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Abstract: We consider the problem of safely and swiftly navigating through a spatial arrangement of potential hazard detections
in which each detection has associated with it a probability that the detection is indeed a true hazard. When in close proximity
to a detection, we assume the ability—for a cost—to determine whether or not the hazard is real. Our approach to this problem
involves a new object, the random disambiguation path (RDP), which is a curve-valued random variable parametrized by a binary
tree with particular properties. We prove an admissibility result showing that there is positive probability that the use of an RDP
reduces the expected traversal length compared to the conventional shortest zero-risk path, and we introduce a practically
computable additive-constant approximation to the optimal RDP. The theoretical considerations are complemented by simulation
and example. © 2005 Wiley Periodicals, Inc. Naval Research Logistics 52: 285–292, 2005.
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1. INTRODUCTION

Suppose that a spatial point process has generated true
and false detections, and each detection is marked with the
probability that it is true. We wish to traverse a continuous
curve of minimum arclength from a “source” point s to a
“destination” point d (an “s, d curve” of minimum arc-
length) avoiding “risk regions” about the true detections.
Although the definitive true/false status of the detections is
initially unknown, we assume the ability to “disambiguate”
detections dynamically: When the curve is a specified dis-
tance from a detection, we have the option (for a fixed cost)
of learning definitively whether the detection is false or true;
we accordingly do or do not have the option to proceed
through the associated risk region.

In Section 2 we introduce a new object, the random
disambiguation path (RDP). This is an s, d curve-valued
random variable parametrized by a disambiguation proto-
col—a rooted, binary tree whose vertices correspond to

disambiguation locations and whose branching covers all
possible dynamically emerging results of the disambigua-
tions. Our goal in this manuscript is to efficiently compute
random disambiguation paths with small expected arc-
length, and to show their utility.

Shortest-path planning has been well-studied from the
perspectives of graph theory, computational geometry, and
robot motion planning (e.g., [4, 5, 7, 8]). In particular, path
planning to avoid nonrandom disks in the plane can be
accomplished efficiently using an associated visibility graph
(discussed in Section 4.1). Our problem is more compli-
cated than this classical problem, though, in that some of the
disks may not be true hazards and may be entered when this
status is confirmed. A related “expected path length” prob-
lem considered by Briggs, Scharstein, and Abbott [3] differs
from ours in that it requires observing various landmarks
before moving on to the next landmark. Their issues relate
to obscuring of landmarks and waiting until a landmark
becomes visible, and they use techniques related to a
Markov Decision Process. The partially observed stochastic
shortest path problem of Patek [11]—the extension of the
stochastic shortest path problem of Bertsekas and Tsitsiklis
[2] to the case of imperfect state information—is related toCorrespondence to: C.E. Priebe (cep@jhu.edu)
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our RDPs; these authors approach their problem from a
dynamic programming perspective.

Papadimitriou and Yannakakis have considered the short-
est path problem when no prior map of obstacles is given
[10]; they provide decision rules to optimize the ratio of the
length of a path found dynamically, as obstacles such as unit
squares are discovered, to the length of the statically optimal
path. This contrasts with the situation considered here where
the detection map is known in advance and each detection
(obstacle) may turn out, with some associated probability, to
not be an actual obstacle.

The structure of this manuscript is as follows: After
introducing random disambiguation paths in Section 2, we
prove an admissibility result in Section 3 showing that,
under very mild assumptions, there is a positive probability
with respect to the underlying point process that there will
be an RDP strictly reducing expected traversal length com-
pared to the conventional shortest zero-risk path. Comput-
ing the disambiguation protocol that minimizes the expected
length of the associated random disambiguation path is
computationally difficult, so in Section 4 we introduce a
suboptimal RDP that is more practically computable, and
we prove that it is within an additive constant of optimal. In
Section 5 we perform simulations and explore a specific
example. To simplify analysis and exposition we make
several assumptions, including that the underlying space is
!2, that the risk regions are Euclidean balls of fixed radius
about the detections, and that disambiguations are executed
on the boundary of the corresponding risk regions. In Sec-
tion 6 we briefly describe relaxations of these assumptions,
as well as other possible directions for generalization.

2. RANDOM DISAMBIGUATION PATHS

Let ! be a marked point process on some simply con-
nected, bounded subset S ! !2. Unless otherwise specified,
we will consider a particular realization of this process
consisting of detections x1, x2, . . . , xn " !2, each xi either
being a true detection or a false detection. These observa-
tions are, respectively and independently, marked with !1,
!2, . . . , !n " (0, 1], where !i is the probability that xi is
a true detection as rendered, for example, by the posterior
probabilities of class membership from a Bayesian classifier
[9, 12–15]. Let [n] ! {1, . . . , n}. Denote by " ! [n] the
set of indices of the true detections; the probability distri-
bution of " clearly follows from the independent marks !i.

Let " " 0 be fixed and for i # 1, 2, . . . , n denote by Bi

the open ball in !2 of radius " about xi. For any determin-
istic J ! [n] and x, y " (#i"J Bi)

C, the complement of the
union of balls indexed by J, we denote by qx,y,J the x, y
curve in (#i"J Bi)

C of minimum arclength; modulo unique-
ness issues (throughout this manuscript we assume the use
of an arbitrary fixed selection rule to address ties and

alleviate uniqueness issues), qx,y,J is deterministic and ef-
ficiently computable using the notion of a visibility graph
discussed in Section 4.1.

Let s, d " SC be fixed. Our basic goal is to traverse a
continuous s, d curve in (#i"" Bi)

C having arclength as
small as we can practically attain. Because of the uncer-
tainty of " and the requirement that we avoid #i"" Bi, it is
not possible, without further knowledge of ", to achieve an
arclength less than that of qs,d,[n]. However, in this manu-
script we allow the possibility of dynamically disambigu-
ating detections at a fixed cost c # 0 per disambiguation.
Specifically, when a curve p originating at s is a distance of
" from some observation xi—that is, the curve is on the
boundary $Bi—we have the option of learning whether xi is
or is not a true detection and, accordingly, we may not or
may proceed through Bi. When p terminates at d having
avoided #i"" Bi, the traversal arclength of p is defined to
be #( p) ! #$( p) $ m ! c, where #$( p) is the Euclidean
arclength of p and m is the number of disambiguations
executed. This traversal arclength #( p) is the objective
quantity that we wish to minimize.

Let us first suppose that a maximum of one disambigua-
tion may be executed. For any j " [n] and z " $Bj we
introduce an s, d curve-valued random variable p( z, j)
called a random disambiguation path (RDP); this curve
p(z, j) first traverses the curve qs,z,[n], at which point xj is
disambiguated, and then traverses qz,d,[n] or qz,d,[n]%{ j},
according as xj is revealed to be a true or false detection.
The expected length of p( z, j) is

E#%p%z, j&& & #$%qs,z,'n(& ' !j#
$%qz,d,'n(&

' %1 ( !j&#
$%qz,d,'n(%)j*& ' c.

We also explicitly allow the choice ( z, j) # (d, A),
corresponding to no disambiguations being executed, in
which case p( z, j) # p(d, A) # qs,d,[n]. The optimal RDP
is p* ! p( z*, j*) where z*, j* satisfy

%z*, j*& " argmin%z,j& E#%p%z, j&&, (1)

the minimization being over all pairs ( z, j) described above.
In the more general case the maximum number of dis-

ambiguations allowed is a given positive integer K. A
disambiguation protocol is a rooted binary tree T of depth K
or less, in which each nonleaf1 vertex v has both a left and
right successor, and associated with each nonleaf vertex v is
a pair ( zv, jv) " $Bjv + [n]. The random disambiguation
path p(T) is an s, d curve-valued random variable param-
etrized by T: Each root-leaf path v1, v2, . . . , vs in T corre-
sponds to the possible sequential disambiguations of detec-

1 In the absence of other vertices we consider the root to be a leaf.
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tions indexed jv1
, jv2

, . . . , jvs,1
at respective locations zv1

,
zv2

, . . . , zvs,1
with the outcome, for all k, that detection xjvk

is true or false according as vk$1 is a left or right successor
of vk. From the kth disambiguation to the (k $ 1)st
disambiguation p(T) traverses qzvk,zvk$1,Jk, where Jk is the set
of indices of those detections not yet known to be false.
(Here, we adopt the convention zv0

! s and zvs
! d.) The

dynamically realized sequential results of the disambigua-
tions indicated by the protocol T determine a corresponding
root-leaf path in T, which corresponds in turn to the s, d
curve taken by p(T). See Figure 1 for an example of an
RDP.

The optimal RDP, denoted p*, is p(T*), where

T* " argminT E#%p%T&&, (2)

the minimization being over all possible protocols T de-
scribed above. In general, p* is not practically computable
since the optimization problem in (2) is particularly diffi-
cult, even when K # 1. In Section 4 we show a way to
compute a suboptimal RDP by restricting the domain of the
optimization problem in (2) to a well-chosen finite set.

3. ADMISSIBILITY

This section presents an admissibility result stating that,
under mild assumptions, an RDP provides, with positive
probability, an expected strict improvement over the default
qs,d,[n] which would be used if the disambiguation capabil-
ity were not available.

We make two assumptions: (1) The marks !i, condi-
tioned on the associated observations xi being true (false)
detections, are independent and identically distributed with

a probability density function having support (0, 1).
(2) With respect to the underlying point process !, the
number of balls Bi that intersect the line segment s, d is
almost surely finite, and with a positive probability at least
one such intersection occurs.

THEOREM 1: Under the assumptions above on the spa-
tial point process !, there exists a disambiguation cost
c* " 0 and an allowed number of disambiguations K " 0
such that for all c " [0, c*)

P!'E#%p*& ) #$qs,d,'n(( * 0,

where P! denotes probability relative to the underlying
point process !.

In other words, for a reasonable class of processes !, the
random disambiguation path p* is, with positive probabil-
ity, strictly superior to the conventional shortest zero-risk
path qs,d,[n]. [The value of the probability of superiority
depends on the spatial point process !; processes can be
specified for which this probability takes any value in
(0, 1).] Thus, path planners should consider the disambig-
uation option when the capability exists.

PROOF: Consider some K " 0 such that there is positive
probability of exactly K balls Bi intersecting the line seg-
ment s, d, and without loss of generality relabel the obser-
vations so that these intersecting balls are {Bi}i#1

K . Con-
sider the RDP p which sequentially disambiguates the de-
tections it encounters along s, d; if one of them is a true
detection, then p retreats along s, d to s, then follows
qs,d,[n] to d. We have

E#%p*& + E#%p& + !1 ( "
i#1

K

%1 ( !i&#%2#$%s, d& ' #$%qs,d,'n(&&

' !"
i#1

K

%1 ( !i&##$%s, d& ' Kc.

Using a standard measure-theoretic argument, our assump-
tions imply that there is positive probability that there exists
an , " 0 such that #$(qs,d,[n]) " #$(s, d) $ ,. Moreover,
our assumptions imply that for all " " 0 there is a positive
probability (with respect to !) that -i#1

K (1 , !i) " 1 ,
". Clearly, we have

E#%p*& + "%2#$%s, d& ' #$%qs,d,'n(&& ' #$%qs,d,'n(& ( , ' Kc.

We may choose " and c* such that "(2#$(s, d) $
#$(qs,d,[n])) , , $ Kc . 0, from which the desired result
follows. "

Figure 1. An RDP. Depicted on the left are three detections,
their associated risk regions, and the various s, d curves which are
the possible values of p(T). On the right is the corresponding
parametrizing tree. The edges are labeled with the appropriate set
Jk indicating which detections are in fact true hazards or remain
ambiguous.
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4. APPROXIMATING THE OPTIMAL RDP

In general, p* is not practical to compute due to the
nature of the optimization problem in (2). In this section we
consider restricting the domain of the optimization problem
(2) to a finite and more practical subset, thus generating a
suboptimal RDP that is within an additive constant of the
optimal RDP p*. We first define the visibility graph. This is
used to compute qx,y,J and thus forms the core of the
subroutine in any RDP algorithm for navigating from one
disambiguation location to the next. The visibility graph
will also be used to define our suboptimal RDP.

4.1. The Visibility Graph

Let J ! [n], x, y " (#i"J Bi)
C be specified. For distinct

points a, b " { x, y} # $(#i"J Bi), the closed line
segment a, b is a tangent segment provided that: (1) For all
r " {a, b}%{ x, y}, a, b is tangential to $(#i"J Bi) at r,
and (2) the relative interior of a, b is contained in the
interior of [(#i"J Bi) # { x, y}]C.

The visibility graph Gx,y,J # (Vx,y,J, Ex,y,J) is defined as
follows. The vertex set Vx,y,J of Gx,y,J consists of: x, y, all
points of $(#i"J Bi) which intersect a tangent segment, and
all points of $(#i"J Bi) at which two or more $Bi’s
intersect (for i " J). The edge set Ex,y,J of Gx,y,J consists

of all tangent segments and all connected components of
$(#i"J Bi)%Vx,y,J (these are circular arcs). The graph the-
oretic endpoints of these edges are their line and arc end-
points, respectively, and each edge is weighted with its
arclength. See Figure 2 for an example visibility graph.

It is a well-known (and true) folk theorem that qx,y,J is the
shortest x, y path in Gx,y,J. Since every pair of nonidentical
$Bi’s have at most four mutually tangential lines and two
points of intersection, the size of Vx,y,J and Ex,y,J are each
O(n2). Thus the naive construction of Gx,y,J requires O(n3)
assignment, arithmetic, and trigonometric operations, and
Dijkstra’s algorithm with a heap implementation applied to
Gx,y,J yields qx,y,J in O(n2 log n) operations (see, e.g., [1],
pp. 115–116).

For each j " J, the first point where qx,y,J%{ j} intersects
$Bj (if this intersection exists) will be of interest; let V/x,y,J

denote the union of Vx,y,J and all such points (i.e., over all
j " J).

4.2. Approximating the Optimal RDP When K $ 1

We begin with the case K # 1. Consider the minimiza-
tion problem in Eq. (1) with its feasible region restricted to
pairs ( z, j) " ($Bj % V/s,d,[n]) + [n] [as above, we also
explicitly include the choice ( z, j) # (d, A)]. Let ( ẑ*, ĵ*)

Figure 2. An example visibility graph, with vertices, arc edges, and line edges. Note that the two lightly-drawn (yellow) segments of disk
boundary (in the intersection of disks) are not edges in the visibility graph.
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be the solution to this restricted problem, and let p̂* denote
the RDP p( ẑ*, ĵ*).

We can compute ( ẑ*, ĵ*) and p̂* in O(n4 log n) opera-
tions since there are O(n2) pairs ( z, j) in the feasible region,
each requiring the computation of the curves qs,z,[n],
qz,d,[n], and qz,d,[n]%{ j} in time O(n2 log n), and all of the
needed visibility graphs can be constructed initially and
simultaneously in time O(n4).

Recall that " is the radius of the potential hazard detection
regions and K is the allowed number of disambiguations.
The next result shows that for K # 1 the suboptimal p̂* is
within an additive constant, equal to the circumference of
one of the hazard regions, of optimal.

LEMMA 2: When K # 1, we have E#( p̂*) + E#( p*) $
2-".

PROOF: By our construction of Gs,d,[n], the distance in
(#i#1

n Bi)
C from any point in $ #i#1

n Bi to its nearest
vertex in Vs,d,[n] is not more that -" # half the circumfer-
ence of the Bi’s. In particular, if ( z*, j*) is as in (1), and
( z*, j*) 0 (d, A), then there is some z " $Bj* % Vs,d,[n]

not more than -" distant from z*. The RDP p( z, j*)—
regardless of "—is thus not more then -" $ -" longer than
p( z*, j*); one -" for the s, z part of the s, d curve and one
-" for the z, d part of the s, d curve. Now, E#(p( ẑ*, ĵ*)) +
E#(p(z, j*)) + E#(p(z*, j*)) $ 2-", and the result is
shown. "

4.3. Approximating the Optimal RDP When K > 1

When K " 1, we can generalize the arguments in the
preceding subsection. We say a protocol T is a visibility
protocol if it meets the criterion that every nonleaf vertex v
is assigned a pair ( zv, jv) " ($Bjv

% V/zw,d,J) + [n], where
w is the predecessor of v (if v is the root, then zw is defined
to be s), J is the set of indices of detections not known to
be false detections immediately prior to the disambiguation
associated with v, and jv 0 ju for all ancestors u of v. Thus,
decisions in an RDP parametrized by a visibility protocol
are always made in light of the updated information regard-
ing detections.

Because K is fixed, the number of visibility protocols is
a polynomial in n, but perhaps of high degree. This is
because we can enumerate, vertex-by-vertex starting with
the root, the possible pairs ( z, j) to associate with the
nonleaf vertices of T; the number of possible pairs ( z, j)
that can be associated with any nonleaf vertex v, given the
pair associated with v’s predecessor, is O(n2). The time to
compute the expected length of these RDPs is also a poly-
nomial in n. Thus, the optimization problem in (2) can be
solved in polynomial time if we restrict the domain of the
optimization problem to visibility protocols T. The subop-

timal protocol solving the restricted problem is denoted T̂*,
and the associated RDP is denoted p̂*.

The next theorem extends Lemma 2 to the case of an
arbitrary number of allowable detections.

THEOREM 3: Let p* denote an optimal RDP in a
mapped hazard field using at most some given K " 0
disambiguations, and let p̂* denote our approximation.
Then E#( p̂*) + E#( p*) $ 2K-".

The proof of Theorem 3 is analogous to the proof of
Lemma 2; each disambiguation creates the possibility of
elongation of p̂* over p* by 2-" in the exact manner of the
single disambiguation of Lemma 2.

Unfortunately, the computation of T̂* and p̂* is practical
only for small K, and further research into practical, sub-
optimal protocols is warranted. (In fact, if K is not fixed
then the above computation of T̂* and p̂* is not polynomial
time.)

5. EXAMPLES

5.1. Simulation Experiment

Consider the marked spatial point process ! on
S # [3

8
, 5

8
] + [,1, 1] ! !2, where the true and false

detections are Poisson with parameter value . # 6 and
. # 20, respectively, and the distribution of the probability
marks associated with the true and false detections are Beta
with parameter values (6, 2) and (2, 6), respectively. We
choose s # (0, 0), d # (1, 0) and we suppose " # 1

8
,

K # 1. (See Fig. 3 for a sample realization of this process.)
The simplest question of interest involves the probability

that our suboptimal RDP p̂* is any improvement at all. That
is, we want to estimate /c, the probability (relative to the
underlying process !) that E#( p̂*) . #$(qs,d,[n]) when the
disambiguation cost is c. Simulation experiments consisting
of 100 Monte Carlo replicates for each of c # 0, c # .025,
and c # .1 (which here are 0%, 2.5%, and 10% of
#$(s, d) # 1) yielded the estimates /̂0 # .70, /̂.025 # .44,
and /̂.1 # .18, indicating a positive expected savings from
p̂* over qs,d,[n] approximately 70%, 44%, and 18% of the
time, respectively.

This simulation experiment also affords us the opportu-
nity for a preliminary investigation into the suboptimality of
the RDP p̂* from the optimal RDP p*. When c # 0 the
optimal RDP p* is almost surely shorter than qs,d,[n], unless
qs,d,[n] # s, d. Among our 100 replicates, we observed 24
where qs,d,[n] # s, d, indicating that for 70 of the remaining
76 replicates where optimal RDPs p* provided an expected
savings over qs,d,[n] we also had the suboptimal RDP p̂*
yielding an expected savings over qs,d,[n].
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5.2. Minefield Application

Minefield detection and localization is an important prob-
lem currently receiving much attention in the engineering
and scientific literature; see, for instance, [16] and refer-
ences therein. Witherspoon et al. [17] depict the operational
concept for minefield reconnaissance via an unmanned aer-
ial vehicle. Multispectral imagery of an area of interest is
processed and potential mines are located with a mine
detection algorithm. (Holmes et al. [6] present a thorough
discussion of the particular mine detection algorithm that
we use in the upcoming example.) The detector produces
a binary detection map (point pattern) D! such that
D(x) # 1 for all points x at which a mine or minelike object
is detected. Categorizing the detections into “true hazards”
(mines) and “false detections” (minelike objects, debris,
noise, etc.) and considering an operational imperative on the
detector to find (nearly) all true hazards, it can be expected
that the number of false detections in the map D! will be
relatively high.

In this subsection we consider the minefield detection risk
field presented in Figure 4. Among the 39 detections, 12 are
true mines (filled squares) and 27 are false detections (open
squares). The marks are posterior probabilities, determined
by a post-processing classification rule [9, 12–15], that the

Figure 3. Four representative realizations of the simulation point process. True hazards are depicted as filled squares and false detections
are depicted as open squares. Top left: #(qs,d,[n]) # 1.062 and p̂*(0.1) # qs,d,[n]. Top right: #(qs,d,[n]) # 1.001 and p̂*(0.1) # qs,d,[n].
Bottom left: #(qs,d,[n]) # 1.196 and E[#( p̂*(0.1))] # 1.117. Bottom right: #(qs,d,[n]) # 2.172 and E[#( p̂*(0.1))] # 1.376.

Figure 4. The minefield data set with risk disks. There are 39
detections—12 true mines (filled squares) and 27 false detection
(open squares). An example mission requires timely zero-risk
transit from source s [at (0, 800) near the top center of the figure]
to destination d [at (0, 100) near the bottom center of the figure].
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individual detections obtained from the mine detector are in
fact mines.

The path qs,d,[n] shown in heavy black in Figure 5 has
length #$(qs,d,[n]) # 978. For K # 1 disambiguation, the
RDP p̂*, shown in heavy red (gray) in Figure 5 has
expected length E#( p̂*) # 1112! $ 708(1 , !) $ c,
where, in this case, ! # .21; thus E#( p̂*) . #$(qs,d,[n]) for
all c " [0, 185), and we thus conclude that RDPs are
beneficial in this application. We should additionally
point out that, although the algorithm does not know
which detections are true and which are false, we happen
to know here that the detection disambiguated was a false
detection, and thus the path actually traversed has length
708 $ c.

It turns out that additional disambiguations are useful in
this example, but for K # 2 and K # 3 the first point of
disambiguation is precisely the point of disambiguation in
the K # 1 case computed above.

6. DISCUSSION

Random disambiguation paths are both theoretically and
practically relevant to certain tasks involving path planning
under uncertainty; in particular, we have considered the task
of minefield traversal. Approximating the optimal RDP can
be challenging; a simple procedure has been described here,
but additional investigation is demanded. In particular, a
dynamic programming approach to the problem may prove
useful.

6.1. Stochastic Dynamic Programming

A stochastic dynamic program (SDP) with a properly
defined state space can be formulated for our RDP problem.
However, it does not currently seem to us that such an SDP
can be formulated with a compact representation. The dif-
ficulty arises because every state in the SDP state space
would need to include the current true/false/ambiguous sta-
tus of each detection in order for us to be able to determine
transition costs with respect to the current potential hazards.
In addition, computing such state transition costs would
anyway need to be done in a matter similar to that which we
have described here. Thus it does not seem that standard
SDP techniques can be profitably applied to address our
problem more efficiently at this time. The main advantage
of our formulation is that we have used visibility graph
techniques to explain in a natural way how to compute the
underlying costs that would be needed by any SDP formu-
lation. Since our current formulation exploits geometry, this
may lead to a more compact state representation and allow
more tractable applications of SDP techniques in the future.

6.2. Generalizations

There are many generalizations of our setting which are
of both theoretical and practical interest, and we mention
but a few: We have restricted our attention to !2, but
higher-dimensional spaces are certainly of interest. We use
expected length as the goodness criterion, while other good-
ness criteria may be more situationally appropriate. Multi-
ple hazard types suggest relaxing the assumption that the
radii of risk regions are identical, and the required proximity
of the sensor to the detection in order to disambiguate may
also differ from the radius of the risk region. It is also of
interest to generalize to the case of multiple sensors each
with its own disambiguation radius and cost, and to the case
where disambiguations are not perfect—that is, where each
sensor has an associated disambiguation accuracy. The op-
tion to neutralize some hazards at additional cost can also be
incorporated into the path planning. Also, applications sug-
gest incorporating locational uncertainty into our model.
Finally, it is of interest to relax the requirement that the path
never enter a risk region, instead allowing for some “toler-
able” risk.
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