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ABSTRACT 

We develop a simple but useful generalization of the classical Wilcoxon-Mann- 
Whitney statistic. A normal approximation and a recurrence for the exact distribu- 
tion of this generalization are available. The statistic has potential application in 
nonparametric discriminant analysis. 

1. INTRODUCTION 

Consider a nonparametric rank-based test for location in the two-sample case. 
1 1 2 2 

Let x1 = {XI,  ..., X n )  be i.i.d. F ,  and x2 = {XI ,  ..., X } be i.i.d. F2 with 
I n2 

x1 , x2  mutually independent. We wish to test H o : F ,  = F Z  against the alternative 

of stochastic ordering. We will assume for simplicity that the distributions F, are 

continuous, implying that rank ties occur with probability zero. 

The Wilcoxon-Mann-Whitney (WMW) statistic (Wilcoxon 1945; Mann and 

Whitney 1947) is based on painvise comparisons; 
2 . The statistic W is an estimator of P [x; < x1] ; 

Eo [ WJ = 1 /2 and the associated test rejects for large values of ( W - 1 /2) . 
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We present a generalized WMW statistic based on the comparison of subsam- 

ple minima. Let 1 I k l  S n l  and 1 5 k2 5 n 2 ,  and define 

where IS1 represents the cardinality of the set S . The summation is over elements 

of 

thus P k , .  kJ = ($;] * 

As is the case for the conventional WMW statistic W, the W k , ,  k2 are U-statis- 

tics and are distribution-free under H o .  A normal approximation is available (see 

Xie and Priebe 1999 for details). 

Theorem 1. As n l  + w  and n 2 + w  such that n l / ( n l  + n 2 )  + h~ (0, l ) ,  

( W k l ,  k2 - E [ W k , ,  k 2 ]  ) is asymptotically normal with mean 0 and vari- 

ance V A R I W k , , k , I .  Under H, ,  E o [ W k I , k 2 ]  = k l / ( k l + k Z )  and 

V A R o [ W k l , k 2 1  = k : k i / ( h ( l  - h) ( k l  + k 2 ) 2  ( 2 k ,  + 2 k 2 -  I )  ,). 

Consideration of subsample maxima - replacing 'min ' with 'max ' in equa- 

tion (1) - results in the generalization of WMW proposed by Kochar (1978), 

Deshpande and Kochar ( l980) ,  Stephenson and Ghosh (1985), and Ahmad (1996); 

Wkl, k2 can be obtained from the analogous subsample maxima statistic by replac- 

ing ' ( m i n ( c , )  < min(C,)) with ' ( m a x ( - ~ , )  <  mad-^,)} in ( 1 ) .  Shetty and Govindarajulu 
(1988) and Kumar (1997) propose using 'median '. Xie and Priebe (1999) con- 

sider general order statistics. 

In Section 2 we present a recurrence for the exact distribution Fwk . Section 
1' 2 

3 presents an example, motivated by a class of nonparametric discriminant analy- 

sis applications, indicating the utility of the generalization. In Section 4 a recur- 

rence is presented for the generalization of statistic ( 1 )  to the J 2 3 sample case. 
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2. A RECURRENCE FOR FWk 
1' 2 

For the classical WMW statistic, the inadequacy of the normal approximation 

for small samples and the resultant desire for exact inference has spurred continu- 

ing interest in recurrences for the exact distribution (Lehmann 1975; Brus 1989; 

Chang 1992; Di Bucchianico 1997; Cheung and Klotz 1997). These same consid- 

erations motivate the derivation of a recurrence for the exact distribution of 

Wkl ,  k, ' 
Classical combinatorics provides the required result. (The analogous 

recurrence for the variant of (1) employing subsample maxima is due to Kochar 

(1978) and Deshpande and Kochar (1980).) 

Let ' ( 1 1 9  ..."[n,+n,) represent the ordered combined sample x I Ux2 and 

let S = SIS2 . .  . S n l  + n 2  be the sequence representing the sample labels for the 

ordered combined sample; Si = 2 - I I Z , , ,  E XI] . Given n n2 and k, ,  k2 ,  the ran- 

a function of only the probability measure on S .  All 

S of n l  1's and n2  2's are equally likely under H o :  

this common distribution; Wkl, k, is distribution-free. 

Define y (i;kl,  k2, n l ,  n2) to be the number of sequences S of n l  1's and n2 

2's such that there are exactly i subset pair selections ( C l ,  C2) E Akl, k, of k l  1's 

and k2 2's for which min(C1) < min(C2). That is, 

Y (i;kl,  k2, n l ,  n2) = s pk,,k21 wkl,k2 ( s )  = i 11. 
Then 

is the probability mass function for the generalized WMW statistic ( 1 )  under H o ,  

and the desired probability distribution function Fwk is available therefrom. 
I '  Zi 

Let G (q;kl,  k2, n l ,  n2) = zi y(i ;kl ,  k2, n l ,  n2) q be the generating function 

for which the coefficient of q' is precisely the required value y( i ;k l ,  k2, n,,  n2) . 
Theorem 2 provides a recurrence for G . 

Theorem 2. G satisfies the recurrence 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
J
H
U
 
J
o
h
n
 
H
o
p
k
i
n
s
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
8
:
3
5
 
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



2874 PRIEBE AND COWEN 

where the base cases of the recurrence are given by 

and 

3. EXAMPLE 

For the class of nonparametric discriminant analysis applications - especially 

in high dimensions - it is common practice to reduce the problem of comparing 

high-dimensional samples to that of the one-dimensional comparison of interpoint 

distances ): (Z) = d(Z xi). See the discussion in Maa, Pearl and Bartoszynski 

(1996) and Bartoszynski, Pearl, and Lawrence (1997). In particular, the classical 

nearest neighbor classifiers (Fix and Hodges 1951; Cover and Hart 1967; Duda 

and Hart 1973; Devroye, Gyorfi and Lugosi 1996) are based on the ranks of these 

interpoint distances. The class-conditional distributions Fyl and Fy2 are typically 

skewed to the right. For such distributions the statistic Wk,,k2, an estimator of 
I 

P [min(Y,, .. ., Y:,) < min(<, ..., (21 , can be superior to the classical WMW or 

any order statistic-based generalization thereof. 

For example, if the F, are normal and Z-F,  , an analysis of Wkl, k2 in terms of 

Pitman's asymptotic relative efficiency p (Pitman 1949; Lehmann 1975) yields 

p (WIo, lo, W) = 7.15 and p (W,o, lo, W') > 2.38 for all order statistic-based 

generalizations W' of (1) with subsamples of size 10. (Employing subsample max- D
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ima yields a relative efficiency of 53.8; medians yield 11.7.) The statistic W k l ,  k ,  is 

admissible, and is preferred for this class of applications. 

A more elaborate investigation of the class of order statistic-based generaliza- 

tions of ( 1 )  in terms of Pitman efficiency is presented in Xie and Priebe (1999). A 

comparison of classifiers based on W k l ,  k ,  to nearest neighbor classifiers for a spe- 

cific discriminant analysis application is presented in Priebe (1998). 

4. THE J 2 3 SAMPLE CASE 

Motivated by polychotomous nonparametric discriminant analysis based on 

the one-dimensional comparison of interpoint distances d(Z, x;) , we consider now 

the J 2 3 sample case, with mutually independent i.i.d. samples x . . . , x J .  Let 
T T 

n = [ n l ,  . . ., n,] and k = [ k , ,  .. ., k J ]  with 1 5 k  I n j .  For j = 1, ..., J 
J 

define the statistics 

The summation is over elements of 

Ak = { ( C  ,,..., CJ)  :Cjcx i ,JC,J  = k j  f o r a l l j ) ;  

Unlike the case J = 2 ,  here we need the joint distribution 

F , ( i , ,  ..., i J )  since the value of the largest of the l(ik no longer com- 
Wk> .. , 

pletely determines the values for the remaining J - 1 . (For J = 2 ,  
1 4 = 1 - Wk .) Fortunately, a general recurrence is available. 

Let yj ( i ; k ,  n )  be the number of sequences S of n ,  l 's, . . . , nJ J ' s  such that 

there are exactly i  subset selections ( C 1 ,  ..., C,) E Ak of k ,  l's, ... , kJ J ' s  for 

which min(C,) < m i n ( u C l ) .  The calculation required for the joint distribution 
l + j  

F , ( i , ,  . .., i,) is that of P [ y l  = i l ,  . .., yJ = i J ]  . That is, a recurrence is 
w,. ..., 
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2876 PRIEBE AND COWEN 

available which yields the necessary values y ( i l ,  . . ., iJ ;k ,  n) , the number of 

sequences S of n ,  1 's, . . . , nJ J ' s  such that, simultaneously for each j , there are 

exactly ij subset selections ( C I ,  ..., C J )  E Ak for which min(Cj) < m i n ( u  C I ) .  
l # j  

The generating function of interest, using the y ( i l ,  . . . , iJ ;k ,  n) as coefficients, 

is 

T T i 
where i = [ i ,  . i ]  , q = [ q , ,  ..., q,] , and qi = nq;. For ease of nota- 

tion we will write n for the indices n , , . . . , n with n, replaced by n . - 1 . By a ti) I 

cornbinatorical argument similar to that used for the two sample case, we have 

Theorem 3. G satisfies the recurrence 

To write the base cases, the indices are reordered so that thejrst  a n, S have all 

been decreased to k, ( n ,  = k , ,  ..., n, = k , )  and the remaining J - a  n, S 

na + ,, . . ., nJ are all still greater than k j .  The bases cases can then be written via 

the single formula 
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