:382 for n = 100 and
p=0:000 for n=1000, indicating strong evidence that the AKM is superior for this
particular estimation problem, at least for large sample sizes. Fig. 3 shows represen-
tative example estimates.
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Table 5
Lognormal investigation

ĝ m̂n f̂m̂n f̂R&W
n MISE m̂ MISE m̂ MISE

100 0.016 (0.001) 4.36 (0.064) 0.021 (0.001) 2.89 (0.069) 0.060 (0.002)
1000 0.003 (0.000) 7.31 (0.081) 0.003 (0.000) 5.55 (0.153) 0.039 (0.002)a
aEstimates are based on 100 Monte Carlo replications.

Fig. 3. Lognormal investigation. Presented are representative ĝ m̂n and f̂m̂n (left) and f̂R&W (right)
estimates for n= 100 (top) and n= 1000 (bottom) randomly generated observations. Included in each
�gure is the true density (dashed line), for comparison. The AKM estimates ĝ m̂n (dotted line) and f̂m̂n

(solid line) are nearly indistinguishable for n= 1000.

Each plot in Figs. 3–5 gives two views of the mixture density. On the top of the
plot is the curve associated with the density. Below is a representation of the mixture
model itself. Each component is plotted as a (point, line segment) pair. The means
of each term are represented on the x-axis, with the y-axis corresponding to the
mixing coe�cient for that term. The line segments represent one standard deviation
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Fig. 4. Investigation of UK Income Data. Presented are the AKM estimate f̂m̂n (left) and the f̂R&W
estimate (right) of the n= 7201 net income observations. Included in each �gure is a standard kernel
estimator (dotted line), for comparison. The AKM estimates ĝ m̂n and f̂m̂n are indistinguishable.

Fig. 5. Investigation of Digital Mammography texture data. Presented are the AKM �nite mixture
estimate f̂m̂n (left) and the f̂R&W estimate (right) of the n=2031 local coe�cient of variation texture
observations. Included in each �gure is a standard kernel estimator (dotted line), for comparison. The

AKM estimates ĝ m̂n (dashed line) and f̂m̂n (solid line) are nearly indistinguishable.

on either side of the mean. This provides a convenient graphic for understanding the
underlying mixture.

3.3. Experimental analysis: UK income data

Fig. 4 and Table 6 present results from an investigation of the UK Income data
set of normalized net income observations from the UK Family Expenditure Survey
for 1975 (Park and Marron, 1990; Marron and Schmitz, 1992). The plots in Fig.
4 represent f̂m̂n and f̂R&W models obtained based on the n = 7201 observations.
Table 6 presents results based on 100 bootstrap resamples from an undersmoothed
kernel estimator. From the table we see that AKM tends to produce a slightly more
complex mixture than R&W and a statistically signi�cant improvement in MISE.
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Table 6
Investigation of UK Income dataa

m̂ MISE

ĝ m̂n 0.002 (0.000)
f̂m̂n 6.75 (0.716) 0.015 (0.001)
f̂R&W 5.03 (0.937) 0.039 (0.003)
aEstimates are based on 100 smoothed bootstrap resamples.

Table 7
Investigation of Digital Mammography texture dataa

m̂ MISE

ĝ m̂n 0.003 (0.002)
f̂m̂n 6.96 (1.537) 0.003 (0.001)
f̂R&W 3.95 (0.500) 0.017 (0.003)
aEstimates are based on 100 smoothed bootstrap resamples.

The sign test based on the 100 paired bootstrap resamples yields p = 0:000 for
H0: Median[ISE(f̂R&W) − ISE(f̂m̂n)] ≤ 0. We caution that while Table 6 suggests
that f̂m̂n and ĝ m̂n may be better estimators than f̂R&W for samples of size n= 7201
drawn from a kernel estimator obtained from the original UK Income data, such an
inference concerning the original experimental data should be regarded as tentative at
best. See, e.g., Efron and Tibshirani (1993) or Shao and Tu (1995) for a discussion
of the practice and utility of smoothed bootstrap estimates for quantities such as
MISE.
Qualitative examination of the density estimates in Fig. 4 strongly suggests that

the AKM estimate better captures the modal structure in the data. Indeed, the bi-
modal structure provided by f̂m̂n is supported by the analysis in Park and Marron
(1990) and, more rigorously, Marron and Schmitz (1992). The interest in analyz-
ing this data set with a multiple-bandwidth �ltered kernel estimator with data-driven
smoothing stems from the desire to determine the modal structure, and we claim that
investigation of f̂m̂n is a useful approach to modal structure analysis.

3.4. Experimental analysis: digital mammography texture data

Fig. 5 and Table 7 present results for a data set of digital mammography texture
observations. These data were previously investigated in Priebe et al. (1997a,b), and
a similar data set was considered in Priebe (1996). The observations are estimates
of the local coe�cient of variation – a measure of local ‘roughness’ or texture – for
a biopsy-proven malignant tumor region of tissue in a digitized mammogram. The
coe�cient of variation at a pixel location z, �z=�z=�z, is estimated as �̂z=sz= �xz where
the sample statistics are obtained based on the gray-level pixel observations in the ball
B(z; r) of radius r ¿ 0 centered at z. Here r = 3. While the coe�cient of variation
observations are not independent, �nite mixture estimates of the marginal texture
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density for known tumorous regions may be valuable as an aid in the detection
of tumors in undiagnosed mammograms. Indeed, the interest in a �nite mixture
model estimate with data-driven complexity for this data stems from the belief that
local image texture features can be useful in discriminating tumorous tissue from
healthy tissue (see, e.g., Miller and Astley 1992; Priebe et al. 1994) and the fact
that �nite mixture models can allow for improved discrimination in spatial scan
analysis applications such as this one through ‘borrowed strength’ density estimation
(Priebe, 1996, Priebe et al., 1997a, Priebe and Chen, 2000).
Analogous to the presentation in Section 3.3, the plots in Fig. 5 represent f̂m̂n and

f̂R&W models obtained based on the n = 2031 observations, and Table 7 presents
results based on 100 smoothed bootstrap resamples. Again, the sign test based on
the 100 paired bootstrap resamples yields p = 0:000 for H0: Median[ISE(f̂R&W) −
ISE(f̂m̂n)] ≤ 0. (In fact, we observe ISE(f̂R&W)¿ISE(f̂m̂n) for all 100 bootstrap
resamples.) The conclusions, tentative though they may be, are the same for this
mammography example as for the UK Income data; f̂m̂n should be our choice for
this data set.

4. Discussion and conclusions

The applied statistician using �nite mixture models to obtain a probability density
estimate for a given data set must �rst choose the number of terms to use in the
mixture, a nuisance parameter in the density estimation problem. Current practice
involves exploratory data analysis – choose m̂ (perhaps based on visual examination
of a kernel estimator), estimate a �nite mixture model of order m̂, and compare
(implicitly) with the kernel estimator. This process is repeated, using a new m̂ until
a satisfactory mixture model is obtained.
The AKM presented herein can fairly be said to be a ‘no-parameter’ algorithm in

that the procedure implements the above iterative exploratory data analysis method-
ology in a completely automated fashion in which the user need supply no parameter
settings. The careful and comprehensive Monte Carlo analysis presented here indi-
cates that AKM provides acceptable mixture density estimates.
Furthermore, the computational burden imposed by AKM is minimal. For example,

for a lognormal target density and a sample size of n = 1000, Fig. 3 and Table
5 indicate that the AKM procedure provides a reasonably good mixture estimate
with an average complexity of just over seven terms per model. These estimates
take approximately twenty seconds computing time on a single processor Silicon
Graphics Origin2000 workstation. For much larger data sets, it may be possible to
employ binning to allow for e�cient computation with minimal loss in estimation
performance (Scott, 1992; Rogers et al., 1997). The simulation results presented in
Section 3 do not use binning, and the details are not pursued here.
As for the method of comparison employed herein, Monte Carlo investigations are

necessary. The theoretical di�culty of �nite mixture estimation when the mixture
complexity is unknown is notorious; theoretical results for �nite sample admissibil-
ity will be a continuing challenge. The availability of estimators which are basically
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‘no-parameter’ algorithms (AKM and R&W) allows the foregoing Monte Carlo ad-
missibility study and should provide, in addition to algorithms for the data analyst,
fodder for the study of alternate mixture estimation schemes.
We conclude by claiming that the AKM procedure should be added to the applied

statistician’s estimation toolbox. The practical requirement for a procedure which can
easily produce mixture estimates with data-driven complexity is obvious. That AKM
meets this requirement has been demonstrated.
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Appendix

Some technical de�nitions will be required.
For a random sample of size n, the result of the AKM algorithm is denoted by

f̂m̂n
n ; the use of m̂n indicates that the complexity of the mixture is an estimate, and

is a random variable.
We present the proof for integrated squared error: d2(f; g) ≡ ∫

(f − g)2. The
results can be shown to hold for other distances.
The class of continuous densities on R is denoted by C.
The family of m component normal mixtures with lower bound lm and upper

bound um on term variances is denoted by Fm.
We denote by ĝm the standard kernel estimator on the �rst m observations with

bandwidth hm ≥ �m, and ĝn denotes a �ltered kernel estimator on n observations.
The mth iteration of the AKM algorithm requires f̂m̂

n ≡ argminFm
d(f; ĝn). The

�ltering mixture for the �ltered kernel estimator ĝn used here is f̂
m−1
n . Notice that the

mixture complexity here is denoted by m rather than m̂, indicating that the complexity
is �xed and is not estimated, that is, m is not a random variable. Similarly, in the
notation d(f̂m̂

n; ĝn) the �ltering mixture for the �ltered kernel estimator ĝn is assumed
to be f̂m−1

n .
We �rst state a proposition concerning �ltered kernel estimator convergence, es-

tablished as a straightforward modi�cation of Theorem 1 of Marchette et al. (1996).
This result requires only that the �ltered kernel bandwidth hn satisfy maxt hn�̂t → 0
and nmint hn�̂t → ∞, which in turn constrains the rate at which lm̂n and um̂n go to
zero and in�nity, respectively.

Proposition A.1. d(f0; ĝn)→ 0 a.s. for f0 ∈ C.

To prove Theorem 1 we will require two lemmas.
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Lemma A.1. Let f0 ∈ C. Then
(a) f0 6∈ ⋃∞

m=1Fm ⇒ m̂n →∞ a.s.
(b) f0 ∈Fm0 ⇒ m̂n → m∗ ≥ m0 a.s.

Proof. (a) Assume m̂n → m∗ ¡∞. From the de�nitions of f̂m∗
n and f̂m∗+1

n as mini-
mizers against ĝn over their respective mixture classes, we have limn→∞ d(f̂m∗

n ; f̂m∗+1
n )

≡ � a.s. since ĝn converges. Clearly � ≥ 0; strict monotonicity (�¿ 0 a.s.) can be
established by noting that the mixture parameters �̂n are continuous in the obser-
vations xi and that � = 0 requires that f̂m∗+1

n be a degenerate m∗ + 1 component
mixture. Since cn → 0, eventually d(f̂m∗

n ; f̂m∗+1
n ) ≥ cn, resulting in the addition of an

(m∗ + 1)th component. This contradiction implies m̂n → ∞ a.s. for f0 6∈ ⋃∞
m=1Fm.

The proof of (b) follows precisely the same argument until m∗=m0, and thus leaves
us with the conclusion m0 ≤ m∗ ≤ ∞ a.s for f0 ∈Fm0 .

The proof of Theorem 1 proceeds as follows. First note that d(f̂m̂n
n ; ĝn) ≤ d(ĝm̂n

; ĝn),
where ĝm is de�ned as the standard kernel estimator on the �rst m observations with
bandwidth lm ≤ hm ≤ um. This follows from the de�nition of f̂m̂n

n as a minimizer of
d(f; ĝn) over f ∈Fm̂n and the fact that ĝm̂n

∈Fm̂n by construction. Next, recall that
d(ĝm̂n

; f0) → 0 a.s. provided m̂n → ∞ and the sequence of bandwidths hm satis�es
hm → 0 and mhm → ∞. (These requirements on hm in turn imply that the mixture
component variance constraints be chosen so that lm → 0.) The desired result is
established for f0 6∈ ⋃∞

m=1Fm by invoking Lemma A.1(a). By Lemma A.1(b) it
remains to establish consistency for f0 ∈ Fm0 if m0 ≤ m∗ ¡∞. In this case, in
an argument analogous to the proof of Lemma A.1(a), we see that d(f̂m∗

n ; ĝn) →
0 a.s., for otherwise the algorithm would eventually add another component. The
consistency of ĝn (Proposition A.1) completes the proof.
To prove Theorem 2 we �rst establish that m̂n → m0 almost surely when f0 =

f(x;m0; �0) ∈ Fm0 . Once this has been accomplished, the almost sure convergence
of f̂m̂n

n → f0 together with the identi�ability of normal mixtures will imply �̂n → �0
a.s., completing the proof.
We begin by noting that since both f̂m0

n and f0 are elements of Fm0 ; d(f̂m0
n ; ĝn) ≤

d(f0; ĝn) and thus d(f̂m0
n ; ĝn) → 0 by Proposition 1. Furthermore, d(f̂m0+1

n ; ĝn) ≤
d(f̂m0

n ; ĝn). We require the existence of n
′ such that

d(f̂m0
n ; ĝn) ≤ cn=2 for all n ≥ n′; (A.1)

from which we can conclude that d(f̂m0
n ; f̂m0+1

n )¡cn for n ≥ n′ and thus the algo-
rithm will not add an m0 + 1st component after n = n′. Since d(f0; ĝn) converges
to zero at a rate of O(n−4=5) for all f0 ∈ ⋃∞

m=1Fm, a choice of cn = n−4=5+� for
0¡�¡ 4=5 implies the almost sure existence of an n′ satisfying (A.1). Combining
this result with Lemma A.1(b) establishes m̂n → m0 a.s. as desired.
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