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Abstract

In this article we initiate the study of class cover catch digraphs, a special case of intersection digraphs motivated
by applications in machine learning and statistical pattern recognition. Our main result is the exact distribution of
the domination number for a data-driven model of random interval catch digraphs. c© 2001 Elsevier Science B.V. All
rights reserved
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1. Class cover catch digraphs

Let X= {X1; : : : ; Xn}, Y= {Y1; : : : ; Ym} be two classes of Rq-valued random variables with joint distribution
FX;Y . Let d(·; ·) :Rq × Rq → [0;∞) be any distance function. The class cover problem for a distinguished
target class (say, X; note that the problem is asymmetric in target class) is to ;nd a collection of open
balls Bi:=B(ci; ri):={x: d(x; ci)¡ri} such that (i) X ⊂ ∪iBi and (ii) Y ∩ ∪iBi = ∅. A collection of balls
satisfying (i) and (ii) is termed a class cover. Condition (i) de;nes a proper cover of class X while (ii)
de;nes a pure cover with respect to class Y. A constrained class cover requires the balls to be centered at
target class observations; ci ∈X ∀i. A homogeneous class cover requires the ball radii to be the same for all
balls; ri = r ∀i. This article investigates minimum cardinality constrained heterogeneous class covers—class
covers which satisfy (i) and (ii) with the fewest balls possible. This class cover problem, a generalization
of the set cover problem (see, e.g., Gar;nkel and Nemhauser, 1972) motivated by applications in machine
learning and statistical pattern recognition wherein the methodology requires the selection of a (small) set
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of representative exemplars from X, has been previously considered in Cannon and Cowen (2001) and Priebe
and Marchette (2000).

De�nition. The random class cover catch digraph G for X, Y corresponding to the constrained heterogeneous
class cover problem for target class X is the digraph of order n with vertex set X and a directed edge from Xi

to Xj if and only if Xj ∈B(Xi;minY∈Y d(Xi; Y )). That is, there is an edge from the ith vertex to the jth vertex
if and only if there exists an open ball centered at Xi which is “pure”, or contains no elements of class Y,
and simultaneously contains, or “catches”, point Xj. We write V (G) = {vi; : : : ; vn} with each vi corresponding
to Xi; thus vivj ∈E(G) if and only if Xj ∈Bi. We call such a digraph a random Cn;m-graph. (Some authors
e.g., Chartrand and Lesniak, 1996 use the term pseudodigraphs since Cn;m-graphs permit loops.)

Our Cn;m-graphs can be seen to be a special case of both the intersection digraphs of Sen et al. (1989)
and the covering sets or transversals of Tuza (1994). In addition, signi;cant similarities are apparent between
Cn;m-graphs and proximity and neighborhood graphs (Jaromczyk and Toussaint, 1992), sphere-of-in9uence
graphs (see, e.g., McKee and McMorris, 1999), and the sphere-of-attraction graphs presented in McMorris
and Wang (2000). Our model is a vertex-random graph model (KaroMnski et al., 1999) and is not one of
the standard models (see, e.g., Bollobas, 1985 or Janson et al., 2000). Rather, the randomness in our Cn;m

model resides in the vertices X and the existence of an edge vivj is a deterministic function of the random
variable Xj and the random set Bi. Thus our random graph model is data-driven—a function of the joint
distribution FX;Y .

2. Domination number for random Cn;m-graphs

De�nition. For a pseudodigraph G = (V; E), a dominating set is a collection of vertices D ⊂ V such that for
each vi ∈V either (1) vi ∈D or (2) there is an edge from some vj ∈D to vi (vjvi ∈E). That is, N [D] =V ,
where N [D] denotes the closed neighborhood of D ⊂ V . See, for instance, Bollobas (1998), Chartrand and
Lesniak (1996), Haynes et al. (1998a, b). A minimum dominating set is a dominating set D for which the
cardinality |D| is minimum. The cardinality of a minimum dominating set is the domination number, denoted
�(G). There is always a dominating set of cardinality |V |; namely, D=V . Thus �(G)6 n.

De�nition. For a pseudodigraph G = (V; E), a total dominating set is D ⊂ V such that for each vi ∈V there
exists vj ∈D such that vjvi ∈E. That is, N (D) =V , where N (D) denotes the open neighborhood of D ⊂ V .
Note that if there is a vertex vi ∈V with no in-edge, from itself or from any other vj ∈V , then no total
dominating set exists for G. The invariant �t(G), the total domination number, represents the cardinality of
a minimum total dominating set. If no total dominating set exists, we say �t(G) =∞.

If the joint distribution FX;Y satis;es the assumption that P[X =Y ] = 0—for instance, if X and Y are inde-
pendent and the class-conditional probability density functions fX ; fY exist—then �t(G) = �(G) almost surely
(a.s.) for G ∈Cn;m. Since Xi ∈Bi unless the open ball Bi = ∅ or, equivalently, unless ri:=minY∈Y d(Xi; Y ) = 0,
it follows that every vi has an in-edge from itself (vivi ∈E) if and only if it is not the case that there are a
class X observation and a class Y observation which are coincident. Furthermore, vivi �∈ E ⇒ vjvi �∈ E for
any vj ∈V . Thus the existence of a vertex vi such that vivi �∈ E implies �t(G) =∞, and represents the only
case for which �t(G) and �(G) diPer.

For the purposes of this article we consider “nice” distributions—joint distributions FX;Y for which �t(G)¡∞
a.s. That is, we consider F(Rq)-random Cn;m-graphs, de;ned as random Cn;m-graphs for which FX;Y ∈F(Rq),
where

F(Rq):={FX;Y on Rq such that P[X =Y ] = 0}:
The following theorem follows immediately:
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Theorem 1. Let G be an F(Rq)-random Cn;m-graph. Then �t(G) = �(G) a.s.

In light of the result given in Theorem 1; we henceforth focus our attention on the random variable �(G) for
F(Rq)-random Cn;m-graphs. We will assume throughout that n and m are positive integers and use the notation
�(G; n; m) for �(G) to make explicit the dependence on the sample sizes. The trivial result 16 �(G; n; m)6 n
is immediately available.

3. F(R)-random Cn;m-graphs

Consider now class cover catch digraphs in one dimension—the case q= 1. Class cover catch digraphs on
R are a special case of interval catch digraphs (Sen et al., 1989; Prisner, 1989; Prisner, 1994).

Consider the collection of m + 1 intervals based on the order statistics

−∞=: Y(0:m) ¡Y(1:m)6Y(2:m)6 · · ·6Y(m:m) ¡Y(m+1:m):= + ∞;

Ij:=(Y(j−1:m); Y(j:m)) for j = 1; : : : ; m + 1. Let Xj = Ij ∩ X and Yj = {Y(j−1:m); Y(j:m)}. This gives us m + 1
disconnected subgraphs Gj, each of which may be null or may itself be disconnected into at most two
components. De;ne Nj:=|Xj|, and let �j(Nj) denote the cardinality of a minimum dominating set for the
random Cn;m-graph induced by Xj, Yj. Then �(G; n; m) =

∑m+1
j=1 �j(Nj). Thus the study of �(G; n; m) is carried

out via the investigation of the simpler random variables �j(Nj).

Lemma 1. For j = 1; m + 1 we have �j(Nj) = 1{Nj ¿ 0}. (1{·} is the indicator function.)

Proof. Clearly �j(0) = 0. Consider j = 1 and the case N1¿ 1. De;ne B1:=B(min(X1); Y(1:m) − min(X1)), the
largest pure open ball centered at the leftmost observation in I1. Then X1 ⊂ B1 and Y1 ∩ B1 = ∅, and hence
�1(N1) = 1. The case j =m + 1 follows similarly.

For j = 2; : : : ; m we now show that, for Nj¿ 1, �j(Nj) takes values in {1; 2} with distribution-dependent
probabilities {�j(Nj); 1 − �j(Nj)}, respectively, where

�j(Nj):=P[Xj ∩ I∗j �= ∅]

with

I∗j :=
(

max(Xj) + Y(j−1:m)

2
;
min(Xj) + Y(j:m)

2

)
⊂ Ij:

Lemma 2. For j = 2; : : : ; m, �j(Nj) =d 1 + Bernoulli(1 − �j(Nj)) for Nj¿ 1.

Proof. Again, �j(0) = 0. If Nj = 1 (Xj = {X }) then there exists an �¿ 0 such that the ball B(X; �) suf-
;ces to demonstrate that �j(1) = 1, and X ∈ I∗j so �j(1) = 1 as desired. Suppose now that Nj¿ 2. Let
X−
j :=max{X ∈Xj: X 6 (Y(j−1:m) +Y(j:m))=2} and X+

j :=min{X ∈Xj: X ¿Y(j−1:m) +Y(j:m)=2}. (X−
j ¡X+

j a.s.
if both exist.) Let B−

j :=B(X−
j ; X−

j − Y(j−1:m)) and B+
j :=B(X+

j ; Y(j:m) − X+
j ). (B−

j (B+
j ) = ∅ if X−

j (X+
j ) does

not exist.) Since Xj ⊂ (B−
j ∪B+

j ) and Yj ∩ (B−
j ∪B+

j ) = ∅, it follows that �j(Nj)∈{1; 2}. Finally, observe that
�j(Nj) = 1 ⇔ there exists X ∈Xj such that (i) X −min(Xj)¡Y(j:m) −X and (ii) max(Xj)−X ¡X −Y(j−1:m),
and (i) and (ii) hold if and only if there exists X ∈ I∗j .

Clearly P[Xj ∩ I∗j �= ∅] depends on the conditional distribution FX |Y on the interval Ij; if we know this
distribution, we can calculate �j.
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As an immediate consequence of the preceding two Lemmas the upper bound of n for �(G; n; m) can be
tightened for F(R)-random Cn;m-graphs.

Theorem 2. Let G be an F(R)-random Cn;m-graph. Then 16 �(G; n; m)6min(n; 2m).

3.1. Main result

The following lemma provides the exact result for the distribution of the cardinality of a minimum domi-
nating set for a simple random Cn;2-graph. Our main result will employ this lemma.

Lemma 3. Let −∞¡a¡b¡ + ∞. Let X= {X1; : : : ; Xn} with Xi ∼i:i:d: Uniform(a; b). Let Y= {a; b}. Let
G be the random Cn;2-graph for X; Y. Then �(G; n; 2) =d 1 + Bernoulli(1 − �(n)) with

�(n):=P[�(G; n; 2) = 1] = 5
9 + 4

9 4−(n−1)

for n¿ 1. (For future reference; we note that �(1) = 1; �(2) = 6
9 ; and �(n) ↘ 5

9 as n ↗ ∞:)

Proof. Let I∗:=((max(X) + a)=2; (min(X) + b)=2) ⊂ (a; b). By Lemma 2, �(G; n; 2) = 1 ⇔ X ∩ I∗ �= ∅ and it
suCces to show that P[X∩ I∗ �= ∅] = 5

9 + 4
9 · 4−(n−1). For this, note ;rst that since the Xi are independent and

identically distributed uniform over (a; b), the random variable 1{X∩ I∗ = ∅} is independent of a, b, and the
size of the interval b− a. Thus, to simplify our calculations, we set a= 0 and b= 1. To further simplify our
calculations we calculate P[X ∩ I∗ �= ∅] by calculating 1 − P[X ∩ I∗ = ∅].

We condition on min(X) and max(X), writing min(X) = x1 and max(X) = xn, to obtain

P[X ∩ I∗ = ∅] =
∫ 1=2

0

∫ 1

max{(x1+1)=2;2x1}
fx1 ; x n(x1; xn)g(x1; xn) dxn dx1;

where fx1 ; x n(x1; xn) = n(n − 1)(xn − x1)n−2 is the joint probability density function of min(X) and max(X)
(see, e.g., David, 1981) and for y ¿ max{(x + 1)=2; 2x}

g(x; y):=P[X ∩ I∗ = ∅|min(X) = x;max(X) =y] =
(

1 −
(

1 + x − y
2(y − x)

))n−2

:

Thus we have

P[X ∩ I∗ = ∅] =
∫ 1=3

0

∫ 1

(1+x1)=2
fx1 ; x n(x1; xn)g(x1; xn) dxn dx1

+
∫ 1=2

1=3

∫ 1

2x1

fx1 ; x n(x1; xn)g(x1; xn) dxn dx1

=
1
9

(4 − 22−n − 23−2n) +
1
9

(22−n − 23−2n)

=
4
9
− 4

9
· 4−(n−1):

The desired result follows immediately.

Lemma 3 allows the derivation of the distribution of �(G; n; m) for a particular class of random Cn;m-graphs
on R. De;ne U(R) ⊂ F(R) as

U(R) := {FX;Y : X and Y are independent; Xi ∼i:i:d FX ; Yj ∼i:i:d FY ; and

FX =FY = Uniform (I) where I = (a; b) ⊂ R with −∞¡a¡b¡ + ∞}:
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The following theorem gives the exact distribution of the cardinality of minimum total dominating sets for
U(R)—random class cover catch digraphs.

Let Zm denote the set of non-negative integers less than m; Zm:={0; : : : ; m− 1}. De;ne

%S
z;b:=

{
(z1; : : : ; zb):

b∑
i=1

zi = z; zi ∈ S ∀i
}
:

Theorem 3. Let G be a U(R)-random Cn;m-graph. Then the probability mass function for the random
variable �(G; n; m) is given by

P[�(G; n; m) =d] =
n!m!

(n + m)!

∑
ñ∈%

Zn+1
n;m+1

∑
d̃∈%

Z3
d;m+1

)(d1; n1) · )(dm+1; nm+1)
m∏
j=2

*(dj; nj);

where

)(d; n) = max(1{n=d= 0}; 1{n¿d= 1})

and

*(d; n) = max(1{n=d= 0}; 1{n¿d¿ 1}) · �(n)1{d=1} · (1 − �(n))1{d=2}:

Proof. For �(G; n; m) =
∑m+1

j=1 �j(nj) =d we must have �1(n1) =d1 and · · · and �m+1(nm+1) =dm+1 for some

d̃= (d1; : : : ; dm+1) such that
∑m+1

j=1 dj =d and some ñ= (n1; : : : ; nm+1) such that
∑m+1

j=1 nj = n. %Zn+1
n;m+1 is pre-

cisely the collection of ñ which can occur and, since the individual dj can take values only in {0; 1; 2}, %Z3
d;m+1

is precisely the collection of d̃ which can occur. Therefore we have

P[�(G; n; m) =d] =
∑

ñ∈%
Zn+1
n;m+1

∑
d̃∈%

Z3
d;m+1

P[̃n ]
m+1∏
j=1

P[�j(nj) =dj |̃n ]

=
∑

ñ∈%
Zn+1
n;m+1

∑
d̃∈%

Z3
d;m+1

P[̃n ]
∏

j∈{1;m+1}
P[�j(nj) =dj |̃n ]

m∏
j=2

P[�j(nj) =dj |̃n ];

where we have used the conditional pairwise independence of the �j. The form of the ;nal expression is due
to the fact that we need to treat the end intervals I1 and Im+1 separately. Certain pairs (nj; dj) are incompatible,
such as nj = 0 and dj ¿ 0; the indicator functions in the statement of Theorem 3 eliminate incompatible pairs
from the summation. For the end intervals I1 and Im+1, the ) terms yield a value of unity if the (nj; dj) pair
is compatible. The * terms are derived from compatibility considerations and the result of Lemma 3. The
desired result is obtained by noting that each ñ∈%Zn+1

n;m+1 has probability 1=( n+m
n ) of occurring.

While the expected value of �(G; n; m) can be obtained from Theorem 3, a more straightforward derivation
is provided.

Theorem 4. Let G be a U(R)-random Cn;m-graph. Then

E[�(G; n; m)] =
2n

n + m
+

n!m(m− 1)
(n + m)!

n∑
i=1

(n + m− i − 1)!
(n− i)!

(2 − �(i));

where �(i) is given by Lemma 3.
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Proof. The expected value of �(G; n; m) for an F(R)-random Cn;m-graph G is given by

E[�(G; n; m)] = P[X(1:n) ¡Y(1:m)] +
m∑
j=2

n∑
i=1

P[Nj = i]E[�j(i)] + P[X(n:n) ¿Y(m:m)]

=
2n

n + m
+ (m− 1)

n∑
i=1

P[N2 = i]E[�2(i)]:

For j = 2; : : : ; m we have �j(Nj) ∼ 1 + Bernoulli(1 − �(Nj)) from Lemma 3 and thus E[�j(i)] = (2 − �j(i)),
and P[Nj = i] = n!m(n + m − i − 1)!=(n + m)!(n − i)!. For j = 1; m + 1 we have �j(Nj) = 1{Nj ¿ 0}, and
P[N1 ¿ 0] =P[Nm+1 ¿ 0] = n=n + m.

Corollary 1. E[�(G; n; n)] → ∞ as n → ∞.

Proof. From Theorem 4 we have

E[�(G; n; n)] = 1 +
n!n(n− 1)

(2n)!

n∑
i=1

(2n− i − 1)!
(n− i)!

(2 − �(i))

= 1 +
(n!)2(n− 1)

(2n)!

n∑
i=1

(
2n− i − 1

n− i

)
(2 − �(i))

¿ 1 +
(n!)2(n− 1)

(2n)!

n∑
i=1

(
2n− i − 1

n− i

)

= 1 +
(n!)2(n− 1)

(2n)!
2n−1(2n− 1)!!

n!

=
n + 1

2
:

Limiting results for �(G; n; m) are also available.

Theorem 5. (i) Let Gn;m be a U(R)-random Cn;m-graph. Then for n <xed and <nite; limm→∞ �(Gn;m) = n
a.s. (ii) Let Gn;m be a U(R)-random Cn;m-graph. Then for m <xed and <nite; limn→∞ �(Gn;m) =d m+ 1 +B;
where B ∼ Binomial(m− 1; 4

9 ).

Proof. (i) is straightforward. For (ii), note that as n → ∞, Nj → ∞ ∀j a.s. Thus lim �1 = 1 a.s., lim �m+1 = 1
a.s., and lim �j = 1 + Bernoulli( 4

9 ) a.s. for j = 2; : : : ; m. Finally, note again that, conditional on the Nj, the �j
are independent.

3.2. A greedy algorithm yields �̂(G) = �(G)

The random class cover catch digraph G for X, Y can be described via the n × n adjacency matrix
A=A(G) = [ai; j] where ai; j = 1{d(Xi; Xj)¡minY∈Y d(Xi; Y )}. For a graph G ∈Cn;m with adjacency matrix A,
�(G) is given by 1̃Tx̃ ∗ for a solution x̃ ∗ to the linear algebra optimization problem

min 1̃Tx̃
s:t: ATx̃ ¿ 0̃:

N:B: x̃∈{0; 1}n:
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Here the elements xi of the binary vector x̃ of length n indicate whether the ith vertex is in the dominating
set. (If no solution x̃ ∗ exists then no dominating set exists; thus Theorem 1 says that a solution exists a.s.)

The linear algebra optimization problem presented above is in general an NP-hard optimization problem
(Karp, 1972; Arora and Lund, 1997). A deterministic “greedy heuristic” approximation algorithm, similar to
the algorithm discussed in Chvatal (1979) and Parekh (1991), for ;nding small dominating sets in graphs
proceeds as follows:

Given n× n adjacency matrix A=A(G) with rows ãi; · and columns ã·; j
If trace(A) ¡n Return �̂(G) =∞; Else
Set d= 0
While 1̃TA1̃¿ 0̃

Set d=d + 1
Set i∗d = min arg maxi 1̃

Tãi; ·
Set ã·; j = 0̃ for j such that ãi∗d ;j = 1

EndWhile
Return �̂(G) =d, D= {i∗1 ; : : : ; i∗d}

This greedy algorithm is guaranteed to ;nd a dominating set if one exists. The algorithm is not guaranteed
to ;nd a minimum dominating set in the general setting. Thus we have �̂(G)¿ �(G). Running time analysis
and approximation properties for similar greedy algorithms have been previously considered; see, e.g., Arora
and Lund (1997), Chvatal (1979), Cannon and Cowen (2001), Hochbaum (1982), Johnson (1974), Nikoletseas
and Spirakis (1994), Parekh (1991), Prisner (1994).

Theorem 6. The greedy algorithm is optimal for <nding a minimum dominating set for F(R)-random
Cn;m-graphs. That is; �̂(G) = �(G) a.s. when G is an F(R)-random Cn;m-graph.

Proof. It suCces to consider the subgraph Gj induced by the nj ¿ 0 observations on a single interval Ij. If
�(Gj) = 1, then maxi 1̃Tãi; · = nj. Otherwise, the ;rst ball selected by the greedy algorithm (i∗ for d= 1) either
covers at least all observations to the left of the midpoint of Ij or covers at least all observations to the right
of the midpoint of Ij. Then the second ball covers at least the remaining observations.

(Note that a simpler, linear time algorithm is available for F(R)-random Cn;m-graphs, as suggested by the
proof of Lemma 2.)

4. Discussion

Much of the machinery of Hilbert or Banach spaces is unnecessary in our general de;nition of class cover
catch digraphs. For instance, an inner product is unnecessary, a semi-norm suCces as the triangle inequality
is not used, the completeness of the space is not necessary, and our Cn;m model is appropriate for in;nite
dimensional (function-valued) random variables. Furthermore, the ;niteness condition on the sample sizes n
and m can be relaxed, giving rise to well-de;ned in;nite pseudodigraphs.

However, it is the one-dimensionality of R that is fundamental to our main results. For example, the follow-
ing generalization is instructive. Let S1 be the sphere in R2, and de;ne U(S1)-random Cn;m-graphs in a manner
analogous to the U(R)-random Cn;m-graphs. Then, in analogy with Theorem 5, we have the following result.

Theorem 7. (i) Let Gn;m be a U(S1)-random Cn;m-graph. Then for n <xed and <nite; limm→∞ �(Gn;m) = n
a.s. (ii) Let Gn;m be a U(S1)-random Cn;m-graph. Then for m <xed and <nite; limn→∞ �(Gn;m) =d m + B;
where B ∼ Binomial(m; 4

9 ).
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Our main result can be generalized in terms of the random models to which it applies. Consider the case
for which X and Y are independent and continuous. If FY is known then the distribution of the location and
size of the intervals Ij can be derived. Then, as noted above, if FX is known one can calculate the �j.

Our main result applies to the constrained heterogeneous class cover problem in R. The unconstrained
heterogeneous problem is trivial, while the unconstrained homogeneous problem depends only on the interval
sizes. Investigation of the domination number for the constrained homogeneous problem is of some interest
(see Cannon and Cowen, 2001 and Priebe and Marchette, 2000).

Applications in statistical pattern recognition and machine learning demand the investigation into higher
dimensional class cover catch digraphs. This investigation is continuing, with Guibas et al. (1994) providing
the results of a similar investigation for sphere-of-inTuence graphs. Characterization of class cover catch
digraphs on Rq, as a function of q, is ongoing.

Finally, a generalization of our class cover catch digraphs is being investigated wherein the requirements
for a pure and proper cover are relaxed. This generalization is of particular interest in the applications under
consideration due to the need to avoid over;tting in the class cover. Speci;cally, given parameters ); *∈ [0; 1]
we require (i′) |X ∩∪iBi|¿ n) and (ii′) |Y ∩∪iBi|6m*. The former condition relaxes the requirement that
all target class observations be covered, while the latter condition allows some non-target class observations
to be covered. See Priebe and Marchette (2000) and, analogously, Guibas et al. (1994). The case )= 1 and
*= 0 reduces to the problem studied herein. This generalization still can be seen to be a special case of
both the intersection digraphs of Sen et al. (1989) and the transversals of Tuza (1994). In this generalization,
and with the possibility of coincident observations of diPering class (P[X =Y ]¿ 0), some vertices may have
loops while others do not.
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