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AbstractÐDetection of the presence of a single prespecified chemical analyte at low concentration in complex backgrounds is a

difficult application for chemical sensors. This article considers a database of artificial nose observations designed specifically to allow

for the investigation of chemical sensor data analysis performance on the problem of trichloroethylene (TCE) detection. We consider

an approach to this application which uses an ensemble of subsample classifiers based on interpoint distances. Experimental results

are presented indicating that our nonparametric methodology is a useful tool in olfactory classification.

Index TermsÐEnsemble classifiers, combining classifiers, nonparametric, nearest-neighbor, interpoint distance, rank statistic,

subsample statistic, functional data, artificial nose, electronic nose, analytical chemistry, chemometrics.

æ

1 INTRODUCTION

IT is known that some animals have very effective
olfactory systems that can detect concentrations of

odorants as low as parts per trillion. In the last two
decades, there has been significant progress in the
neuroscience of olfaction (see, for instance, the recent
special issue of Science [29] and references contained
therein), as well as in developing sensor arrays for odor
detection, including efforts in designing vapor-sensitive
instruments that mimic the effectiveness of the mammalian
nose (see, for instance, the recent special issue of
IEEE Spectrum [17] and references contained therein).
Artificial ªelectronic nosesº which can identify and measure
odor have been developed for applications, such as
environmental monitoring, health care, and quality assur-
ance [19], [24]. The continuing development and evaluation
of these devices requires what has been dubbed ªolfactory
signal processing and pattern recognitionº [10]. This paper
presents a novel nonparametric methodology for statistical
olfactory analysis and experimental results indicating the
utility of the proposed methodology.

We consider a cross-reactive optical-fiber sensor array

that can identify individual vapors. Our task is to identify

an odorant sample. (Ultimately, it may also be of interest to

estimate concentration once the odorant sample is identi-

fied, but our simplified task is, nonetheless, the funda-

mental first step.) An available training database Dn

consists of observations at various concentration levels for

each odorant in a library. Our goal is to construct a classifier

g so that, given an unidentified odorant observation z,

g�zjDn� will be a statistically reliable estimate of the

associated odorant class.

In Section 2, we describe the character of the artificial
nose data under consideration and the associated ªneedle in
the haystackº detection task. Section 3 details the statistical
classification methodology we employÐan ensemble of
subsample classifiers based on interpoint distances. Exam-
ple results are presented in Section 4. Section 5 provides a
short discussion of the implications of our results to
chemical sensor data analysis.

2 DATA

There are numerous technological approaches to artificial
nose sensor development ([24], Table 1, p. 29) and there are
commercially available instruments based on some of these
technologies ([24], Table 2, p. 31). Optical-fiber technology
for artificial noses, currently in the research stage, offers
cheap and easily fabricated sensors which can be arrayed
for simultaneous sensitivity to a wide range of specific
molecules [24].

2.1 Tufts Optical-Fiber Artificial Nose Data

We consider data taken from an optical system constructed
at Tufts University. The sensor fabrication and preparation
[33] results in a sensor for which a change in fluorescence
intensity is in response to a change in the molecular
environment of a solvatochromic dye due to interactions of
a polymer matrix with an analyte present [7].

The Tufts data are obtained from a 19-fiber bundle. An
observation is obtained by passing an analyte (a single
compound or a mixture) over the fiber bundle in a four
second pulse, or ªsniff.º The information of interest is the
change over time in emission fluorescence intensity of the
dye molecules for each of the 19 fiber-optic sensors
(see Fig. 1).

Data collection consists of recording sensor responses to
various analytes at various concentrations. Each observation
is a measurement of the fluorescence intensity response at
each of two wavelengths (620 nm and 680 nm) for each sensor
in the 19-fiber bundle as a function of time. Thus, the sensor
produces highly multivariate (38-dimensional) functional
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observations x�;�i �t�, i � 1; . . . ; n, for fibers � 2 f1; . . . ; 19g
and wavelengths � 2 f1; 2g. While the process is naturally

described as functional with t ranging over a 20 second

interval, the data as collected are discrete with the 20 seconds

recorded at 60 equally spaced time steps for each response.

Construction of the database involves taking replicate

observations for the various analytes.
The sensor responses are inherently aligned due to the

ªsniffº signifying the beginning of each observation. The

response for each sensor for each observation is normalized

by manipulating the individual sensor baselines. This

preprocessing consists of subtracting the background

sensor fluorescence (the intensity prior to exposure to the

analyte) from each response to obtain the desired observa-

tion: the change in fluorescence intensity for each fiber at

each wavelength. Functional data analysis smoothing

techniques are utilized to smooth each sensor response [27].

2.2 Database for a ªNeedle in the Haystackº
Detection Task

The task we address is the identification of an odorant

observation z. Specifically, we consider the detection of

trichloroethylene (TCE) in complex backgrounds. (TCE, a
carcinogenic industrial solvent, is of interest as the target

due to its environmental importance as a groundwater

contaminant.) The objective is to classify observations as

TCE-present (g�z� � 1) or TCE-absent (g�z� � 0). In addition
to TCE in air, eight diluting odorants are considered: BTEX

(a mixture of benzene, toluene, ethylbenzene, and xylene),

benzene, carbon tetrachloride, chlorobenzene, chloroform,

kerosene, octane, and Coleman fuel. Dilution concentrations

of 1:10, 1:7, 1:2, 1:1, and saturated vapor are considered.
Fig. 2 presents example (unsmoothed) sensor response

signals indicating the importance of analyte mixture type,

analyte mixture presentation, and fiber band.
Class 0, the TCE-absent class, consists ofn0 � 352 observa-

tions; the databaseDn contains 32 observations of pure air and
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Fig. 1. The plot represents sensor/analyte signatures for three sensors within the bundled 19-sensor array. The data being analyzed for this project

are signature patterns of fluorescence change versus time for various analyte mixtures at various concentrations. (This figure was published in

Nature, vol. 382: pp. 697-700 (1996); http//:www.nature.com, reprinted by permission.)

Fig. 2. Depicted are three (unsmoothed) sensor response signal examples: a comparison of a single fiber band for three different presentations of

the same analyte mixture (left panel), a comparison of three different fiber bands for a single analyte mixture presentation (middle panel), and a

comparison of the same fiber band for two different analyte mixture presentations (right panel).



40 observations of each of the eight diluting odorants at
various concentrations in air. There are likewise n1 � 760
class 1 (TCE-present) observations; 40 observations of pure
TCE, 80 observations of TCE diluted to various concentrations
in air, and 80 observations of TCE diluted to various
concentrations in each of the eight diluting odorants in air
are available. Thus, there are n � n0 � n1 � 1; 112 observa-
tions in the training database Dn. This database is well-
designed to allow for an investigation of the ability of the
sensor array to identify the presence of one target analyte
(TCE) when its presence is obscured by a complex back-
ground; this is referred to as the ªneedle in the haystackº
problem.

3 METHODOLOGY

Consider a training database Dn � ��X1; Y1�; . . . ; �Xn; Yn��
of d � 38-dimensional functional random variables Xi

representing odorant observations and their associated
class labels Yi 2 f0; 1g for i � 1; � � � ; n. The X�;�

i represent
signals which are 20 seconds in duration. For each fiber, �
and wavelength �, X�;�

i is defined and assumed contin-
uous for time t 2 T � �0; 20�, and the Xi take their values
in C�T �d. (Here, C�T � represents continuous functions on
T .) The database Dn consists of n0 observations from
class 0 and n1 observations from class 1, for j � 0; 1, we
have Cj � fXi : Yi � jg, jCjj � nj and n � n0 � n1. (The
class-conditional training sample sizes nj are taken to be
design variables rather than random variables.) For Xi 2 Cj,
the Xi are assumed independent and identically distrib-
uted Fj.

The statistical classification methodology proposed here
is an ensemble approach to classifier construction [11], [8],
[20]. Subsamples of the training data set are used to define
the subclassifiers which make up the ensemble. Given a
random unidentified odorant observation Z, with class
label YZ unobserved, each (nonparametric) subclassifier is
based on the ranks of the class-conditional interpoint
distances from Z to the elements of the subsample.
The ensemble classifier is then given by a vote of the
subclassifiers.

3.1 A Generalized Wilcoxon-Mann-Whitney
Classifier

Our task is to design a classifier g�ZjDn� with the
property that the probability of classification error Ln �
P �g�ZjDn� 6� YZ � is as near as possible to the minimal
Bayes error L� [6], [21]. Chemistry provides no parametric
functional model for the response curves or for the
discriminant region boundaries. Exploratory investigation
of the response signals (smoothed versions of the
examples presented in Fig. 2, for example) suggests no
simple parametric functional model is appropriate.
Thus, nonparametric functional data discriminant analysis
is called for. A common approach to the distribution-
free analysis of two or more high-dimensional
samples involves the consideration of the interpoint
distances [22]. Let � : C�T �d � C�T �d ! �0;1� be an arbi-
trary (pseudo-) distance applicable to the functional data
in question, we consider the class-conditional interpoint

distances f��Z;Xi� : Xi 2 Cjg for j � 0; 1. For instance, the
L2 distance is given by

��X1; X2� �
X19

��1

X2

��1

Z
T
�X�;�

1 �t� ÿX�;�
2 �t��2dt

 !1=2

: �1�

Other examples of particular interest considered in the
sequel include L1 (sum of integrated absolute differences)
and pseudodistances which ignore or weight individual
functional dimensions representing particular fibers � and/
or wavelengths �. These latter pseudodistances are useful
for exploratory data analysis and sensor design purposes in
addition to classification. Since the fibers have different
physical characteristics, different weighting for each fiber
may be appropriate. Different pseudodistances yield
different dimensionality reduction or ªfeature extractionº
(see Section 4.5).

In practice, some form of functional smoothing is appro-
priate due to sensor noise. We discuss the specifics of our
choice of smoother in Section 4.4 below. Letting s : C�T �d !
C�T �d represent the particular smoothing procedure em-
ployed, we consider the smoothing-derived (pseudo-) dis-
tance �0 defined as �0�X1; X2� � ��s�X1�; s�X2��. The class-
conditional interpoint distances under consideration are then
f�0�Z;Xi� : Xi 2 Cjg for j � 0; 1. (Note that even when � is a
legitimate distance, �0 may be a pseudodistance since the
smoother may take X1 6� X2 to s�X1� � s�X2�.) For more
general applications, a more sophisticated distance employ-
ing some form of timeÐwarping may be appropriate. The
experimental design and data collection used here yields
observations which are temporally aligned and makes the
additional sophistication and complexity of such a method
unnecessary.

The choice of (pseudo-) distance � and the functional
smoothing s employed are interdependent aspects of the
classifier design which require exploratory analysis and
experimental investigation. This topic will be revisited in
Section 4.5.

Fig. 3 presents example empirical class-conditional
interpoint distance distributions using the L2 metric and
an experimentally determined level of functional smooth-
ing. For the two (arbitrarily selected) exemplars considered
in Fig. 3, analysis of class-conditional location parameter
estimates for the interpoint distance distributions will yield
correct classification. Indeed, the proposed classifier pre-
sented here will be interpreted in precisely this framework.

The individual subsample classifiers which make up our
ensemble classifier are constructed based on the distances
from the unidentified odorant observation Z in question to
subsets of the class-conditional training data. To begin
building the subclassifier, subsets Sj � Cj of size rj are
chosen from the class j training data, j � 0; 1. Then, for
some kj � rj, the distance from Z to the k1th nearest
element of S1 is compared to the distance from Z to the k0th
nearest element of S0. Define �k�Z; S� � ��Z;X��k�, where
the order statistic ��Z;X��k� represents the kth smallest of
the distances f��Z;X�i � ��Z;Xi� : Xi 2 Sg. Then, the sub-
sample classifier

gS0;S1
�Z; r0; r1; k0; k1� � If�k1

�Z;S1���k0
�Z;S0�g �2�
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based on class-conditional subsamples S0 and S1 identifies

to which class-conditional training subset the unidentified

observation Z is ªclosest.º (Ifg denotes the indicator

function.) The subsample classifiers (2) are parameterized

by the class-conditional subset sizes r0; r1 and the ranks

k0; k1 used to define closeness.
The proposed classifier considers a vote of all such

subsample classifiers. For rj � nj, the set of all appropriate

subsample pairs is

��n0; n1; r0; r1� � f�S0; S1� : Sj � Cj and jSjj � rjg; �3�
where jSj denotes the cardinality of the set S. An ensemble

vote of subsample classifiers of the form (2), given by

��Z;n0; n1; r0; r1; k0; k1� � �1=j�j�
X
S0�C0

X
S1�C1

gS0;S1
�Z�; �4�

yields the test statistic of interest. The statistic � defined in (4)

represents a tally of the number of pairs �S0; S1� 2 � such that

the distance from Z to the k1th nearest element of S1 is less

than or equal to the distance from Z to the k0th nearest

element of S0, normalized by the total number of pairs j�j.
Thus, the proposed classifier is related to previous methods

which consider combination of nearest-neighbor classifiers;

see, for instance, [30] and references contained therein.
Here, the three decision problem of labeling Z as class 0,

class 1, or ªno decisionº is approached from the viewpoint of

deciding, for some �0, ��Z� < �0, ��Z� > �0, or ��Z� � �0, as in,

for example, [1, p. 183]. Large values of � indicate that class 1

wins the vote, while small values of � favor class 0. More

precisely, given the null distribution (H0 : F0 � F1) F� of the

statistic � (which depends on k0 � r0 � n0 and k1 � r1 � n1)

and confidence parameters �; � � 0 such that �� � 2 �0; 1�,
our proposed ensemble classifier takes the form

g�Z;n0;n1; r0; r1; k0; k1; �; �� �
IfF� ���Z��>1ÿ�g ÿ If��F� ���Z���1ÿ�g:

�5�

(A classification of ÿ1 corresponds to ªno decision.º)
Choosing � � � treats both types of classification error
equally; � � � � 1=2 yields

g�Z� � IfF� ���Z��>1=2g ÿ IfF� ���Z���1=2g
� If��Z�>Fÿ1

� �1=2�g ÿ If��Z��Fÿ1
� �1=2�g

�6�

and demands that a decision always be made (unless the
observed value of � is precisely Fÿ1

� �1=2�, the median of F� ),
while � � � 2 �0; 1=2� allows for no decision unless �
provides sufficient evidence in favor of one class or the
other. Choosing � > 1=2 forces the classification of Z as
class 1 unless there is overwhelming evidence in favor of
class 0.

Two special cases in (6) are particularly noteworthy.
With r0 � n0, r1 � n1, and k0 � k1 � 1, classification via (6)
is the well-known 1-nearest-neighbor method [4], [6], [21].
At the other extreme, with r0 � r1 � k0 � k1 � 1, (4)
becomes

��Z� � �1=�n0n1��
X
Xi2C1

X
Xj2C0

If��Z;Xi����Z;Xj�g �7�

and the statistic � is identified as the classical Wilcoxon-
Mann-Whitney statistic [34], [23] applied to the class-
conditional interpoint distance samples. In this case, the
classifier (6) uses that most popular distribution-free
statistic for testing equality of location; under the null
hypothesis H0, the sampling distribution F� is symmetric
about �0 � Fÿ1

� �1=2� � 1=2 and Z is labeled as belonging to
the class whose interpoint distance distribution median is
determined to be smallest (nearest to zero).

In general, the statistic � is a location parameter estimate.
The probability parameter of interest is

T �r0; r1; k0; k1� �
Z 1

0

F�k1
�Z;S1�dF�k0

�Z;S0�; �8�

where S0 and S1 are random class-conditional subsamples
of size r0 and r1 and the F�kj �Z;Sj� represent the distribution
function for the (univariate) class-conditional random
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Fig. 3. Interpoint distance distributions for olfactory classification. Depicted are class-conditional probability density estimates for the interpoint
distances from a given analyte to the library of training samples. The task is the detection of the presence of TCE (trichloroethylene) in complex
backgrounds. The left panel compares the distances from an analyte containing TCE in chloroform to the exemplars in the library which contain TCE
with the distances to the exemplars which are TCE-free. The right panel presents the analogous results for a test analyte (kerosene) which does not
contain TCE. We see that the class-conditional interpoint distance distributions reflect the presence or absence of TCE.



variables �kj�Z; Sj�. Thus, � represents a generalization
based on subsample order statistics [35] of the Wilcoxon-
Mann-Whitney statistic. The statistic � is a U-statistic and
can be shown to have an asymptotically normal distribution
[35]. However, for small sample sizesÐand especially for
unbalanced designs or unequal subset sizes kj, in which
case F� is skewedÐinference based on the asymptotic
distribution is inappropriate; the exact distribution (or a
small-sample approximation thereofÐsee Section 3.4) is
necessary. A recurrence for the exact distribution F� under
the null hypothesis H0 is given in [25] for k0 � k1 � 1.
Classification based on the generalized Wilcoxon-Mann-
Whitney statistic � given in (4) is particularly relevant to
interpoint distance-based nonparametric discriminant ana-
lysis [25]. Different choices for the parameters yield
desirable power characteristics against different alternatives
[35]. The issue of adaptively selecting the parameters
r0; r1; k0; k1 will be addressed in Section 3.6.

3.2 Extension to K > 2 Classes

The proposed classifier has been developed for the simple
two-class problem. The extension to K > 2 classes can be
addressed in two ways. The statistic � can be generalized to
the K sample case and a recurrence for the joint distribution
F�1;...;�K is available [25]. Another approach is that of
addressing the K class problem through consideration of
a collection of two class subproblems [9], [14].

3.3 Relationship to Machine Learning

From a machine learning perspective, the classifier g based
on � is a classic example of ªclassification by ensembleº
[11], [8], [20]. The statistic � represents the most funda-
mental approach to constructing ensembles of classifiers. In
a manner similar to bagging [2], subsamples S0 and S1 are
taken (without replacement) from the training database Dn,
and If�k1

�Z;S1���k0
�Z;S0�g represents a classifier for Z based on

these subsamples. Thus, all possible subsample classifiers
obtained are then combined in � via the simplest possible
method for combining individual classification decisions
from an ensemble of classifiers: an unweighted vote.

Observing a value of � > 1=2 means that a majority of the
subclassifiers If�k1

�Z;S1���k0
�Z;S0�g in the ensemble favors

class 1. A more appropriate classification criterion is the
event fIfF� ���Z�>1=2�g � 1g. This event represents evidence in
favor of class 1 vs. class 0 in that the vote count is
probabilistically large (underH0). Thus, the classifier proposed
in (6), based on the unweighted ensemble vote � , accounts for
the character of the distribution F� . As noted above, this
distribution is strongly influenced by unequal sample sizes
(n0 6� n1), unequal subset sizes (r0 6� r1), and/or unequal
rank choices (k0 6� k1). In effect, (6) implicitly weights the
ensemble votes in a probabilistically appropriate way.

The combination methodology employed here is
straightforward and allows for analysis via mathematical
statistics. However, more elaborate combination methods
such as those presented in [20] may be beneficial in terms of
classification performance. In particular, using fewer care-
fully selected subsets so that the ensemble does not employ
so many classifiers is worthy of consideration, but makes
the analysis of the statistic significantly more difficult.

3.4 Computational Considerations

For large sample sizes such as those encountered in the
olfactory classification task, the calculation of the observed
value of � via (4) and of the distribution F� via the available
recurrence, are computationally intensive exercises. For the
example, results presented in Sections 4.2 and 4.3, the
following estimators are used.

Let Su be a uniform random sample of size u from the
collection of subset pairs �. The estimator for � is given by

�̂ � �1=u�
X

�S0;S1�2Su
If�k1

�Z;S1���k0
�Z;S0�g: �9�

The estimator standard deviation ��̂ � 1=�2 ���
u
p �, indicating

how large u must be taken (and, consequently, the required
computational demand) in order to have an estimator with
some prescribed accuracy. Equation (9) can be employed
using either observed data or sequences generated under
the null hypothesis. To obtain the quantile estimator for F� ,
we consider a collection f�̂1; . . . ; �̂vg of such estimators taken
under H0. Then,

F̂��t� � �1=v�
Xv
i�1

If�̂i�tg �10�

with an accuracy dependent on u, v, and t.

3.5 Classifier Consistency

Our hypothesis testing approach to the two-class decision
problem ([1], p. 183) allows us to address the issue of
ªclassifier consistencyº from the standpoint of consistent
tests of hypotheses. Note that the null hypothesis H0 : F0 �
F1 implies F��z;XijYi�0� � F��z;XijYi�1� for any fixed observation
z. For simplicity, consider as alternative hypotheses stochastic
ordering; the random variable ��z;XijYi � 0� is defined to be
stochastically smaller than ��z;XijYi � 1�, denoted as

��z;XijYi � 0� <st ��z;XijYi � 1�;
if

F��z;XijYi�0��x� � F��z;XijYi�1��x�
for every x, with strict inequality for at least one x. From
Fig. 3, we see that, for the left panel in which the test
observation (TClf7712) is TCE-present (class 1), we have
��z;XijYi � 0� >st ��z;XijYi � 1�. For the TCE-absent ob-
servation (Kero0203) depicted in the right panel of Fig. 3,
��z;XijYi � 0� <st ��z;XijYi � 1� as desired for a class 0
observation. For situations such as these, we have the
following result.

Theorem. For a fixed observation z, the classifier g given in (6)
based on the statistic � given in (4) is consistent against
alternatives of stochastic ordering of the class-conditional
interpoint distance distributions.

Proof. For fixed values of r0; r1; k0; k1, as n0; n1 !1 with

n0=�n0 � n1� ! � 2 �0; 1�, ��z� is asymptotically normal

under H0 and lim Fÿ1
� �1=2� � T a:s:, where T is given by

(8). Under HA : ��z;XijYi � 0� >st ��z;XijYi � 1� (see, for

example, Fig. 3, left panel) lim ��z� > T a:s. and

lim If��z�>Fÿ1
� �1=2�g � 1 a:s:, while under HA : ��z;XijYi �

0� <st ��z;XijYi � 1� (see, for example, Fig. 3, right panel)
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lim ��z� < T a:s. and lim If��z�>Fÿ1
� �1=2�g � 0 a:s. We con-

clude that under either stochastic ordering alternative, the

observation z is correctly classified almost surely as the

class-conditional training sample sizes grow to infinity. tu
See [35] for details regarding the asymptotics of ��z�.

3.6 Adaptive Parameter Selection

Different observations z yield different class-conditional
interpoint distance distributions and, therefore, different
choices for the parameters r0; r1; k0; k1 will be appropriate.
Adaptive selection of the parameters, based on the class-
conditional interpoint distances ��z;XijYi � j�, involves
choosing r0; r1; k0; k1 for the classifier via

�r�0;k�0;r�1;k�1��arg min
1�k0�r0<<n0

1�k1�r1<<n1

	�f��z;XijYi�0�gn0
i�1
;f��z;XijYi�1�gn1

i�1
;r0;k0;r1;k1�

�11�
for some appropriate criterion function 	. Optimal choices
against stochastic ordering alternatives can be made in
terms of the Pitman Asymptotic Efficacy (PAE) notion of
asymptotic power [35]. This asymptotic optimality result
hinges on the asymptotic normality of the statistic � . In
practice, the issue of adaptively selecting the parameters
given class-conditional interpoint distance samples is more
problematic. The adaptive approach proposed here and
used in the experiments in Section 4 considers a reasonable
surrogate criterion 	: minimizing order statistic variance V .
Intuitively, the sample interpoint distance order statistic
with the smallest variance should provide a reliable cue
upon which to base the test for stochastic ordering. (Further
justification for this surrogate criterion for minimization is
based on the form of the rigorously derived PAE criterion
for maximization; the sample interpoint distance order
statistic variance is the denominator of the PAE [35].) For
j � 0; 1, we choose �r�j ; k�j � to satisfy

�r�j ; k�j � � arg min
1�kj�rj�rmaxj <<nj

V̂ ���z;XijYi � j��kj:rj:nj��; �12�

where ��z;XijYi � j��kj:rj:nj� denotes the kjth smallest of a
random subset of size rj taken from the nj sample class-
conditional interpoint distances. This variance is simple to
calculate (see, e.g., [5]). (For implementation purposes, we
must choose rmaxj << nj.)

Note that the character of the interpoint distance
distributions (as indicated by the shape of the correspond-
ing probability density estimates) depends on the unidenti-
fied observation z under investigation. Thus, different
observations z will yield different parameter choices as
selected via the adaptive procedure.

To illustrate, consider applying the adaptive parameter
selection presented in (12) to the two examples depicted in
Fig. 3. Each test observation gives rise to its own unique
class-conditional interpoint distance distributions and it is
this pair of distributions that determine the parameters.

In Case 1, a TCE-present observation (TClf7712) is held out

and the relevant training set contains n0 � 352 TCE-absent

exemplars and n1 � 759 TCE-present exemplars. The

left panel of Fig. 3 depicts the associated class-conditional

interpoint distance probability density estimates

with ��z;XijYi � 0� >st ��z;XijYi � 1�. Equation (12) yields

parameter values r�0 � 35; k�0 � 4; r�1 � 66; k�1 � 5. Using

these choices, (9) yields �̂ � 0:9825 and (10) yields

F̂ÿ1
� �1=2� � 0:6568. Thus, (6) yields If�̂�z�>F̂ÿ1

� �1=2�g � 1 and

the test observation is correctly classified as TCE-present

(class 1).
Similarly, in Case 2, a TCE-absent observation

(Kero0203) is held out, and the relevant training
set contains n0 � 351 TCE-absent exemplars and
n1 � 760 TCE-present exemplars. The right panel of
Fig. 3 depicts the associated class-conditional interpoint
distance probability density estimates for this case with
��z;XijYi � 0� <st ��z;XijYi � 1�. The adaptively selected
parameter values are

r�0 � 19; k�0 � 1; r�1 � 65; k�1 � 1:

Here, �̂ � 0:2896, F̂ÿ1
� �1=2� � 0:7044, and If�̂�z�>F̂ÿ1

� �1=2�g � 0;

the test observation is correctly classified as TCE-absent

(class 0).

4 RESULTS

The classification methodology developed in Section 3 is
designed for the functional artificial nose chemical sensor
data described in Section 2. We present example results for
the aforementioned ªneedle in the haystackº detection task
comparing the performance of our proposed generalized
Wilcoxon-Mann-Whitney classifier with that of the conven-
tional k-nearest-neighbors classifier. TheL2 (sum of integrated
squared differences) distance (1), and an experimentally
determined level of (polynomial smoothing spline) smooth-
ing (see Section 4.4) is used throughout. The comparison
criterion of interest is therefore straightforward: classifier
performance as measured by the probability of classification
error Ln�g� � P �g�ZjDn� 6� YZ �.

As noted in Section 3.4, for large sample size problems
computational considerations preclude the use of the exact
ensemble classifier (6) which sums over all subset pairs. The
experimental results presented in Section 4.1, using a
reduced database, use the exact classifier. Comparitive
results with well±known classifiers are presented for this
reduced database problem. The full ªneedle in the hay-
stackº database is considered in Sections 4.2 and 4.3; here,
the approximation method of Section 3.4 is used.

4.1 TCE Detection: Low Concentration

We first consider a simplified problem which, despite its
simplicity, is of interest in its own right: the detection of a
low concentration of trichloroethylene (TCE) in complex
backgrounds. The problem is simplified in the sense that
the sample sizes are relatively small and consideration of a
single concentration should yield a simpler discriminant
surface. For the results presented in this section, the
classifier given by (6) is employed and � is computed
exactly. For additional simplicity, we consider the case k0 �
k1 � 1 so that the available recurrence [25] provides the
exact distribution F� .
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The database D0n considered in this example consists of
n � 160 observations. Class 0, the TCE-absent class, is
represented by n0 � 80 observations; ten observations of
pure air and ten observations each of seven of the diluting
odorants at a concentration of 1:2 in air. There are likewise
n1 � 80 class 1 (TCE-present) observations; ten observations
of TCE diluted to a 1:10 concentration in air and 10 ob-
servations each of TCE diluted to a 1:10 concentration in a
1:2 concentration of seven of the diluting odorants in air.
(Due to a missing observation at this lowest concentration,
Benzene is omitted from the analysis.) This reduced
database D0n includes 80 of the most difficult to detect
TCE-present observations in the overall database Dn.

Let K represent the class of k-nearest-neighbors classifiers
with k 2 f1; 3; :::; 37; 39g [6], [4] and G represent the class of
generalized Wilcoxon-Mann-Whitney classifiers (6) para-
meterized by k0 � k1 � 1 and r0 � r1 � r 2 f1; 3; :::; 37; 39g.
Each class contains 20 classifiers. Let �Z; Y � be a random
pair representing an unidentified observation and its class
label, and define ��gjDn� � 1ÿ Ln�g� � P �g�ZjDn� � Y � to
be the probability that classifier g, trained on database Dn,
correctly classifies the unidentified observation Z.

Cross-validation yields

maxg2G�̂�gjD0n� � 120=160 � 0:75

> maxg2K�̂�gjD0n� � 117=160 � 0:73125;

where

�̂�gjDn� � �1=n�
Xn
i�1

Ifg�Xi;D�i���YijDng �13�

is the leave-one-out, or deleted, estimate of the probability
of correct classification [6], [21]. Here, D�i� represents the
training database Dn with observation �Xi; Yi� deleted.
Employing the adaptive procedure for parameter selection
((12) with the additional constraint that k0 � k1 � 1) yields
�̂�gjD0n� � 126=160 � 0:7875.

For comparison, the results on this data set of several
commonly used classifiers are considered. As noted, the
best k-nearest-neighbors classifier (with k � 3) yields
�̂�gjD0n� � 0:73125. The adaptive nearest-neighbor proce-
dure developed in [13] yields �̂�gjD0n� � 0:75, the tree
classifier CART [28], [3] yields �̂�gjD0n� � 0:725, and a
support vector machine (SVM) implementation [31], [18]
yields �̂�gjD0n� � 0:75. The performance improvement of the
adaptive Wilcoxon-Mann-Whitney classifier over the best of
these competitors is statistically significant at the
p � 0:05 level, by McNemar's test [28].

Further investigation indicates moderately near neigh-
bors are the most useful for classification in this
problem. For k-nearest-neighbors, performance is optimized
with k � 3 and degrades significantly and rapidly as k
increases. The classification performance of our proposed
classifier (6) on this problem is best for larger values of r
(optimal performance for the class of generalized Wilcox-
on-Mann-Whitney classifiers G is obtained with r � 33)
which again correspond to heavier weighting on the near
neighbors than on the farther neighbors. (Recall that the
extreme cases of the generalized Wilcoxon-Mann-
Whitney classifier with k0 � k1 � 1 are the classical

Wilcoxon-Mann-Whitney median test for r0 � r1 � 1 and

the classical 1-nearest-neighbors classifier for rj � nj.)
Analysis of the parameters selected via the adaptive

generalized Wilcoxon-Mann-Whitney procedure indicates
that different diluting analytes yield parameter choices with
significantly different character. For example, the value of
the adaptively selected parameter r�0 is between 18 and 26
for all ten of the cases in which the test observation is air,
while r�0 � 30 for the cases in which the test observation is a
mixture of Coleman fuel and air. This investigation
illustrates the potential of the adaptive procedure and is
the subject of continuing investigation as an avenue for
impacting sensor design.

4.2 TCE Detection: Entire Database

Returning to the overall database Dn of n � 1; 112 observa-

tions at various concentration levels, we now present
results based on (6) using (9) and (10) to estimate the

observed value of the statistic � and the distribution F� ,
respectively. The deleted estimate of classification perfor-

mance yields maxg2K�̂�gjDn� � 973=1; 112 � 0:875; the best
k-nearest-neighbors classifier makes 139 errors. (Comparing

this performance on the entire database with the analogous
performance on the low-concentration observations reported
in Section 4.1 supports the claim that the low concentration

observations are among the most difficult in Dn.)
For the adaptive generalized Wilcoxon-Mann-Whitney

classifier �̂�gjDn� � 1; 062=1; 112 � 0:955. (The parameters u
and v (see Section 3.4) are chosen based on computational

consideration; u � v � 2; 500 so that leave-one-out cross-
validation can be performed on this large database in a

reasonable amount of time.) Our ensemble approach results
in the elimination of more than 64 percent of the

139 k-nearest-neighbors errors. This performance improve-
ment is statistically significant at the 0.05 level.
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Fig. 4. Interpoint distance distributions for a misclassified TCE-present

observation.



As an illustrative example of an arbitrarily selected
misclassified observation, consider Fig. 4. Here, we plot the
class-conditional interpoint distance densities for one of the
lowest concentration TCE-present observations (TAirA205).
Note that ��z;XijYi � 0� <st ��z;XijYi � 1�. It is not sur-
prising that the adaptive generalized Wilcoxon-Mann-
Whitney classifier, based on interpoint distances, misclas-
sifies this observation. Indeed, it is unclear that any
(reasonable) classifier will correctly classify this observa-
tion as TCE-present.

4.3 Utility of Classification Significance

A consequence of our approach is the availability of a
confidence measure (significance) for the classification
decision. This is analogous to the desired ªno decisionº
decision which drove the development of the �k; l� nearest-
neighbor classifier [15], [6], in which no decision is made
unless at least l > k=2 observations are from the same class.

For illustrative purposes, consider an operational scenar-
io in which the cost of incorrectly classifying a TCE-present
observation as TCE-absent is greater than the cost of a false
positive error. Furthermore, assume that a ªno decisionº
classification can be used to indicate the need for the
collection of an additional observation. (ªNo decisionº
carries with it an implicit cost in terms of time and/or
treasure, precluding the overuse of this option.)

A selection of � � 1=2 and � � 1=3 for the classifier (5)
is qualitatively appropriate for this scenario. The choice of
� � 1=2 results in a classification of TCE-present if the
evidence supports class 1 over class 0, no matter how weak
this support. Setting � � 1=3 implies that the unidentified
observation z will be considered TCE-absent only if the
evidence strongly supports this assertion. Weak evidence
favoring class 0 over class 1 (1=3 � F� ��� � 1=2) will yield a
ªno decisionº classification, reducing false negative errors
and setting in motion the machinery of additional
investigation.

We investigate the performance on database Dn of
classifier (5) for two cases. For Case I, we consider
� � � � 1=2, and, thus, (5) reduces to (6). As presented in
Section 4.2, (6) results in 50 classification errors for this case.
As depicted in the confusion matrix (Table 1), these 50 errors
are accounted for as 25=352 � 0:071 false positives (classify-
ing TCE-absent as TCE-present) and 25=760 � 0:033 false
negatives. With the settings � � 1=2 and � � 1=3 for
Case II, chosen to reduce the false negative errors (at an

acknowledged cost of some reinvestigation), the overall
performance becomes 32 classification errors and 43 ªno
decisions.º More importantly, for the illustrative applica-
tion, the false negative error rate is reduced to
7=760 � 0:009, at the cost of introducing a ªno decisionº
rate of 43=1; 112 � 0:039. For Case II, the 760 TCE-present

observations yield 735 correct classifications (the same as
for Case I, since � � 1=2 in both cases), seven incorrect
classifications, and 18 ªno decisionsº (see Table 2). These
remaining seven false negatives are a subset of the 80 lowest
concentration TCE-present observations investigated in
Section 4.1.

4.4 Choice of Smoother

For our purposes, the sensor responses are smoothed
separately for each fiber � and wavelength �; thus
s : C�T � ! C�T �. We utilize polynomial smoothing splines
with the level of smoothing determined by cross-validation

[12], [27]. As a competing approach, consider using kernel
smoothing [27], [32] to smooth each sensor response. A
bandwidth of h � 1:1 for a Gaussian kernel was determined
by visual inspection of smoothed curves and classification
performance experiments. (Note that the level of smoothing
suggested by classification performance experiments is, in
terms of visual inspection of smoothed curves, significantly
less than anticipated. That is, optimizing classification
performance over the smoothing bandwidth h yields
response curves more similar to the signals depicted in

Fig. 2 than to the cartoon curves of Fig. 1.) Experiments
utilizing kernel smoothing indicate no improvement over
polynomial smoothing splines in terms of classification
performance.

4.5 Choice of Distance Function

Investigation of

��X1; X2� �
X19

��1

X2

��1

Z
T
js�X�;�

1 ��t� ÿ s�X�;�
2 ��t�jdt �14�

suggests that L1 provides no significant improvement over
L2. In fact, L1 yields an empirical performance degradation.

Given an experimentally determined smoother s and
nonnegative weights w�;�, the weighted Lp pseudodistance
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TABLE 1
Confusion Matrix for Case I

TABLE 2
Confusion Matrix for Case II



��X1; X2� � �
X19

��1

X2

��1

wp�;�

Z
T
js�X�;�

1 ��t� ÿ s�X�;�
2 ��t�jpdt�1=p

�15�
for 1 � p <1 permits exploratory analysis of the various
sensor (fiber, wavelength) bands. For instance, with p � 2
comparing the experimental performance presented above
(which uses (15) with w�;� � 1 for all �; �) against the
performance obtained using weights which eliminate from
consideration one of the wavelengths (w�;� � 0 for one �
and all � while w�;� � 1 for the other � and all �) indicates
that the signals for both wavelengths � contain valuable
information for the classification problem at hand. Simi-
larly, investigations using the 19 different distances given
by eliminating from consideration exactly one fiber (setting
w�;� � 0 for one fiber �) and the 19 distances given by
considering exactly one fiber (w�;� � 0 for all but one �)
indicate that each fiber is important and no fiber suffices.
Finally, experimental evidence suggests that choosing p
much greater than 2 (say, 30) yields significantly improved
classification performance; see [26].

The investigation of distances of the form (15) is highly
relevant to continuing efforts in classifier design. Further-
more, these analyses represent a primary way in which our
classification results can impact sensor design.

5 DISCUSSION

A careful analysis of a well-designed data set yields
evidence that the interpoint distance-based adaptive gen-
eralized Wilcoxon-Mann-Whitney ensemble classifier is
appropriate for difficult olfactory classification tasks. In
addition, the availability of classification significance levels
increases the operational utility of the approach for many
applications.

A discussion of the implications of our results to
chemical sensor data analysis must begin with the fact that
applications require a high level of classification perfor-
mance at much lower concentrations than those considered
here. Both the sensor design and the methods for olfactory
signal processing and pattern recognition must continue to
improve.

Finally, while the needle in the haystack detection
problem is of significant intrinsic interest, the olfactory
classification problem in general and the Tufts database Dn

in particular call for a multiclass investigation.
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