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a b s t r a c t

Manifold matching works to identify embeddings of multiple disparate data spaces into the same low-
dimensional space, where joint inference can be pursued. It is an enabling methodology for fusion and
inference from multiple and massive disparate data sources. In this paper three methods of manifold
matching are considered: PoM, which stands for Multidimensional Scaling (MDS) composed with Pro-
crustes; CCA (Canonical Correlation Analysis) and JOFC (Joint Optimization of Fidelity and Commensura-
bility). We present a comparative efficiency investigation of the three methods for a particular text
document classification application.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Purpose

In the real world, one single object may have different represen-
tations in different domains. For example, the Declaration of Inde-
pendence has versions translated into different languages. Let n
denote the number of objects Oi; i ¼ 1; . . . ;n, and K be the number
of domains. Then we have

xi1 � � � � � xik � � � � � xiK ; i ¼ 1; . . . ;n ð1Þ

where the ith object Oi has K measurements xik; k ¼ 1; . . . ;K; xik 2 Nk

is the representation for object Oi in space Nk.
The problem explored in this paper is that for m new objects

O0i; i ¼ 1; . . . ;m, how to classify their representations yik 2 Nk given
the representations yi0k0 2 Nk0 with i0 – i. For this task,
xik;xik0 ; i ¼ 1; . . . ;n, described above are needed to learn the relation
between Nk and Nk0 so that we can map data from Nk and Nk0 to a
common space v. Thus xik;xik0 are the domain relation learning
training data. This idea is shown in Fig. 1. The domain relation
learning training data xik; xik0 are labeled by the filled circles in Nk

and Nk0 respectively. The filled squares in Nk0 represent the classi-
fier training data yi0k0 , which are used to train a classifier g. The clas-
sification testing data yik is shown by the unfilled square in space
Nk. We consider three different domain relation learning methods:
PoM, which stands for Multidimensional Scaling (MDS) composed
with Procrustes; CCA (Canonical Correlation Analysis) and JOFC
(Joint Optimization of Fidelity and Commensurability). We investi-
gate classification performance in the common space v obtained
via PoM, CCA and JOFC, training the classifier on yi0k0 and testing
on yik. The focus of this paper is not on optimizing the classifier;
rather, we investigate performance for given classifiers (5-Nearest
Neighbor, SVM with degree 2 polynomial kernel) as a function of
the number of domain relation learning training data observation
n used to learn v.

1.2. Summary

The structure of the paper is as follows: Section 2 talks about re-
lated work. Section 3 discusses the methods employed, including
the manifold matching framework as well as embedding and clas-
sification details. Experimental setup and results are presented in
Section 4. Section 5 is the conclusion.

2. Background

Different methods of transfer learning, multitask learning and
domain adaptation are discussed in a recent survey (Pan and
Yang, 2010). There are algorithms developed on unsupervised
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document clustering where training and testing data are of
different kinds (Karakos et al., 2007). The problem explored in
this paper can be viewed as a domain adaptation problem, for
which the training and testing data of the classifier are from dif-
ferent domains. When the classification is on the text documents
in different languages, as described in the later sections of this
paper, it is called cross-language text classification. There is much
work on inducing correspondences between different language
pairs, including using bilingual dictionaries (Olsson et al., 2005),
latent semantic analysis (LSA) features (Dumais et al., 1997), ker-
nel canonical correlation analysis (KCCA) (Li and Taylor, 2007),
etc. Machine translation is also involved in the cross-language
text classification, which translates the documents into a
single domain (Rigutini et al., 2005, Fortuna and Shawe-Taylor,
2005, Ling et al., 2008).

The methods investigated in this paper are closely related to
various manifold learning and alignment techniques. There has
been intensive work done by many people. Principal Components
Analysis (PCA) (Jolliffe, 2002) and Multidimensional Scaling
(MDS) (Torgerson, 1952; Cox and Cox, 2001; Borg and Groenen,
2005) are classical linear methods to learn low-dimensional repre-
sentations for high-dimensional observations. In recent years dif-
ferent non-linear manifold learning methods are developed,
including kernel PCA (Mika et al., 1999), Isomap (Tenenbaum
et al., 2000), Locally Linear Embedding (LLE) (Roweis and Saul,
2000), Laplacian Eigenmaps (Belkin and Niyogi, 2003), etc. Regard-
ing manifold alignment, Wang and Mahadevan, 2008 applies pro-
crustes for manifold alignment. The use of diffusion maps is
discussed in (Lafon et al., 2006). Diaz and Metzler, 2007 learns a
common manifold for documents from multilingual corpora such
that the embeddings of documents are clustered based on topics.
Manifold learning and alignment are also widely used for image
analysis (Ham et al., 2006; Wang and Chen, 2009). Lu et al., 2011
presents a discriminative multi-manifold analysis method to solve
the single sample per person problem in face recognition. Manifold
alignment can be done in a semisupervised way (Ham et al., 2005;
Verbeek and Vlassis, 2006), or without pairwise correspondence
information (Wang and Mahadevan, 2009; Xiong et al., 2007). In
(Pei et al., 2012), unsupervised manifold alignment is conducted
based on parameterized distance curves.

3. Method

In this paper, we focus on manifold matching. The whole proce-
dure can be divided into the following steps:

� For each single space Nk, calculate the dissimilarity matrix for
all domain relation learning training data observations Oi.
� Run different manifold matching methods on the dissimilarity

matrix to get embedding in a common space v.
� Pursue joint inference (i.e. classification) in the common space

v.

3.1. Manifold matching framework

The framework structure for manifold matching is shown in
Fig. 2 (Ma et al., 2012; Priebe et al., in press). For each of the n
objects Oi 2 N; i ¼ 1; . . . ;n, there are K representations
xik 2 Nk; k ¼ 1; . . . ;K generated by the mappings pk. Manifold
matching works to find q1; . . . ;qK to map xi1; . . . ;xiK to a low-
dimensional common space v ¼ Rd:

~xik ¼ qkðxikÞ; i ¼ 1; . . . ;n; k ¼ 1; . . . ;K: ð2Þ

After learning the qks, we can map a new measurement yk 2 Nk

into the common space v ¼ Rd via:

~yk ¼ qkðykÞ ð3Þ

This allows joint inference to proceed in Rd.

3.2. Embedding

The work described in this paper is based on dissimilarity mea-
sures. Let dk denote the dissimilarity measure in the kth space Nk,
and ~d be the Euclidean distance in the common space Rd. There are
two kinds of mapping errors induced by the qks: fidelity error and
commensurability error.

Fidelity measures how well the original dissimilarities is pre-
served in the mapping xik # ~xik, and the fidelity error is defined
as the within-condition squared error:

�2
fk
¼ 1

n

2

� � X
16i<j6n

ð~dð~xik; ~xjkÞ � dkðxik; xjkÞÞ2 ð4Þ

Commensurability measures how well the matchedness is pre-
served in the mapping, and the commensurability error is defined
as the between-condition squared error:

�2
ck1k2
¼ 1

n

X
16i6n

ð~dð~xik1 ; ~xik2 ÞÞ
2 ð5Þ

Fig. 1. Classification problem.

Fig. 2. Manifold matching model.
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3.2.1. Procrustes � MDS (P�M)
Multidimensional Scaling (MDS) (Torgerson, 1952; Cox and Cox,

2001; Borg and Groenen, 2005) works to get a Euclidean represen-
tation while approximately preserving the dissimilarities. Given
the n� n dissimilarity matrix Dk ¼ ½dkðxik;xjkÞ� in space Nk, multidi-
mensional scaling generates embeddings ~x0ik 2 Rd0 for
xik 2 Nk; i ¼ 1; . . . ;n; k ¼ 1; . . . ;K , which attempts to optimize
fidelity.

For the K ¼ 2 case, multidimensional scaling generates n� d0

matrices eX 01 from D1 and eX 02 from D2. The ith row vector ~x0ik of eX 0k
is the multidimensional scaling embedding for xik.

Procrustes works to get the mapping matrix Q 	 which satisfies

Q 	 ¼ arg min
QT Q¼I

keX 01 � eX 02QkF : ð6Þ

For the new data yk; k ¼ 1;2, based on dkðyk;xikÞ; i ¼ 1; . . . ;n,
out-of-sample embedding (Anderson and Robinson, 2003; Trosset
and Priebe, 2008) produces yk # ~y0k with dð~y0k; ~x0ikÞ being close to
dkðyk;xikÞ. The final embeddings for y1 and y2 in the common space
Rd are given by ~y1 ¼ ~y01 and ~y2 ¼ ðð~y02Þ

T Q 	ÞT .
P�M optimizes fidelity without regard for commensurability

(Priebe et al., in press).

3.2.2. Canonical Correlation Analysis (CCA)
Canonical correlation analysis (Hardoon et al., 2004; Hotelling,

1936; Kettenring, 1971) is applied to the multidimensional scaling
results. Canonical correlation works to find d0 � d matrices
U1 : eX 01 # eX1 and U2 : eX 02 # eX2 as the linear mapping method to
maximize correlation for the mappings into Rd.

For new data yk; k ¼ 1;2, out-of-sample embedding for multidi-
mensional scaling generates d0 dimensional column vector ~y0k. The
final embeddings in the common space Rd are given by ~y1 ¼ UT

1~y01
and ~y2 ¼ UT

2~y02.
Canonical correlation analysis optimizes commensurability

without regard for fidelity (Priebe et al., in press). For our work,
first we use multidimensional scaling to generate a fidelity-
inspired Euclidean representation, and then we use canonical cor-
relation analysis to enforce low dimensional commensurability.

3.2.3. Omnibus Embedding (JOFC)
The omnibus embedding method described in (Priebe et al., in

press,Ma et al., 2012) jointly optimizes fidelity and commensura-
bility. Given the n� n dissimilarity matrices D1 2 N1 and D2 2 N2,
the 2n� 2n omnibus dissimilarity matrix M is constructed as
shown in Fig. 3.

The off-diagonal block is L ¼ ðD1 þ D2Þ=2. The embeddings
~xi1; ~xi2 2 Rd can be obtained by running multidimensional scaling
on M directly.

Similar to P�M and CCA, for the new data yk; k ¼ 1;2, its embed-
ding in the common space ~yk 2 Rd can be obtained directly from
out-of-sample embedding based on dkðyk;xikÞ; i ¼ 1; . . . ;n.

3.3. Classification

Given the measurements of m new data points
yik 2 Nk; i ¼ 1; . . . ;m, for the classification of yik, we consider the
problem in which there are no training data available in Nk and
we must borrow training data from another space Nk0 . Let
yi0k0 2 Nk0 denote the training data. The classification procedure be-
gins with projecting both testing data yik and training data yi0k0 to a
common space Rd. The manifold matching methods PoM, CCA and
JOFC described in Section 3.2 embed yik # ~yik 2 Rd and
yi0k0 # ~yi0k0 2 Rd. As a result, a classifier is trained on ~yi0k0 and tested
on ~yik. This problem is motivated by the fact that in many situa-
tions there is a lack of training data in the space where the testing
data lie. We will discuss the classification problem in more details
in Section 4.4.

3.4. Efficiency investigation

We investigate the effect of the number of domain relation
learning training data observations on the classification perfor-
mance. That is, given a subset of available domain relation learning
training data, we are interested in how different manifold match-
ing techniques perform in the cross-domain classification task.
The classification accuracy is expected to improve with increasing
amount of domain relation learning training data. To achieve the
same classification accuracy, the method using the smallest
amount of domain relation learning training data is identified as
the most efficient one.

4. Experiments

In this section the experimental details are described. Sec-
tion 4.1 describes the dataset used for our experiments. Section 4.2
discusses the dissimilarity matrix calculation. Our method for
choosing proper embedding dimensions is presented in Section 4.3.
The classification setting and results are described and analyzed in
Section 4.4 and Section 4.5.

4.1. Dataset

Our experiments apply different manifold matching tech-
niques (PoM, CCA and JOFC) to text document classification. The
dataset is obtained from wikipedia, an open-source multilingual
web-based encyclopedia with around 26 million articles in more
than 280 languages. Each document may have links pointing to
other documents in the same language which explain certain
terms in its content as well as the documents in other languages
for the same subject. Articles of the same subject in different lan-
guages are not necessarily the exact translations of one another.
They can be written by different people and their contents can
differ significantly.

English articles within a 2-neighborhood of the English article
‘‘Algebraic Geometry’’ are collected. The corresponding French doc-
uments of those English ones are also collected. So this data set can
be viewed as a two space case: N1 is the English space and N2 is the
French space. There are in total 1382 documents in each space.
That is, z1;1; . . . ; z1382;1 2 N1, and z1;2; . . . ; z1382;2 2 N2. Note that
zik; i ¼ 1; . . . ;1382; k ¼ 1;2 includes both domain relation learning
training data xik; i ¼ 1; . . . ;n and new data points yik; i ¼ 1; . . . ;m
(mþ n ¼ 1382) used for classification training and testing.

All 1382 documents are manually labeled into five disjoint clas-
ses (0–4) based on their topics. Topics are category, people, loca-
tions, date and math respectively. Documents in classes 0, 2, 4
are the domain relation learning training data
xik; i ¼ 1; . . . ;n; k ¼ 1;2. There are in total 819 documents in those

Fig. 3. Omnibus dissimilarity matrix.
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three classes (n ¼ 819). The rest 563 (m ¼ 563) documents in clas-
ses 1, 3 are the new data yik; i ¼ 1; . . . ;m; k ¼ 1;2. They are used to
train a classifier and run the classification test.

4.2. Dissimilarity matrix

The method described in Section 3.2 starts with the dissimilar-
ity matrix. For our work two different kinds of dissimilarity
measures are considered: text content dissimilarity matrix Dt

k

and graph topology dissimilarity matrix Dg
k . Both matrices are of

dimension 1382� 1382, containing the dissimilarity information
for all data points z1k; . . . ; z1382k.

Graphs GkðV ; EkÞ can be derived from the dataset; V repre-
sents the set of vertices which are the 1382 wikipedia docu-
ments, and Ek is the set of edges connecting those documents
in language k.

The (i; j) entry Dg
kði; jÞ 2 Dg

k is the number of steps on the shortest
path from document i to document j in Gk. In the English space
N1;D

g
1ði; jÞ 2 f0; . . . ;4g, where the upperbound value 4 comes from

the 2-neighborhood document collection. In the French space
N2; zi2 is the French corresponding document for the English one
zi1 2 N1, and Dg

2ði; jÞ 2 Dg
2 depends on the French graph connections.

It is possible that Dg
2ði; jÞ– Dg

1ði; jÞ. At the extreme end, Dg
2ði; jÞ ¼ 1

when zi2 and zj2 are not connected. We set Dg
2ði; jÞ ¼ 6 for

Dg
2ði; jÞ > 4. Because the upperbound of the English graph topology

dissimilarity is 4, this choice makes the French graph topology dis-
similarity comparable to the English one. On one hand, the French
graph topology dissimilarity upperbound is larger since the actual
French graph topology dissimilarity can be larger than the English
one. On the other hand, the French graph topology dissimilarity
upperbound is set to be a value not too big to make sure it does
not overwhelm the embedding for the French graph topology dis-
similarity matrix. Optimal pre-processing to put the dissimilarities
on the same footing is the subject of ongoing investigation.

Dt
kði; jÞ 2 Dt

k is based on the text processing features for docu-
ments zik; zjk 2 Nk. Given the feature vectors f ik; f jk;D

t
kði; jÞ is calcu-

lated by the cosine dissimilarity Dt
kði; jÞ ¼ 1� fik �fjk

kfikk2kfjkk2
. For our

experiments, we consider term frequency–inverse document fre-
quency (TFIDF) features (Salton and Buckley, 1988) as f.

We use multidimensional scaling to embed into Euclidean
space Rd while approximating dissimilarity information; in this
space, Euclidean distance is appropriate.

4.3. Embedding dimension selection

To choose the dimension d for the common space Rd, we pick a
sufficiently large dimension and embed Dt

k and Dg
k via multidimen-

sional scaling. The sqare root information of the embedding’s
covariance matrix is shown in Fig. 4.

Based on the plots in Fig. 4, we choose the dimension d ¼ 15
(dimension of the joint space v ¼ Rd), which is low but preserves
most of the variance (Jolliffe, 2002). This model selection choice
of dimension is an important issue in its own right; for this paper,
we fix d ¼ 15 throughout. The focus of this paper is not model
selection. Our selection of d generates satisfactory experimental re-

Fig. 4. Squre root of eigenvalues for embedding’s variance matrix (all data used).

Table 1
MDS dimensions.

n0 % Of n d0

82 10 40
164 20 80
246 30 100
328 40 100
410 50 150
491 60 150
573 70 150
655 80 200
737 90 200
819 100 200
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sults, as described in Section 4.5. These results are illustration of
performance to be expected when incorporating a proper model
selection methodology.

For canonical correlation analysis, since it requires to multidi-
mensional scale the dissimilarity matrices to d0 at the beginning,
as described in Section 3.2, when we choose different number n0

of domain relation learning training documents, d0 depends on n0.
We choose the value of d0 as large as possible while avoiding
numerical underflow. The values of d0 with different n0 are shown
in Table 1. The second column indicates what percentage of the to-
tal manifold matching training data xik is used.

4.4. Classification setting

The classifiers used in the experiment are j-nearest neighbor
(j-NN) (Shakhnarovish et al., 2005) and support vector machine
(SVM) (Cristianini and Shawe-Taylor, 2000). For j-NN, the class la-
bel of the test data is assigned by the majority class label of the j
closest training data points. The distance used is the usual Euclid-
ean distance. For our experiments we use five-nearest neighbor
classifier. SVM sets the separation hyperplane via maximizing the
margin. By using the kernel method, SVM can provide non-linear
discriminates. We use a polynomial kernel with degree 2.

There are 563 new data points yik in classes 1 and 3. Class 1 has
372 data points, and the remaining 191 have class label 3. For each
n0 in Table 1, we randomly sample n0 out of the total 819 domain

relation learning training documents to learn the common space
Rd into which we project the new data points. The classification
is run in a leave-one-out way. We use 200 Monte Carlo replicates
to calculate the average performance.

The method described in Section 3.2 generates the embeddings
~yik 2 R15; i ¼ 1; . . . ;563; k ¼ 1;2. Because there are two kinds of dis-
similarity matrices considered, we have Dt

k # ~yt
ik and Dg

k # ~yg
ik. The

training and testing data can be chosen from not only different
spaces (i.e. English space and French space), but also from different
dissimilarity measures (i.e. text content dissimilarity and graph
topology dissimilarity). Classification results are shown in Fig. 5.

4.5. Classification results

In Fig. 5, the x-axis label S indicates what proportion of the total
n data points are used for domain relation learning training, that is,
S ¼ n0

n; the y-axis is classification accuracy. GE means the embed-
dings from English graph topology dissimilarity matrix Dg

1 are used.
Similarly, GF and TF represent the embeddings from French graph
topology dissimilarity matrix Dg

2 and French text content dissimi-
larity matrix Dt

2 respectively. GF!GE means Dg
2 is used for classifier

training and Dg
1 is for testing. TF!GE means the classifier is trained

on Dt
2 and tested on Dg

1.
In Fig. 5a, Dg

2 is used for training and Dg
1 is for testing, thus

xg
ik; i ¼ 1; . . . ;n0; k ¼ 1;2 are employed to learn the manifold match-

ing methods. The solid circle curve is for PoM, while the dashed tri-

Fig. 5. Classification accuracy (French graph and text embeding to classify English graph embeding).
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angle and dotted plus curves represent CCA and JOFC respectively.
For each test data point ~yg

i1; i 2 f1; . . . ;mg, the 5-NN classifier is
trained on ~yg

i02; i
0 ¼ 1; . . . ; i� 1; iþ 1; . . . ;m, and the classification

accuracy is calculated as m0=m, where m0 is the number of correctly
classified testing data points. For each n0, 200 Monte Carlo repli-
cates are run to randomly sample n0 out of the total n domain rela-
tion learning training data points xg

ik; i ¼ 1; . . . ;n. The average
accuracy is plotted; the standard errors are available via bootstrap
resampling.

Fig. 5c is similar to Fig. 5a except the training data is from Dt
2

instead of Dg
2. Since Dt

2 and Dg
1 are within different ranges, prescal-

ing is needed, which is done by Dt
2 ¼ Dt

2
kDg

1kF
kDt

2kF
.

Similarly, Fig. 5b and d show the classification results of
PoM, CCA and JOFC using SVM with degree 2 polynomial
kernel. Fig. 5b uses Dg

2 to classify Dg
1, while Fig. 5d uses Dt

2 to clas-
sify Dg

1.
Based on the results shown in Fig. 5a–d, we can see as a general

guideline JOFC outperforms both PoM and CCA with regard to the
cross-language text document classification. The superior perfor-
mance of JOFC comes from its ability to jointly preserve fidelity
and commensurability in the mapping. We do not claim that this
dominance holds uniformly. Indeed, there are exception points in
the plots of Fig. 5; for example, when there are few domain relation
learning training data (Fig. 5a and b), or for the case when all do-
main relation learning training data are used (Fig. 5c). But as a gen-
eral guideline JOFC is a better choice compared to PoM and CCA in
terms of classification performance and efficiency.

With increasing amount of domain relation learning training
data, the classification performance of JOFC improves, while for
PoM and CCA, their classification performance does not necessarily
increase with more domain relation learning training data, as
shown in Fig. 5a.

In the case of using Dg
2 to classify Dg

1, for both PoM and JOFC, 5-
NN has a higher classification accuracy than SVM with degree 2
polynomial kernel. But for CCA, 5-NN gets lower classification
accuracy for certain cases. In the case of using Dt

2 to classify Dg
1,

for all PoM, CCA and JOFC, 5-NN yields better classification perfor-
mance than SVM.

Table 2 shows the classification accuracy of various methods for
S ¼ 10% and S ¼ 100%. The standard error is obtained via boot-
strapping for 1000 samples.

5. Conclusion

In this paper we investigate the performance of three manifold
matching methods (PoM, CCA and JOFC) on a cross-language text
classification task. We show their performance with manifold
matching training data from different domains and different dis-
similarity measures, and we also investigate their efficiency by
choosing different amounts of domain relation learning training

data. In our framework each document is assigned a single topic.
The case of multi-topic document assignment from Probabilistic
Latent Semantic Analysis (PLSA) or Latent Dirichlet Allocation
(LDA) is an interesting extension for ongoing investigation. The
experimental results indicate that JOFC, which jointly optimizes
fidelity and commensurability, outperforms both PoM and CCA.
These results provide significant impetus for further investigation
of jointly optimizing fidelity and commensurability for general
cross-language inference.

In (Sun et al., 2013), a regularized version of CCA was investi-
gated for the same classification task; the results presented there
demonstrate that JOFC is superior to regularized CCA for
GF ! GE, but the regularized CCA is superior for TF ! GE. The
specific comparative analysis of JOFC vs regularized CCA remains
a topic of investigation.

References

Anderson, M.J., Robinson, J., 2003. Generalized discriminant analysis based on
distances. Australian & New Zealand Journal of Statistics 45, 301–318.

Belkin, M., Niyogi, P., 2003. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation 15 (6), 1373–1396.

Borg, I., Groenen, P., 2005. Modern Multidimensional Scaling: Theory and
Applications. Springer, Verlag.

Cox, T., Cox, M., 2001. Multidimensional Scaling. Chapman and Hall.
Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines.

Cambridge University.
Diaz, F., Metzler, D., 2007. Pseudo-aligned multilingual corpora. In: Proc. Int’l Joint

Conf. Artificial Intelligence (IJCAI).
Dumais, S.T., Letsche, T.A., Littman, M.L., Landauer, T.K., 1997. Automatic cross-

language retrieval using latent semantic indexing. In: AAAI Symposium on
Cross Language Text and Speech Retrieval.

Fortuna, B., Shawe-Taylor, J., 2005. The use of machine translation tools for cross-
lingual text mining. In: Proceedings of the ICML Workshop on Learning with
Multiple Views.

Ham, J., Lee, D., Saul, L., 2005. Semisupervised alignment of manifolds. In: Proc. of
the Tenth Int’l Workshop on Artificial Intelligence and Statistics.

Ham, J., Ahn, I., Lee, D., 2006. Learning a manifold-constrained map between image
sets: applications to matching and pose estimation. In: Proc, IEE Conf. Computer
Vision and Pattern Recognition.

Hardoon, D.R., Szedmak, S.R., Shawe-taylor, J.R., 2004. Canonical correlation
analysis: an overview with application to learning methods. Neural
Computation 16 (12), 2639.

Hotelling, H., 1936. Relations between two sets of variates. Biometrika 28, 321–377.
Jolliffe, I.T., 2002. Principal Component Analysis, second ed. Springer, Berlin.
Karakos, D., Eisner, J., Khudanpur, S., Priebe, C.E., 2007. Cross-instance tuning of

unsupervised document clustering algorithms. In: Proceedings of the Main
Conference Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics.

Kettenring, J.R., 1971. Canonical analysis of several sets of variables. Biometrika 58,
433–451.

Lafon, S., Keller, Y., Coifman, R., 2006. Data fusion and multicue data matching by
diffusion maps. IEEE Transactions on Pattern Analysis and Machine Intelligence
28 (11), 1784–1797.

Li, Y., Taylor, J.S., 2007. Advanced learning algorithms for cross-language patent
retrieval and classification. Information Processing and Management 43 (5),
1183–1199.

Ling, X., Xue, G., Dai, W., Jiang, Y., Yang, Q., Yu, Y., 2008. Can chinese webpages be
classified with english data source? In: Proceedings of WWW-08, Beijing, pp.
969–978.

Table 2
Classification accuracy.

GF ! GE TF ! GE

S ¼ 10% S ¼ 100% S ¼ 10% S ¼ 100%

d0 ¼ 40 d0 ¼ 200 d0 ¼ 40 d0 ¼ 200

5-NN
PoM 67:20%
 0:11% 68:56%
 0:08% 67:92%
 0:14% 68:92%
 0:13%

CCA 61:95%
 0:12% 63:48%
 0:10% 65:75%
 0:12% 75:13%
 0:10%

JOFC 66:08%
 0:15% 75:13%
 0:11% 68:72%
 0:14% 74:25%
 0:10%

SVM
PoM 63:23%
 0:10% 62:88%
 0:06% 63:10%
 0:15% 62:70%
 0:14%

CCA 64:10%
 0:07% 62:34%
 0:06% 60:09%
 0:12% 68:38%
 0:08%

JOFC 61:76%
 0:12% 67:14%
 0:10% 62:81%
 0:14% 69:27%
 0:12%

1268 M. Sun, C.E. Priebe / Pattern Recognition Letters 34 (2013) 1263–1269



Author's personal copy

Lu, J., Tan, Y., Wang, G., 2011. Discriminative multi-manifold analysis for face
recognition from a single training sample per person. In: IEEE International
Conference on Computer Vision (ICCV), pp. 1943–1950.

Ma, Z., Marchette, D., Priebe, C.E., 2012. Fusion and inference from multiple data
sources in a commensurate space. Statistical Analysis and Data Mining 5 (3),
187–193.

Mika, S., Schölkopf, B., Smola, A., Müller, K.R., Scholz, M., Rätsch, G., 1999. Kernel
PCA and de-noising in feature spaces. Advances in Neural Information
Processing Systems 11 (1), 536–542.
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