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Abstract. In this paper we develop a method for classifying an unknown data vector as belonging to one of
several classes. This method is based on the statistical methods of maximum likehood and borrowed strength
estimation. We develop an MPEC procedure (for Mathematical Program with Equilibrium Constraints) for
the classification of a multi-dimensional observation, using a finite set of observed training data as the inputs
to a bilevel optimization problem. We present a penalty interior point method for solving the resulting MPEC
and report numerical results for a multispectral minefield classification application. Related approaches based
on conventional maximum likehood estimation and a bivariate normal mixture model, as well as alternative
surrogate classification objective functions, are described.

1. Introduction

Classification is the problem of determining which one of several classes an unlabelled
multi-dimensional observation belongs to. These problems occur in many different
settings. Examples include the classification of white versus gray matter in the brain, the
classification of masses in breast imaging as malignant or benign, and the classification
of remotely sensed objects as mines or not mines.

One can develop classification rules based on a priori knowledge of the objects,
or by utilizing a set of observed training data from the object classes. These different
methodologies are generally referred to as model based and data-driven, respectively.
Classification is an important subject in the vast area of data mining that has recently
been evolving rapidly due to its importance in many diverse fields. In an excellent
survey paper [2], Bradley, Fayyad, and Mangasarian have detailed the opportunities that
optimizers can contribute to this fast growing topic of research.
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Along with its accompanying paper [10], this paper presents a novel methodology
for target classification that employs both statistics and optimization methods. While the
reference emphasizes the statistical aspects and practical application of the methodology,
this paper, being addressed to the optimization community, emphasizes the constrained
optimization problem and its solution. The optimization problem belongs to the class of
mathematical programs with equilibrium constraints (MPECs) that has recently received
a comprehensive treatment in [6]. As detailed in this reference, standard theory and
methods from classical nonlinear programming are not appropriate to deal with this
class of optimization problems; instead, we have employed the penalty interior point
algorithm (PIPA) as the solution method for solving the MPEC arising from the target
classification problem.

2. The statistical problem

In this section, we motivate the formulation of the classification problem as a constrained
bi-level optimization problem, or MPEC. Before giving this motivation, we explain the
notation used throughout the paper. The N-dimensional Euclidean space is denoted �N .
All vectors are column vectors; a superscript T denotes transposition of vectors and
matrices. For a function φ(x, y) of two arguments (x, y) ∈ �N+M and a subset U
of �N ,

argmax { φ(x, y) : x ∈ U } ⊂ �N

denotes the set of maximizers of the constrained maximization problem in the x variable,
with y held fixed; thus, the above argmax set is dependent on the parameter y. We also
write ∇xφ(x, y) ∈ �N to denote the partial gradient vector of φ(x, y) with respect to
the x variable. For two vectors a and b of the same dimension, we write a ◦ b to denote
the Hadamard product of a and b; that is, a◦ b is the vector whose components are equal
to the products of the respective components of a and b; moreover, we write a ⊥ b to
mean that a and b are perpendicular. For a vector x ∈ �N , we write diag(x) for the
N × N diagonal matrix whose diagonal entries are the components of x. The N-vector
of all ones is denoted by 1N ; the identity matrix of order N is denoted by I N . Finally,
for a vector x with nonzero components, let x−1 be the vector whose components are
the reciprocals of the respective components of x.

2.1. Background motivation

The most common performance metric for a classification system is the probability of
correct classification (PCC). This performance metric is generally used only post-facto,
i.e. after the construction of the classification rule in order to judge the success or failure
of the algorithm. Our method, in contrast, will focus on the explicit optimization of this
metric as the basis for constructing classification algorithms.

Many techniques exist to do some form of optimization in order to improve the
performance of a classification system. An excellent overview of many of the methods
for classification, or pattern recognition, can be found in [3]. Basic discriminant analysis
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consists of fitting a model to the data, and utilizing this model to predict the classes of
unknown data. Generally this is formulated in a least squares setting and therefore is
seen as an optimization problem. Some types of neural networks are examples of such
methods. These implement a particular model, and the algorithms are fit (“trained,” in
the neural network literature) to optimally differentiate between classes.

A recent method which has shown great promise is based on wavelets [12]. This
method, like many methods which utilize optimization to improve classification rules,
does not directly optimize the PCC performance of the system, but rather a secondary
metric which is believed to be connected with the performance of the classification rule.
Typical secondary cost functions are energy or entropy metrics. Our method, on the
other hand, will be directly tied to optimizing the conditional PCC.

Our aim is to design a mechanism which automatically assigns an observation x to
one of two classes, denoted by i = I, II . The classes are modelled as two unknown
probability distribution FI , FII over the Euclidean space of possible observations x
and the classification problem amounts to deciding from which of the two distributions
an observation was drawn. Whilst misclassification cannot be completely ruled out,
a good classification mechanism should have a small misclassification probability. We
will focus in the sequel on classification mechanisms based on aggregate values f(x).
Any real-valued function f induces two distributions on the real line, corresponding
to FI and FII . If we assume for the moment that the densities ψ f,I , ψ f,II of these
distributions are known then it is sensible to assign an observation x to class I if
ψ f,I ( f(x)) ≥ ψ f,II ( f(x)) and to class II otherwise. The quality of such a classification
mechanism depends obviously on the chosen aggregation function f and we would wish
to choose f from a suitable class of functions so that the misclassification probability
is minimized. This approach is not readily implementable as it relies on the unknown
densities ψ f,i . We suggest to estimate these densities using a maximum likelihood
approach based on a sample of vectors from each class, the training set, and the induced
samples of aggregate values. In the simplest case where {ψ(·; θ) : θ ∈ �} is a family
of probability density functions on the real line and the observed training vectors xi

k,
i = I, II , are independent, we determine parameters θ i ∈ � which maximize

L
(
θ| f
(
xi

k

)) =
∏

k

ψ
(

f
(
xi

k

); θ
)
.

This leads naturally to a two-level optimization problem where on the lower level the
maximum likelihood density estimates are computed for given f , whereas on the upper
level f is chosen so that the estimated misclassification probability, based on the lower
level density estimates, is minimized.

To understand the formulation of our method, we consider first a simple inner
product of the observed training data vectors xi

k from one of two classes against a fixed
aggregation vector f . This results in coefficients ci

k = f T xi
k. In order to determine the

utility of the classifier, we must determine the extent to which the cI
k differ from the

cII
k . Thus it is necessary to estimate the class-conditional distributions of the ci

k. We
wish to select the aggregation vector f which maximizes the separation between the
distributions of the ci

k.
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Fisher [4] is generally recognized as the first to formulate the above as an optimiza-
tion problem. However, there are numerous approaches to addressing the optimization
problem when the class-conditional distributions are unknown. We believe that this is
partially due to the fact that in general no one directly optimizes the PCC performance
for the system, but rather secondary metrics are utilized which may not be representative
of the true performance of the system.

Our procedure starts with the training data and an initial aggregation vector f . From
the two classes of training data we obtain two estimates θ i , for i = I, II . We would
like to use these initial estimates of the class-conditional probability density functions
to generate a cost function which will be equivalent to the conditional probability
of correct classification. To do this, we need to understand the decision statistic. We
utilize the simple likelihood ratio statistic. That is, the class whose density is largest for
a given observation will be the class to which the observation is assigned. Therefore, the
probability of false classification is minimized by minimizing the overlap of the class-
conditional probability densities. This is equivalent to maximizing the L1 difference
between the distributions, i.e.

C( f , θ I , θ II ) =
∫

|ψ(x; θ I ) − ψ(x; θ II )| dx.

The difficulty in this optimization is that the above cost function, which is a function of
the parameters θ i , depends implicitly upon the aggregation vector f as well as the data.

2.2. The statistical details

In the outline above we have suppressed many of the statistical details. In particular,
we did not address the parametric form of the class-conditional probability density
functions ψ(·; θ). While the basic ideas behind our method extend to arbitrary choices
of distribution family, we will concentrate on mixture models (mixtures of normals) in
this paper.

The choice of distribution family without a priori knowledge is generally a compro-
mise between choosing a restrictive model for simplicity and choosing a more general
model which requires significantly more data to accurately estimate the many param-
eters of the model. This quandry is generally referred to as the statistical “curse of
dimensionality.”

We concentrate on mixture models, which are simple sums of Gaussians. Mixture
models are relatively robust; one can add additional terms if the model is too restrictive,
and simple mixtures (with 3-5 components in the sum) are sufficient to model a rich
variety of distributions. Specifically, let

ϕ(x; µ, σ) ≡ 1

σ
√

2 π
exp

(

− 1
2

(
x − µ

σ

)2
)

, x ∈ ( −∞, ∞ )

denote the density function of a normal random variable with arbitrary mean µ ∈
(−∞,∞) and positive standard deviation σ ∈ (0,∞). The Gaussian mixture model of
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m normal density functions ϕ(x; µi, σi ) for i = 1, . . . , m is given by

ψ(x; µ, σ ,π ) ≡
m∑

i=1

πi ϕ(x; µi, σi), x ∈ ( −∞, ∞ ),

where µ and σ are respectively the m-dimensional vectors of means µi and standard
deviations σi , for i = 1, . . . , m, and π ≡ (πi) ∈ �m is the vector of mixture coefficients
that is an element of the unit simplex 	m in �m :

	m ≡
{

π ∈ �m+ :
m∑

i=1

πi = 1

}

.

Notice that for given (µ, σ ,π ), ψ(·; µ, σ ,π ) is a probability density function, though
not necessarily normal.

Our statistical modeling and estimation approach consists of the well-known max-
imum likelihood density estimation of mixture models combined with the recent idea of
borrowed strength for data analysis [8]. Borrowed strength is a dimensionality reduction
technique which allows the optimization algorithm to choose a reduced dimensionality
mixture model which is appropriate for the data to be analyzed. Specifically, borrowed
strength utilizes all of the data in a data set to fix the means and variances of the mixture
models, i.e. to fix σ ,µ. (The number of mixture components, m, is chosen via the
methodology presented in [9].)

After fixing these means and variances we then want to separate the various classes.
Specifically, we wish to classify an unknown target as one of two classes: I or II. Since
we have fixed the variances and means at appropriate points for the entire data set, the
only free parameters remaining in the mixture models are the mixing coefficients π .
Thus, the target classes are characterized by the m-dimensional mixing coefficients,
generated from the maximum likelihood estimation:

π I ≡ (
π I

i

)m
i=1 for class I target,

π II ≡ (
π II

j

)m
j=1 for class II target;

These coefficients define an m-term Gaussian mixture model [5,7] that is the basis of the
overall classification procedure. This is accomplished by the introduction of a separation
measure of the target classes whose maximization would be an appropriate surrogate
to the minimization of the misclassification error. (As we shall see below, a direct
minimization of the latter error is extremely difficult.) One simple (and somewhat naive)
measure is a distance function θ1(π

I,π II) of the mixing coefficients; for example, the
squared Euclidean distance:

θ1(π
I,π II) ≡ 1

2

m∑

i=1

[ (
π I

i − π II
i

)2 ]
. (1)

Subsequently we will introduce another separation measure and compare the classifi-
cation results based on these different measures. While these measures are not exactly
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equivalent to the probability of correct classification, they can be shown to be closely
tied to it. In the long run, we are interested in solving the L1 optimization problem,
which will be exactly equivalent to maximizing PCC.

Inputs to the optimization problem consist of d types of training data points (obser-
vations):

{
X I

1, X I
2, · · · , X I

d

}
for class I target,

{
X II

1 , X II
2 , · · · , X II

d

}
for class II target,

with each X I

 and X II


 being vectors in the Euclidean spaces �n1 and �n2 respectively.
For convenience, it would be useful to introduce the matrices X I,II whose columns are
these vectors X I,II


 ; specifically,

X I ≡ [
X I

1 X I
2 · · · X I

k

] ∈ �n1×d and X II ≡ [
X II

1 X II
2 · · · X II

k

] ∈ �n2×d .

For each target class, the data types are combined via a certain aggregation function:

χ I : W ⊂ �d → �n1 for class I target,

χ II : W ⊂ �d → �n2 for class II target,

where W is the common set of admissible aggregation weights of the data. An example
of such an aggregation function is the simple additive function:

χ I,II(w) ≡
d∑


=1

w
 X I,II

 , for w ≡ (w
)

d

=1 ∈ �d,

or more simply,

χ I(w) = X I w ∈ �n1 and χ II(w) = X II w ∈ �n2 . (2)

An example of the admissible set W is the unit simplex in �d . In general, we write

χ I
i (w) i = 1 . . . , n1

χ II
j (w) j = 1 . . . , n2

to denote the component functions of χ I,II(w).
Based on the aggregated data (where the weight vector w has yet to be determined),

the combined technique of borrowed strength and maximum likehood estimation is
employed to compute target aggregation weights and model mixing coefficients in order
to obtain the maximum separation of the two target classes with reference to the training
data X I,II.

The objective of the optimization problem is to seek the model means µ, standard
deviations σ , and the mixing coefficients π I,II so as to maximize the separation of the
two density functions:

ψ(x; µ, σ ,π I) and ψ(x; µ, σ ,π II) (3)
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which are taken to be the density functions of the respective target classes. Specializing
the function C( f , θ I , θ II ) to this context, we see that the separation is defined by the
integral:

∫ ∞

−∞
∣∣ψ(x; µ, σ ,π I) − ψ(x; µ, σ ,π II)

∣∣ dx.

As in the general case, this integral is not easy to evaluate and it is not differentiable in
the unknowns; we propose a surrogate objective function as a simplified but reasonable
separation measure. Specifically:

θ2(π
I,π II,µ, σ ) ≡ 1

2

∫ ∞

−∞
(
ψ(x; µ, σ ,π I) − ψ(x; µ, σ ,π II)

)2
dx. (4)

The function θ1(π
I,π II) is a plausible surrogate objective also, albeit perhaps oversim-

plified and therefore potentially less desirable than θ2(π
I,π II,µ, σ ). The latter function

can be shown to be a quadratic function of π I − π II with a variable matrix that is
a function of (µ, σ ). Thus, θ2(π

I,π II,µ, σ ) can be thought of as a distance function
of π I and π II, weighed by a transformation matrix that depends on the unknown model
means and standard deviations.

To show that θ2(π
I,π II,µ, σ ) is of the mentioned class, we use the following

formula that appears in [1]: for all scalars µ, µ′, σ and σ ′ with the latter two positive,
∫ ∞

−∞
ϕ(x; µ, σ) ϕ(x; µ ′, σ ′) dx = ϕ(µ; µ ′, σ̃ ), (5)

where

σ̃ ≡
√

σ2 + ( σ ′ )2.

Note that the function ϕ(·; ·, σ) is symmetric in its first two arguments for every fixed
third component; that is, ϕ(x; y, σ) = ϕ(y; x, σ) for all x and y and σ > 0.

For given vectors of means µ and standard deviations σ , define the m×m symmetric
matrix Q(µ, σ ) with entries: for i, j = 1, . . . , m,

Qi j (µ, σ ) ≡
∫ ∞

−∞
ϕ(x; µi, σi) ϕ(x; µ j , σ j ) dx = ϕ(µi; µ j, σi j ),

where σi j ≡
√

σ2
i + σ2

j . Note that for all i = 1, . . . , m, µ and σ ,

Qii (µ, σ ) = 1

2
√

π σi
;

thus the diagonal entries of Q(µ, σ ) are separable functions of σ and independent of µ.
It is not difficult to show that

θ2(π
I,π II,µ, σ ) = 1

2

(
π I − π II

)T
Q(µ, σ )

(
π I − π II

)
.

Since the function θ2 is nonnegative valued, it follows that the matrix Q(µ, σ ) is
positive semidefinite. In the Appendix, we give the partial derivatives of the function
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θ2(π
I,π II,µ, σ ) with respect to its arguments. These derivatives are needed in the

algorithm for solving the target classification problem.
For given vectors of means µ, standard deviations σ , and mixing coefficients π , the

likelihood function of the aggregated data χ I,II(w) is given by

LI(w,µ, σ ,π ) ≡
n1∏

i=1

ψ
(
χ I

i (w); µ, σ ,π
)

for class I target

LII(w,µ, σ ,π ) ≡
n2∏

j=1

ψ
(
χ II

j (w); µ, σ ,π
)

for class II target.

2.3. Extending from two to k classes

We have presented the basic setup of the two-class classification problem in the previous
discussion. In the rest of this paper, we concentrate on this two-class problem for
two reasons. First, it is an important simplification of the k-class problem (k ≥ 2).
Second, recent research suggests that employing two-class classification, via pairwise
comparison, is a preferred approach to k-class classification [14].

3. The bilevel optimization/MPEC formulation

We may now formally state a bilevel constrained optimization problem formulation for
the classification of target classes I and II, based on the observed data of these classes
X I and X II. Let ε > 0 be a prescribed positive lower bound for the model standard
deviations. The first-level decision variable is the vector of data aggregation weights w

which are restricted by the admissible set W ; the second-level decision variables consist
of the model mixing coefficients π I,II, auxiliary mixing coefficients π0, model means µ,
and model standard deviations σ . The overall model computes these variables in order
to

maximize θ(π I,π II,µ, σ )

subject to w ∈ W

π I ∈ argmax { LI(w,µ, σ ,π I) : π I ∈ 	m }
π II ∈ argmax { LII(w,µ, σ ,π II) : π II ∈ 	m }

(6)

(µ, σ ,π0) ∈ argmax {LI(w,µ, σ ,π0)LII(w,µ, σ ,π0) : π0 ∈ 	m, and σi ≥ ε, ∀ i},
(7)

where the first-level objective function θ is a (surrogate) separation measure of the two
density functions (3). We are particularly interested in θ being one of the two functions:
θ1(π

I,π II) given by (1) and θ2(π
I,π II,µ, σ ) given by (4).

In general, the problem (6) is a bilevel optimization problem because the constraints
involve several lower-level optimization subproblems each corresponding to a maximum
likelihood estimation with certain variables held fixed. Specifically, the last maximiza-
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tion (7) in the constraints takes as its input an unknown (but presumed fixed) vector of
aggregation weights and computes the mean and standard deviation vectors as well as
the Gaussian mixing coefficients via a joint likelihood maximization of the data of the
two classes; the computed quantities are implicit functions of the input weights. Two of
the three output quantities µ and σ along with the weights w from this maximization
(7) are then fed as inputs into the individual likelihood maximization of the two classes.
Thus, the maximization of LI,II corresponds to the likelihood maximization of the indi-
vidual target classes using the implicit mean and standard deviation functions computed
from (7). The overall optimization problem (6) seeks a set of optimal weights and cor-
responding mixing coefficients, means and standard deviations in order to maximize the
separation of the two target classes.

Bilevel optimization problems such as (6) are by no means easy to deal with.
Nevertheless, substantial theory is known about these problems and iterative algorithms
exist for computing stationary points of such problems [6]. In what follows, we present
a reformulation of the problem (6) as an MPEC and an iterative method for computing
a feasible tuple (w,π I,π II,µ, σ ) that satisfies the first-order stationarity condition
of (6), more precisely, a B-stationary point (this terminology was coined in [13] to mean
a stationary point of an MPEC that satisfies the first-order conditions presented in [6,
Chap. 3]).

To begin, it would be convenient for us to define the log-likelihood functions and
compute their partial derivatives with respect to their arguments. For this purpose, we
introduce some further notation: let

ϕ(x; µ, σ ) ≡ ( ϕ(x; µ
, σ
) )m

=1 ;

in terms of this vector function, we have

ψ(x; µ, σ ,π ) = πT ϕ(x; µ, σ ).

In the Appendix, we introduce the notation and give the formulas for the first and second
partial derivatives of the vector function ϕ(x; µ, σ ) with respect to its arguments. For
class I target, let

LI(w,µ, σ ,π ) ≡ log LI(w,µ, σ ,π ) =
n1∑

i=1

log ψ(χ I
i (w); µ, σ ,π )

denote the logarithmic likelihood function; we have (see the Appendix for notation):

∇πL
I(w,µ, σ ,π ) =

n1∑

i=1

[
1

ψ(χ I
i (w); µ, σ ,π )

ϕ(χ I
i (w); µ, σ )

]

, (8)

∇µL
I(w,µ, σ ,π ) = diag(π )

n1∑

i=1

[
1

ψ(χ I
i (w); µ, σ ,π )

dϕµ(χ I
i (w); µ, σ )

]

, (9)

∇σL
I(w,µ, σ ,π ) = diag(π )

n1∑

i=1

[
1

ψ(χ I
i (w); µ, σ ,π )

dϕσ (χ I
i (w); µ, σ )

]

. (10)
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Similar expressions can be derived for class II targets. Consider the following log-
likelihood maximization problem in the variable π with (w,µ, σ ) held fixed:

maximize LI(w,µ, σ ,π )

subject to π ≥ 0,

m∑

i=1

πi = 1.

This is clearly equivalent to the first maximization constraint in (6). Introducing a La-
grange multiplier λ for the equality constraint, we may write the first-order optimality
conditions for the above maximization problem as follows:

0 ≤ π ⊥ −∇πLI(w,µ, σ ,π ) + 1mλ ≥ 0

m∑

i=1

πi = 1, λ unrestricted.
(11)

It is not difficult to see that

πT ∇πL
I(w,µ, σ ,π ) = n1.

Thus it follows that the conditions (11) are equivalent to

0 ≤ π ⊥ −∇πL
I(w,µ, σ ,π ) + n1 1m ≥ 0.

Consider the following maximization problem in the variables (µ, σ ,π ) for fixed w

that is equivalent to (7):

maximize LI(w,µ, σ ,π ) + LII(w,µ, σ ,π )

subject to π ∈ 	m and σ ≥ ε 1m .

The first-order optimality conditions for this problem are as follows:

0 ≤ π ⊥ −∇πLI(w,µ, σ ,π ) − ∇πLII(w,µ, σ ,π ) + ( n1 + n2 ) 1m ≥ 0.

∇µLI(w,µ, σ ,π ) + ∇µLII(w,µ, σ ,π ) = 0

0 ≤ σ − ε 1m ⊥ −∇σLI(w,µ, σ ,π ) − ∇σLII(w,µ, σ ,π ) ≥ 0.

Substituting the expressions (8), (9), and (10) and their analogs for the gradient vectors
of LI,II, we can now state the two-level optimization problem (6) as the following
constrained optimization problem with nonlinear complementarity constraints in the
variables (w,π I,π II,π0,µ, σ ):

maximize θ(π I,π II,µ, σ )

subject to w ∈ W

0 ≤ π I ⊥ −
n1∑

i=1

[
ϕ(χ I

i (w); µ, σ )

ψ(χ I
i (w); µ, σ ,π I)

]

+ n1 1m ≥ 0

0 ≤ π II ⊥ −
n2∑

i=1

[
ϕ(χ II

i (w); µ, σ )

ψ(χ II
i (w); µ, σ ,π II)

]

+ n2 1m ≥ 0

(12)
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0 ≤ π0 ⊥ −
n1∑

i=1

[
ϕ(χ I

i (w); µ, σ )

ψ(χ I
i (w); µ, σ ,π0)

]

−
n2∑

i=1

[
ϕ(χ II

i (w); µ, σ )

ψ(χ II
i (w); µ, σ ,π0)

]

+ ( n1 + n2 ) 1m ≥ 0

diag(π0)

{ n1∑

i=1

[
dϕµ(χ I

i (w); µ, σ )

ψ(χ I
i (w); µ, σ ,π0)

]

+
n2∑

i=1

[
dϕµ(χ II

i (w); µ, σ )

ψ(χ I
i (w); µ, σ ,π0)

]}

= 0

0 ≤ σ − ε 1m ⊥ −diag(π0)

{
n1∑

i=1

[
dϕσ (χ I

i (w); µ, σ )

ψ(χ I
i (w); µ, σ ,π0)

]

+
n2∑

i=1

[
dϕσ (χ II

i (w); µ, σ )

ψ(χ II
i (w); µ, σ ,π0)

]}

≥ 0.

The above constrained optimization problem is now in the form of an MPEC: w is the
first-level decision variable and (π I,π II,π0,µ, σ ) are the second-level decision vari-
ables that are (implicit) functions of w; the constraints consist of the set W and a system
of mixed complementarity conditions parametrized by w. For a comprehensive treat-
ment of MPECs, see [6]. Here we point out that in addition to all the computational
issues associated with the complementarity constraints, the objective function θ , being
a distance measure of π I and π II for fixed (µ, σ ), is typically a convex function of
(π I,π II); cf. the functions θ1 and θ2. Nevertheless, as examplified by the latter function,
θ can not be expected in realistic applications to be either convex or concave in its four
arguments. Consequently, as a maximization problem of optimizing an objective func-
tion that is neither convex nor concave and subject to nonlinear disjunctive constraints,
one can expect great difficulty for computing a global maximizer of the problem (12).
Thus our computational goal is quite modest; namely, we wish to compute a stationary
point of this problem which makes a satisfactory improvement based on a separation
measure θ(π I,π II,µ, σ ), starting from an initial value. As we shall see from the numer-
ical results, this goal is easily achieved and in fact exceeded by our algorithm which we
describe in Sect. 4.

Conventional maximum likelihood

The borrowed strength technique has certain statistical advantages in density function
estimation; see [8]. Alternatively, one could apply conventional maximum likelihood
estimation as the basis for target classification. The resulting MPEC is similar to (12)
and so is the application of the PIPA described subsequently. In what follows we derive
this alternative approach and presents the detailed MPEC formulation.

In the conventional maximum likelihood approach, we introduce two distinct sets
of unknown means and standard deviations for the two target classes:

[ ( µI, σ I ) for target I ] and [ ( µII, σ II ) for target II ].
The objective θ(µI,µII, σ I, σ II), to be maximized, is then a function of all these variables.
The bilevel optimization problem arising from this approach is the following:
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maximize θ(π I,π II,µI,µII, σ I, σ II)

subject to w ∈ W

( π I,µI, σ I ) ∈ argmax { LI(w,µI, σ I,π I) : π I ∈ 	m and σ I ≥ ε 1m }
and ( π II,µII, σ II ) ∈ argmax { LII(w,µII, σ II,π II) : π II ∈ 	m and σ II ≥ ε 1m }.

(13)

Similar to the derivation in Sect. 3, the above optimization problem has the following
equivalent MPEC formulation:

maximize θ(π I,π II,µI,µII, σ I, σ II)

subject to w ∈ W

0 ≤ π I ⊥ −
n1∑

i=1

[
ϕ(χ I

i (w); µI, σ I)

ψ(χ I
i (w); µI, σ I,π I)

]

+ n1 1m ≥ 0

0 ≤ π II ⊥ −
n2∑

i=1

[
ϕ(χ II

i (w); µII, σ II)

ψ(χ II
i (w); µII, σ II,π II)

]

+ n2 1m ≥ 0

diag(π I)

n1∑

i=1

[
dϕµ(χ I

i (w); µI, σ I)

ψ(χ I
i (w); µI, σ I,π I)

]

= 0

diag(π II)

n2∑

i=1

[
dϕµ(χ II

i (w); µII, σ II)

ψ(χ II
i (w); µII, σ II,π II)

]

= 0

0 ≤ σ I − ε 1m ⊥ −diag(π I)

n1∑

i=1

[
dϕσ (χ I

i (w); µI, σ I)

ψ(χ I
i (w); µI, σ I,π I)

]

≥ 0

0 ≤ σ II − ε 1m ⊥ −diag(π II)

n2∑

i=1

[
dϕσ (χ II

i (w); µII, σ II)

ψ(χ II
i (w); µII, σ II,π II)

]

≥ 0.

(14)

An objective function that is a generalization of (4) is given by

θ̃2(π
I,π II,µI,µII, σ I, σ II) ≡ 1

2

∫ ∞

−∞
(
ψ(x; µI, σ I,π I) − ψ(x; µII, σ II,π II)

)2
dx.

(15)

Using the same formula (5) as before, we can show that

θ̃2(π
I,π II,µI,µII, σ I, σ II) = 1

2

(
π I

π II

)T

Q(µI,µII, σ I, σ II)

(
π I

π II

)

;

here the 2m ×m symmetric positive semidefinite matrix Q(µI,µII, σ I, σ II) is given by:

Q(µI,µII, σ I, σ II) ≡
[

QI(µ
I, σ I) −QI,II(µ

I,µII, σ I, σ II)

−QI,II(µ
I,µII, σ I, σ II)T QII(µ

II, σ II)

]

,
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where

Qα(µα, σα) ≡
(

ϕ
(
µα

i , µα
j , σ

α
i j

) )m

i=1
, for α = I, II

and

QI,II(µ
I,µII, σ I, σ II) ≡

(
ϕ
(
µI

i, µ
II
j , σ

I,II
i j

) )m

i, j=1
,

with

σ
I,II
i j ≡

√(
σ I

i

)2 + ( σ II
j

)2
.

Similar to (12), we can write the problem (14) in a compact form by introducing the
vector functions G(w,π I,II, σ I,II,µI,II), H(w,π I,II, σ I,II,µI,II), and F(w, z,λ,µI,II) as
follows:

G(w,π I,II, σ I,II,µI,II) ≡
(

GI(w,π I, σ I,µI)

GII(w,π II, σ II,µII)

)
(16)

H(w,π I,II, σ I,II,µI,II) ≡
(

H I(w,π I, σ I,µI)

H II(w,π II, σ II,µII)

)
(17)

and

F(w, z,λ,µI,II) ≡
(

z − G(w,π I,II, σ I,II,µI,II)

−H(w,π I,II, σ I,II,µI,II)

)
,

where

z ≡






xI

xII

yI

yII






and λ ≡





π I

π II

σ II




 ,

GI(w,π I, σ I,µI) ≡






−
n1∑

i=1

[
ϕ(χ I

i (w); µI, σ I)

ψ(χ I
i (w); µI, σ I,π I)

]

+ n1 1m

−diag(π I)

n1∑

i=1

dϕσ (χ I
i (w); µI, σ I)

ψ(χ I
i (w); µI, σ I,π I)






H I(w,π I, σ I,µI) ≡ −diag(π I)

n1∑

i=1

dϕµ(χ I
i (w); µI, σ I)

ψ(χ I
i (w); µI, σ I,π I)

;

and similar expressions exist for GII(w,π II, σ II,µII) and H II(w,π II, σ II,µII). The
compact formulation of (14) is:

maximize θ(π I,π II,µI,µII, σ I, σ II)

subject to w ∈ W
F(w, z,λ,µI,II) = 0
z ◦ ( λ − λ l ) = 0
z ≥ 0 and λ ≥ λ l,
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where

λ l ≡



0
0

ε 12m



 .

From a computationally point of view, (12) and (14) are two different constrained
optimization problems. They differ in several aspects. The former problem has (w,π I,

π II,π0,µ, σ ) ∈ �d+5m as its variables; the latter problem has (w,π I,II,µI,II, σ I,II) ∈
�d+6m as its variables; thus (14) has m more variables than (12). Also, there is no
obvious (mathematical) connection between the feasible regions of the two problems.
The structure of the Jacobian matrix of the constraint functions G and H in the two
problems is also different. For (12), the structure is given by the display (27); the asso-
ciated linear algebraic computations within PIPA for solving (12) can take advantage of
this structure; see Sect. 4. For (14), the Jacobian matrix of G and H are block diagonally
structured, reflecting the separation of the variables (π I, σ I,µI) and (π II, σ II,µII) in
these functions; see (16) and (17). In the implementation of PIPA, such block diagonal
structure can also be put to use to simplify the linear algebraic computations.

4. A solution method and its implementation

This section presents a computational method for solving the optimization problem (12).
In addition to the algorithms described in [6, Chap. 6], there are recent advances on
algorithms for solving an MPEC. In what follows, we describe a penalty interior point
algorithm (PIPA) that was designed to treat optimization problems of this kind. This is
the algorithm that we have implemented in our computational study whose results we
report in Sect. 5.

We introduce several vector functions for the constraints of the problem (12):

G(w,π I,π II,π0, σ ,µ) ≡







G I (w,π I, σ ,µ)

G II (w,π II, σ ,µ)

G0(w,π0, σ ,µ)

Gσ (w,π0, σ ,µ)







≡












−
n1∑

i=1

[
ϕ(χI

i (w);µ, σ )

ψ(χI
i (w); µ, σ ,π I)

]

+ n1 1m

−
n2∑

i=1

[
ϕ(χII

i (w); µ, σ )

ψ(χII
i (w); µ, σ ,π II)

]

+ n2 1m

−
n1∑

i=1

[
ϕ(χI

i (w); µ, σ )

ψ(χI
i (w); µ, σ ,π0)

]

−
n2∑

i=1

[
ϕ(χII

i (w);µ, σ )

ψ(χII
i (w); µ, σ ,π0)

]

+ ( n1 + n2 ) 1m

−diag(π0)






n1∑

i=1

[
dϕσ (χI

i (w);µ, σ )

ψ(χI
i (w); µ, σ ,π0)

]

+
n2∑

i=1

[
dϕσ (χII

i (w); µ, σ )

ψ(χII
i (w);µ, σ ,π0)

]













(18)

H(w,π0, σ ,µ)

≡ −diag(π0)

{
n1∑

i=1

[
dϕµ(χ I

i (w); µ, σ )

ψ(χ I
i (w); µ, σ ,π0)

]

+
n2∑

i=1

[
dϕµ(χ II

i (w); µ, σ )

ψ(χ II
i (w); µ, σ ,π0)

]}

(19)
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and

F(w, xI, xII, x0, y,π I,π II,π0, σ ,µ) ≡











xI

xII

x0

y






− G(w,π I,π II,π0, σ ,µ)

−H(w,π0, σ ,µ)






. (20)

We can then rewrite (12) as

maximize θ(π I,π II,µ, σ )

subject to w ∈ W

F(w, z,λ,µ) = 0
z ◦ ( λ − λ l ) = 0

and

0 ≤ z ≡






xI

xII

x0

y






and λ ≡






π I

π II

π0

σ






≥ λ l ≡






0

0

0

ε 1m






,

which is in the special form of an MPEC to which PIPA can be directly applied.
A general iteration (labeled ν) of PIPA is as follows. Let c, ρ, αν−1, and κν be given
scalars satisfying

c > 0, ρ ∈ (0, 1), αν−1 > 1, and κν ∈ (0, 1];
Let Qν be a symmetric positive definite matrix of order d, and

( wν, zν, λν, µν ) (21)

be an iterate satisfying

• (feasibility of weights) wν ∈ W ;

• (positivity of complementary variables) ( zν, λν − λ l ) > 0;

• (centrality condition) zν ◦ ( λν − λ l ) ≥ ρ gν 14m , where

gν ≡ (zν)T ( λν − λ l )

4m

is the average gap of the complementary pairs.
Let d Fν denote the Jacobian matrix of F evaluated at the tuple (21). Also write

Fν ≡ F(wν, zν,λν,µν), Gν ≡ G(wν,λν,µν), Hν ≡ H(wν,π0,ν, σ ν,µν),
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and






dθ I,ν

dθ II,ν

dθ µ,ν

dθ σ,ν






≡ ∇θ(π I,ν,π II,ν,µν, σ ν),

with the latter being the gradient vector of θ evaluated at (π I,ν,π II,ν,µν, σ ν).
We compute a search direction (dw, d z, dλ, dµ) by solving the convex quadratic

program: for an arbitrary constant c > 0,

minimize −(dθ I,ν)T dπ I − (dθ II,ν)T dπ II − (dθ µ,ν)T dµ

− (dθ σ,ν)T dσ + 1
2 dwT Qν dw

subject to wν + dw ∈ W

‖ dw‖∞ ≤ c
(‖ Fν ‖ + ( zν )T ( λν − λ l )

)

d F ν






dw

d z
dλ

dµ






= −Fν

diag(zν) dλ + diag(λν − λ l) d z = −zν ◦ ( λν − λ l ) + κν gν 14m .

(22)

By using the last two equations in the constraints to eliminate the triple (d z, dλ, dµ),
the above quadratic program can be equivalently reformulated in the variable dw only.
Indeed, writing d Fν in partitioned form:

d Fν = [
d Fν

w d Fν
z d Fν

λ d Fν
µ

]
,

where the subscripts denote the partial Jacobian submatrices of d Fν with respect to the
respective arguments, we can rewrite the two equations in question as:

[
d Fν

w

0

]

dw +
[

d Fν
z d Fν

λ d Fν
µ

diag(λν − λ l) diag(zν) 0

] 




d z

dλ

dµ




 (23)

=
( −Fν

−zν ◦ ( λν − λ l ) + κν gν 14m

)

.

By the special form (20) of the function F, we may solve for (d z, dλ, dµ) in terms of
dw. For this purpose, we need to introduce some further notation. Let dGν

λ denote the
partial Jacobian matrix of G with respect to the variable λ evaluated at (wν,λν,µν);
similarly, let dGν

w and dGν
µ denote respectively the partial Jacobian matrix of G with

respect to w and µ evaluated at (wν,λν,µν); similar notation is used for the partial
Jacobian matrices of H with respect to its arguments. We also write λ−ν ≡ (λν −λ l)

−1.
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With the above notation, the equation (23) takes the form:
[

diag(zν ◦ λ−ν) + dGν
λ dGν

µ

d Hν
λ d Hν

µ

](
dλ

dµ

)

= −
(

Gν − κν gν λ−ν

Hν

)

−
[

dGν
w

d Hν
w

]

dw,

(24)

and

d z = −diag(zν ◦ λ−ν) dλ − zν + κν gν λ−ν.

From (24), we may obtain dπ I,II as an affine function of dw; the directional quadratic
subprogram (22) therefore is equivalent to:

minimize q(dw)

subject to wν + dw ∈ W

‖ dw‖∞ ≤ c
(‖ Fν ‖ + ( zν )T ( λν − λ l )

)
,

(25)

where

q(dw) ≡ −(dθ I,ν)T dπ I(dw) − (dθ II,ν)T dπ II(dw) − (dθ µ,ν)T dµ(dw)

− (dθ σ,ν)T dσ (dw) + 1
2 dwT Qν dw.

Clearly (25) has dw as its only variable.
Having obtained the search direction as described above, we compute a positive step

size as follows. Let us denote





wν(τ)

zν(τ)

λν(τ)

µν(τ)






≡






wν

zν

λν

µν






+ τ






dw

d z

dλ

dµ






, τ ∈ [0, 1].

Notice that wν(τ) ∈ W for all τ ∈ [0, 1]. Define the penalized objective function with
penalty parameter α:

Pα(w, z,λ,µ) ≡ −θ(π I,π II,µ, σ ) + α
(

‖F(w, z,λ,µ)‖2 + zT (λ − λ l)
)

, α >, 0.

Penalty update rule. Let αν ≡ α
pν

ν−1, where pν ≥ 1 is the smallest integer p ≥ 1 such
that

− (dθ I,ν)T dπ I − (dθ II,ν)T dπ II − (dθ µ,ν)T dµ − (dθ σ,ν)T dσ

−α
p
ν−1

[
2‖Fν‖2 + (1 − κν)(zν)T (λν − λ l)

]
< −[‖Fν‖2 + (zν)T (λν − λ l)

]
.

We seek a step size τν ∈ (0, 1] such that the new iterate





wν+1

zν+1

λν+1

µν+1






≡






wν(τν)

zν(τν)

λν(τν)

µν(τν)
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satisfies the positivity condition

( zν+1,λν+1 − λ l ) > 0

and the centrality condition

zν+1 ◦ ( λν+1 − λ l ) ≥ ρ gν+1 14m,

where

gν+1 ≡ (zν+1)T ( λν+1 − λ l )

4m
;

moreover Pαν (w
ν+1, zν+1,λν+1,µν+1) will be sufficiently smaller than Pαν (w

ν, zν,

λν,µν). The determination of τν is as follows. Let

gν(τ) ≡ zν(τ)T ( λν(τ) − λ l )

4m
.

Compute the scalar

τ̄ν ≡ sup

{
τ ∈ (0, 1] : min

1≤i≤m

(
min

k=0,I,II

[
π

k,ν
i (τ)xk,ν

i (τ) − ρ gν(τ)
]
,

yν
i (τ)σ

ν
i (τ) − ρ gν(τ)

)
≥ 0

}
;

this can be accomplished very easily because each term in the above expression is
a quadratic function of τ . Next perform the

Armijo inexact line search: for a given backtracking factor δ ∈ (0, 1) and a constant
γ ∈ (0, 1), let

τν ≡ 0.9999 δ
′
ν τ̄ν,

where 
′
ν is the smallest nonnegative integer 
 such that with

τ ≡ 0.9999 δ
 τ̄ν,

we have

Pαν (w
ν(τ), zν(τ),λν(τ),µν(τ)) − Pαν (w

ν, zν,λν,µν)

≤ − γ τ
[
(dθ I,ν)T dπ I + (dθ II,ν)T dπ II + (dθ µ,ν)T dµ + (dθ σ,ν)T dσ

+ αν

(
2 ‖ Fν ‖2 + ( 1 − κν ) ( zν )T ( λν − λ l )

) ]
.

This completes the description of a general iteration of PIPA. A termination rule for the
algorithm is:

‖ Fν ‖ + ‖ min( zν,λν − λ
 ) ‖ + ‖ dw ‖ ≤ tolerance. (26)
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Solving the quadratic program (25)

We now give some more computationally details for solving the quadratic subprogram
(25) numerically. For this purpose, we discuss how to obtain the functions dπ I,II(dw),
dµ(dw), and dσ (dw) from the equation (24). See the Appendix for further notation.
We write

σ−ν ≡ (
σ ν − ε 1m

)−1
.

Introducing the positive diagonal matrices:

DI,ν ≡ diag
(

xI,ν ◦ π I,−ν
)
, DII,ν ≡ diag

(
xII,ν ◦ π II,−ν

)
,

D0,ν ≡ diag
(

x0,ν ◦ π0,−ν
)
, Ds,ν ≡ diag

(
yν ◦ σ−ν

)
,

the equation (24) can be written in the following block form:





dGν
I + DI,ν 0 0 dGν

I,σ dGν
I,µ

0 dGν
II + DII,ν 0 dGν

II,σ dGν
II,µ

0 0 dGν
0 + D0,ν dGν

0,σ dGν
0,µ

0 0 dGν
σ,0 dGν

σ + Ds,ν dGν
σ,µ

0 0 d Hν
0 d Hν

σ d Hν
µ











dπ I

dπ II

dπ0

dσ

dµ






−






Gν
I − κν gν π I,−ν

Gν
II − κν gν π II,−ν

Gν
0 − κν gν π0,−ν

Gν
σ − κν gν σ−ν

Hν






−






dGν
I,w

dGν
II,w

dGν
0,w

dGν
σ,w

d Hν
w






dw.

(27)

The solution of the latter equation can be accomplished in two steps. First solve for
(dπ0, dσ , dµ) in the equation:






dGν
0 + D0,ν dGν

0,σ dGν
0,µ

dGν
σ,0 dGν

σ + Ds,ν dGν
σ,µ

d Hν
0 d Hν

σ d Hν
µ











dπ0

dσ

dµ




 = −






Gν
0 − κν gν π0,−ν

Gν
σ − κν gν σ−ν

Hν






−





dGν
0,w

dGν
σ,w

d Hν
w




 dw

and then back substitute to obtain dπ I and = dπ II from the equations:
(
dGν

I + DI,ν) dπ I = − (dGν
I,σ dσ + dGν

I,µdµ + Gν
I − κνgνπ

I,−ν + dGν
I,wdw

)
,

(
dGν

II + DII,ν) dπ II = − (dGν
II,σ dσ + dGν

II,µdµ + Gν
II − κνgνπ

II,−ν + dGν
II,wdw

)
.
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Let us denote

� ν ≡
[

dGν
σ + Ds,ν dGν

σ,µ

d Hν
σ d Hν

µ

]

−
[

dGν
σ,0

d Hν
0

] (
dGν

0 + D0,ν
)−1 [

dGν
0,σ dGν

0,µ

]
.

The nonsingularity of this matrix is essential to the overall performance of PIPA. In
terms of � ν, we have
[

dσ

dµ

]

= (�ν)−1

{[
dGν

σ,0

d Hν
0

](
dGν

0 + D0,ν
)−1 (

Gν
0 − κνgνπ

0,−ν
)

−
(

Gν
σ − κνgνσ

−ν

Hν

)

+
([

dGν
σ,0

d Hν
0

](
dGν

0 + D0,ν
)−1

dGν
0,w −

[
dGν

σ,w

d Hν
w

])

dw

}

.

Consequently, we have

−(dθ I,ν)T dπ I = constant + ( cI,ν )T dw

where

( c I,ν )T ≡ (dθ I,ν)T ( dGν
I + DI,ν

)−1

{

dGν
I,w + [ dGν

I,σ dGν
I,µ

]
( �ν )−1

([
dGν

σ,0

d Hν
0

] (
dGν

0 + D0,ν
)−1

dGν
0,w −

[
dGν

σ,w

d Hν
w

])}

.

A similar expression for −(dθ II,ν)T dπ II can be derived. Moreover, we have

−(dθ µ,ν)T dσ − (dθ σ,ν)T dµ = constant − ( cµσ,ν )T dw

where

(cµσ,ν)T ≡
[
(dθ µ,ν)T (dθ σ,ν)T

]
(�ν)−1

([
dGν

σ,0

d Hν
0

](
dGν

0 + D0,ν
)−1

dGν
0,w −

[
dGν

σ,w

d Hν
w

])

.

Consequently, the quadratic subprogram (24) can now be written as

minimize ( c I,ν + c II,ν + cµσ,ν )T dw + 1
2 dwT Qν dw

subject to wν + dw ∈ W

‖ dw‖∞ ≤ c
(‖ F ν ‖ + ( zν )T ( λν − λ l )

)
.

(28)

In the special case where W is the unit simplex and Qν is chosen to be a positive diagonal
matrix (such as a positive multiple of the identity matrix), the latter quadratic program
can be solved very effectively by a specialized algorithm.



A likelihood-MPEC approach to target classification 21

An implicit programming approach

As an alternative to PIPA, a piecewise programming approach can also be used for
solving the bilevel optimization problem (6). Specifically, this approach, IMPA, is based
on an equivalent implicit programming formulation of (6) as a one-level nonsmooth
optimization problem in the first-level variable w alone. The cornerstone of the IMPA
is the following:

Implicit program postulate: The lower-level optimization problem (7) has an optimal
solution

( µ(w), σ (w),π0(w) )

that is a B(ouligand)-differentiable function of the first-level variable w ∈ W ; similarly,
the two log-likehood maximization problems: for α = I, II,

maximize Lα(w,µ(w), σ (w),π )

subject to π ≥ 0,

m∑

i=1

πi = 1,
(29)

have optimal solutions π I(w) and π II(w) that are B-differentiable in w.

It should be noted that for a given triple (w,µ, σ ), the function LI,II(w,µ, σ , ·) is
concave in the last argument, as confirmed by the positive semidefiniteness of the two
Jacobian matrices (30) and (31); thus the maximization problem (29) is not expected to
be difficult for each fixed w.

Under the above postulate, the bilevel optimization problem (6) may now be formu-
lated in the following implicit form:

maximize θ̂(w) ≡ θ(π I(w),π II(w),µ(w), σ (w))

subject to w ∈ W,

where the (implicitly defined) objective function w is a B-differentiable function of the
single variable w. Based on the latter formulation, iterative algorithms can be developed
for computing a stationarity point of the problem (6).

5. A numerical application

In this section we report the results of a computational experiment with the application
of PIPA for solving the MPECs arising from the borrowed strength and conventional
statistical models in a multispectral minefield application. Specifically, we consider
data collected under the Coastal Battlefield Reconnaissance and Analysis (COBRA)
Program. The COBRA remote sensing data are taken from a passive multispectral video
sensor with six different spectral bands aboard an unmanned aerial vehicle and are made
available by NSWC Coastal Systems Station, Dahlgren Division, Panama City, Florida,
to aid in the analysis of algorithms and approaches. A point pattern map provided with
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the data contains candidate detections, both false positives and true mines, used in this
experiment. See [10] for more details.

Before giving details of the results, we emphasize the fact that the optimization prob-
lems being solved are highly nonlinear and nonconvex; the complementarity constraints
are a salient feature of these problems that make them particularly challenging. Since
PIPA is a local search method and we make no claim of its ability to obtain a global
optimum, our goal is therefore to demonstrate the effectiveness of the algorithm for
obtaining a satisfactory (as opposed to best) target classification.

Our experience confirms that this class of MPECs is indeed not easy to be solved
computationally. A straightforward implementation of PIPA yielded undesirable results;
careful tuning of certain parameters in PIPA were essential. The following are two
successful strategies in adjusting these parameters. Details are contained in the computer
codes which are available upon request.

(a) In each directional quadratic subprogram (25), the following modified bound on the
size of the search direction dw was employed:

‖ dw‖∞ ≤ 2 min
(
‖ Fν ‖2 + ( zν )T ( λν − λ l ), rad

)
,

where “rad” was a constant initially set equal to 10−3 and was adjusted according to

rad = max( 104, rad ∗ .1 )

when the search step became too small. The matrix Qν was set equal to the identity
matrix.

(b) The centering parameter κν has a substantial effect on the convergence of the
algorithm. We set this parameter using an adaptive scheme that depends on the step size
τν−1 computed at the previous iteration.

We coded up PIPA as described in Sect. 4 in MATLAB. The “qp” function within
the MATLAB Optimization Toolbox was employed to solve the directional quadratic
subprograms (28). The first-level feasible set W was the unit simplex in �d . The training
data were given by the 12 x 6 matrix X I and the 27 x 6 matrix X II; thus d = 6. An initial
weight vector

w0 = 1
6 16

was used. With this vector, the EM algorithm commonly used in statistical estima-
tion was employed to generate an initial triple under a very crude stopping rule (the
pre-processing step).

This triple was used as the starting iterate for an interior-point method (which
is essentially PIPA with all the first-level elements removed) to compute an initial
feasible solution to the MPEC (12); that is, we first solved a state problem under
a tight termination tolerance (the initialization step). Note: the state problem is itself
is a nonconvex constrained optimization problem. We recorded the objective value
calculated at the computed feasible solution. This solution was then slightly perturbed to
ensure the positivity of the complementary variables as required by PIPA; the perturbed
vector then became the initial iterate used by PIPA (the main calculation). We terminated
PIPA using the termination rule (26) where tolerance = 1.e-7. We recorded the objective
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value at termination of PIPA and computed the ratio of this value with that of the initial
feasible solution.

In the multispectral minefield application to which the PIPA was applied, there are six
spectral bands of data (d = 6); class I data are obtained from 12 true mine observations
(n1 = 12) and class II data from 27 false mine observations (n2 = 27). We have run
our MATLAB code on a 2-term, 3-term, and 4-term borrowed strength model using the
θ2 objective function (thus m = 2, 3, 4) as well as a 2-term conventional model. Recall
that the total number of MPEC variables is equal to d + 5m in the borrow strength
model and d + 6m in the conventional model. Thus the largest MPEC that we have
solved has 26 variables. Although this number is very small, the high nonlinearity of the
defining functions and the nonconvexity of the constraints and objective function make
the overall MPEC a difficult problem. The results of the runs are summarized as follows.

In all cases, the pre-processing step was uneventful, with the number of iterations
ranging from low 20 to over 200. In the main calculation, the number of PIPA iterations in
the successful runs ranges from the low teens to about 60. Invariably, the ratio of objective
values was greater than unity, meaning that a better feasible solution was obtained by
PIPA. Specifically, in the 2-term borrowed strength model, the best improvement in
objective values was a little higher than 8%. In the 3-term borrowed strength model, this
improvement reached higher than 40%. In the 2-term conventional model, we obtained a
45% improvement in the objective values. The most impressive result occurred in a run
with the 4-term borrowed strength model; PIPA computed a feasible solution that was 3.5
times better in objective value than that obtained at the initialization step. This solution
was then employed in a statistical test to calculate the probability of misclassification
error. The estimated probability of error using the PIPA solution is by far the smallest
among all known probabilities reported in the literature for this set of land mine data.
For more details, see the accompanying paper [10].

The conclusion of this experiment is that although it has not been an easy experience
with solving this class of MPECs, PIPA is nevertheless successful in obtaining the best
result on a practical application having to do with land mine classification where the
data originated from a realistic source.

Notes added in proof: Recent work by Sven Leiffer at Argonne National Laboratory has
shown that there is an outstanding convergence issue with PIPA. Dr. Leiffer’s discovery
could explain the difficulty we have had in our computational experiments with the use
of PIPA in this application.

6. An extension: bivariate normal density

We introduce an extension of the basic statistical method that has led to the bilevel
optimization problems (6) and (13). Specifically, in addition to the aggregation function
χ I,II, we consider a second pair of such functions:

	 I : W ⊂ �d → �n1 for class I target,

	 II : W ⊂ �d → �n2 for class II target.
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For instance, these can again be be additive functions just like χ I,II. Let

φ(x; m,
) ≡ 1

( 2π )n/2
√

det 

exp

(
− 1

2 ( x − m )T �−1( x − m )
)

, x ∈ �2,

denote the bivariate normal density function with m being the 2-dimensional vector of
unknown model means and 
 being a 2×2 positive definite unknown model covariance
matrix. Based on this bivariate normal density function φ, the density functions of the
two targets are then taken to be:

m∑

i=1

π I
i φ(x; mI,i ,
I,i) for target I,

m∑

i=1

π II
i φ(x; mII,i,
II,i) for target II;

again, we wish to separate these density functions by using a separation function such
as

1
2

∫

�2

[
m∑

i=1

π I
i φ(x; mI,i,
I,i) − π II

i φ(x; mII,i,
II,i)

]2

dx.

Using either conventional or borrowed strength maximum likelihood estimation, one
can formulate an MPEC whereby one seeks a vector of suitably constrained weights w,
the vectors of model means mI,i and mII,i , the vectors of model covariance matrices

I,i and 
II,i and mixture coefficients π

I,II
i so as to maximize a separation measure

subject to maximum likelihood constraints. The detailed formulation of such an MPEC
is omitted. Further extension to a multivariate normal density model is also possible.

A major difference between the MPEC resulting from a bivariate (and more gener-
ally, a multivariate) normal density model and that derived from the univariate normal
density model is that instead of the unknown standard deviations (which are scalars)
in the latter model, we encounter covariance matrices that are part of the unknowns
of the MPEC; these matrices are restricted to be positive definite. Therefore, the max-
imum likelihood constraints themselves belong to the class of semidefinite programs;
this aspect adds another layer of computational complication to the overall optimization
problem. We expect great challenges in solving these highly sophisticated MPECs.

7. Conclusion

In this paper, we have presented the mathematical and algorithmic details of the MPEC
approach for target classification. Several statistical methods are described that lead to
various MPEC models. The general computational difficulties of these MPEC models
are noted. The overall methodology is successfully demonstrated on a realistic classi-
fication application. Our conclusion with this research is that the MPEC methodology
is promising for target classification but further research is needed to fine tune the
methodology in order to enhance its effectiveness in practical applications of this kind.
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Appendix: derivative formulas

This appendix has three parts. The first part gives the explicit expressions for the par-
tial derivatives of the scalar function θ2(π

I,π II,µ, σ ) (given by (4)) with respect to
its arguments. The second part gives the various partial derivatives of the vector func-
tion ϕ(x; µ; σ ) and the third part gives the partial Jacobian matrices for the functions
G(w,π I,π II,π0, σ ,µ) and H(w,π I,π II,π0, σ ,µ) (given by (18) and (19)) that de-
fine the MPEC (12) of the target classification problem. Although these derivatives are
not difficult to calculate, they are nevertheless cumbersome and yet their explicit forms
are essential for the efficient implementation of the PIPA for solving the MPEC. Thus
we document the detailed formulas for these derivatives. Analogous derivative formu-
las can be obtained for the functions θ̃2(π

I,II,µI,II, σ I,II), G(w, π I,II,µI,II, σ I,II), and
H(w, π I,II,µI,II, σ I,II) (given by (15), (16), and (17), respectively); the latter formulas
are omitted.

The function θ2(π
I,π II,µ, σ )

Let ∇I,IIθ2 denote these partial derivatives with respect to π I and π II. We have

∇Iθ2(π
I,π II,µ, σ ) = Q(µ, σ )

(
π I − π II) = −∇IIθ2(π

I,π II,µ, σ ).

Similarly, letting ∇µθ2 and ∇σθ2 denote the partial derivatives of θ2 with respect to µ

and σ , we have

∇µθ2(π
I,π II,µ, σ ) = (π I − π II) ◦ M(µ, σ )

(
π I − π II)

∇σ θ2(π
I,π II,µ, σ ) = (π I − π II

) ◦ S(µ, σ )
(
π I − π II

)
,

where M(µ, σ ) and S(µ, σ ) are m × m matrices with entries given respectively by

mi j (µ, σ ) ≡ µ j − µi

σ2
i + σ2

j

ϕ(µi; µ j, σi j )

si j (µ, σ ) ≡






− 1

4
√

π σ2
i

, if i = j

σi

σ2
i + σ2

j

[

−1 + ( µ j − µi )2

σ2
i + σ2

j

,

]

ϕ(µi; µ j , σi j ) if i �= j;

recall σi j =
√

σ2
i + σ2

j . Notice that the matrix M(µ, σ ) is skew-symmetric; thus, in

particular, it has zero diagonals.
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The function ϕ(x; µ; σ )

We have the first partial derivatives:

dϕx(x; µ, σ ) ≡
(

∂ϕ(x; µ
, σ
)

∂x

)m


=1
,

dϕµ(x; µ, σ ) ≡
(

∂ϕ(x; µ
, σ
)

∂µ


)m


=1
, dϕσ (x; µ, σ ) ≡

(
∂ϕ(x; µ
, σ
)

∂σ


)m


=1
;

and for the second partial derivatives:

d2ϕµ(x; µ, σ ) ≡
(

∂2ϕ(x; µ
, σ
)

∂µ2



)m


=1

,

d2ϕσ (x; µ, σ ) ≡
(

∂2ϕ(x; µ
, σ
)

∂σ2



)m


=1

,

d2ϕµ,x(x; µ, σ ) = d2ϕx,µ(x; µ, σ ) ≡
(

∂2ϕ(x; µ
, σ
)

∂µ
 ∂x

)m


=1
,

d2ϕσ,x(x; µ, σ ) = d2ϕx,σ (x; µ, σ ) ≡
(

∂2ϕ(x; µ
, σ
)

∂σ
 ∂x

)m


=1
,

and

d2ϕµ,σ (x; µ, σ ) = d2ϕσ,µ(x; µ, σ ) ≡
(

∂2ϕ(x; µ
, σ
)

∂µ
 ∂σ


)m


=1
.

We note the following explicit formulas:

−∂ϕ(x; µ, σ)

∂x
= ∂ϕ(x; µ, σ)

∂µ
= x − µ

σ2 ϕ(x; µ, σ),

∂ϕ(x; µ, σ)

∂σ
=
(

(x − µ)2

σ3 − 1

σ

)
ϕ(x; µ, σ),

∂2ϕ(x; µ, σ)

∂µ2 =
[(

x − µ

σ2

)2

− 1

σ2

]

ϕ(x; µ, σ) = 1

σ

∂ϕ(x; µ, σ)

∂σ
,

∂2ϕ(x; µ, σ)

∂σ2 =
[

(x − µ)4

σ6 − 5 (x − µ)2

σ4 + 2

σ2

]
ϕ(x; µ, σ),

∂2ϕ(x; µ, σ)

∂µ ∂x
= ∂2ϕ(x; µ, σ)

∂x ∂µ
= −∂2ϕ(x; µ, σ)

∂µ2 ,

∂2ϕ(x; µ, σ)

∂σ ∂x
= ∂2ϕ(x; µ, σ)

∂x ∂σ
=
[

− (x − µ)3

σ5
+ 3 (x − µ)

σ3

]
ϕ(x; µ, σ),

and

∂2ϕ(x; µ, σ)

∂σ ∂µ
= ∂2ϕ(x; µ, σ)

∂µ ∂σ
=
[

(x − µ)3

σ5
− 3 (x − µ)

σ3

]
ϕ(x; µ, σ).
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The functions G(w,π I,π II,π0, σ ,µ) and H(w,π I,π II,π0, σ ,µ)

Finally, we give the explicit forms of the matrices dGν
λ, dGν

µ, dGν
w, d Hν

λ, and d Hν
µ. In

the formulas given below, we assume that the functions χ I,II are additive as expressed
by (2). From their definitions (18) and (19), we have

dGν
λ =






dGν
I 0 0 dGν

I,σ

0 dGν
II 0 dGν

II,σ

0 0 dGν
0 dGν

0,σ

0 0 dGν
σ,0 dGν

σ






, dGν
µ =






dGν
I,µ

dGν
II,µ

dGν
0,µ

dGν
σ,µ






, dGν
w =






dGν
I,w

dGν
II,w

dGν
0,w

dGν
σ,w






d Hν
λ = (

0 0 d Hν
0 d Hν

σ

)
,

where the various partial Jacobian matrices are given as follows:

dGν
I ≡

n1∑

i=1

ϕ(χ I
i (w

ν); µν, σ ν) ϕ(χ I
i (w

ν); µν, σ ν)T

( ψ(χ I
i (w

ν); µν, σ ν,π I,ν) )2
, (30)

dGν
II ≡

n2∑

i=1

ϕ(χ II
i (wν); µν, σ ν) ϕ(χ II

i (wν); µν, σ ν)T

( ψ(χ II
i (wν); µν, σ ν,π II,ν) )2

, (31)

dGν
I, σ ≡

n1∑

i=1

[
ϕ(χ I

i (w
ν); µν, σ ν)

(
diag( π I,ν ) dϕσ (χ I

i (w
ν); µν, σ ν)

)T

( ψ(χ I
i (w

ν); µν, σ ν,π I,ν) )2

−diag( dϕσ (χ I
i (w

ν); µν, σ ν) )

ψ(χ I
i (w

ν); µν, σ ν,π I,ν)

]

,

dGν
II, σ ≡

n2∑

i=1

[
ϕ(χ II

i (wν); µν, σ ν)
(

diag( π II,ν ) dϕσ (χ II
i (wν); µν, σ ν)

)T

( ψ(χ II
i (wν); µν, σ ν,π II,ν) )2

−diag( dϕσ (χ II
i (wν); µν, σ ν) )

ψ(χ II
i (wν); µν, σ ν,π II,ν)

]

,

dGν
0 ≡

n1∑

i=1

ϕ(χ I
i (w

ν); µν, σ ν) ϕ(χ I
i (w

ν); µν, σ ν)T

( ψ(χ I
i (w

ν); µν, σ ν,π0,ν) )2

+
n2∑

i=1

ϕ(χ II
i (wν); µν, σ ν) ϕ(χ II

i (wν); µν, σ ν)T

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

,

dGν
0, σ ≡

n1∑

i=1

[
ϕ(χ I

i (w
ν); µν, σ ν)

(
diag( π0,ν ) dϕσ (χ I

i (w
ν); µν, σ ν)

)T

( ψ(χ I
i (w

ν); µν, σ ν,π0,ν) )2

−diag( dϕσ (χ I
i (w

ν); µν, σ ν) )

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

+
n2∑

i=1

[
ϕ(χ II

i (wν); µν, σ ν)
(

diag( π0,ν ) dϕσ (χ II
i (wν); µν, σ ν)

)T

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

−diag( dϕσ (χ II
i (wν); µν, σ ν) )

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]

,
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dGν
σ,0 ≡

n1∑

i=1

[
diag( π0,ν ) dϕσ (χ I

i (w
ν); µν, σ ν) ϕ(χ I

i (w
ν); µν, σµ)T

( ψ(χ I
i (w

ν); µν, σ ν,π0,ν) )2

−diag( dϕσ (χ I
i (w

ν); µν, σ ν) )

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

+
n2∑

i=1

[
diag( π0,ν ) dϕσ (χ II

i (wν); µν, σ ν) ϕ(χ II
i (wν); µν, σ ν)T

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

−diag( dϕσ (χ II
i (wν); µν, σ ν) )

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]

,

dGν
σ ≡ diag(π0,ν)

{ n1∑

i=1

[
dϕσ (χ I

i (w
ν); µν, σ ν)

(
diag(π0,ν)dϕσ (χ I

i (w
ν); µν, σ ν)

)T

( ψ(χ I
i (w

ν); µν, σ ν,π0,ν) )2

−diag( d2ϕσ (χ I
i (w

ν); µν, σ ν) )

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

+
n2∑

i=1

[
dϕσ (χ II

i (wν); µν, σ ν)
(
diag(π0,ν)dϕσ (χ II

i (wν); µν, σ ν)
)T

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

−diag(d2ϕσ (χ II
i (wν); µν, σ ν))

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]}

,

dGν
I, µ ≡

n1∑

i=1

[
ϕ(χ I

i (w
ν); µν, σ ν)

(
diag( π I,ν ) dϕµ(χ I

i (w
ν); µν, σ ν)

)T

( ψ(χ I
i (w

ν); µν, σ ν,π I,ν) )2

−diag( dϕµ(χ I
i (w

ν); µν, σ ν) )

ψ(χ I
i (w

ν); µν, σ ν,π I,ν)

]

,

dGν
II, µ ≡

n2∑

i=1

[
ϕ(χ II

i (wν); µν, σ ν)
(

diag( π II,ν ) dϕµ(χ II
i (wν); µν, σ ν)

)T

( ψ(χ II
i (wν); µν, σ ν,π II,ν) )2

−diag( dϕµ(χ II
i (wν); µν, σ ν) )

ψ(χ II
i (wν); µν, σ ν,π II,ν)

]

,

dGν
0, µ ≡

n1∑

i=1

[
ϕ(χ I

i (w
ν); µν, σ ν)

(
diag( π0,ν ) dϕµ(χ I

i (w
ν); µν, σ ν)

)T

( ψ(χ I
i (w

ν); µν, σ ν,π0,ν) )2

−diag( dϕµ(χ I
i (w

ν); µν, σ ν) )

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

+
n2∑

i=1

[
ϕ(χ II

i (wν); µν)
(

diag( π0,ν ) dϕµ(χ II
i (wν); µν, σ ν)

)T

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

−diag( dϕµ(χ II
i (wν); µν, σ ν) )

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]

,
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dGν
σ,µ ≡ diag(π0,ν)

{ n1∑

i=1

[
dϕσ (χ I

i (w
ν); µν, σ ν)

(
diag(π0,ν)dϕµ(χ I

i (w
ν); µν, σ ν)

)T

(ψ(χ I
i (w

ν); µν, σ ν,π0,ν))2

−diag(d2ϕσ,µ(χ I
i (w

ν); µν, σ ν))

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

+
n2∑

i=1

[
dϕσ (χ II

i (wν); µν, σ ν)
(
diag(π0,ν)dϕµ(χ II

i (wν); µν, σ ν)
)T

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

−diag(d2ϕσ,µ(χ II
i (wν); µν, σ ν))

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]}

,

dGν
I,w ≡

n1∑

i=1

[
(π I,ν)T dϕx(χ

I
i (w

ν); µν, σ ν)

( ψ(χ I
i (w

ν); µν, σ ν,π I,ν) )2
ϕ(χ I

i (w
ν); µν, σ ν)

− dϕx(χ
I
i (w

ν); µν, σ ν)

ψ(χ I
i (w

ν); µν, σ ν,π I,ν)

]

X I
i ·,

dGν
II,w ≡

n2∑

i=1

[
(π II,ν)T dϕx(χ

II
i (wν); µν, σ ν)

( ψ(χ II
i (wν); µν, σ ν,π II,ν) )2

ϕ(χ II
i (wν); µν, σ ν)

− dϕx(χ
II
i (wν); µν, σ ν)

ψ(χ II
i (wν); µν, σ ν,π II,ν)

]

X II
i ·,

dGν
0,w ≡

n1∑

i=1

[
(π0,ν)T dϕx(χ

I
i (w

ν); µν, σ ν)

( ψ(χ I
i (w

ν); µν, σ ν,π0,ν) )2
ϕ(χ I

i (w
ν); µν, σ ν)

− dϕx(χ
I
i (w

ν); µν, σ ν)

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

X I
i · +

n2∑

i=1

[
(π0,ν)T dϕx(χ

II
i (wν); µν, σ ν)

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

ϕ(χ II
i (wν); µν, σ ν)

− dϕx(χ
II
i (wν); µν, σ ν)

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]

X II
i ·,

dGν
σ,w ≡ diag(π0,ν)

{ n1∑

i=1

[
(π0,ν)T dϕx(χ

I
i (w

ν); µν, σ ν)

( ψ(χ I
i (w

ν); µν, σ ν,π0,ν) )2
dϕσ (χ I

i (w
ν); µν, σ ν)

− d2ϕσ,x(χ
I
i (w

ν); µν, σ ν)

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

X I
i · +

n2∑

i=1

[
(π0,ν)T dϕx(χ

II
i (wν); µν, σ ν)

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

dϕσ (χ II
i (wν); µν, σ ν)

− d2ϕσ,x(χ
II
i (wν); µν, σ ν)

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]

X II
i ·

}

,
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d Hν
0 ≡

n1∑

i=1

[
diag( π0,ν ) dϕµ(χ I

i (w
ν); µν, σ ν) ϕ(χ I

i (w
ν); µν, σµ)T

( ψ(χ I
i (w

ν); µν, σ ν,π0,ν) )2

−diag( dϕµ(χ I
i (w

ν); µν, σ ν) )

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

+
n2∑

i=1

[
diag( π0,ν ) dϕµ(χ II

i (wν); µν, σ ν) ϕ(χ II
i (wν); µν, σµ)T

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

−diag( dϕµ(χ II
i (wν); µν, σ ν) )

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]

,

d Hν
σ ≡ diag(π0,ν)

{
n1∑

i=1

[
dϕµ(χ I

i (w
ν); µν, σ ν)

(
diag(π0,ν)dϕσ (χ I

i (w
ν); µν, σ ν)

)T

(ψ(χ I
i (w

ν); µν, σ ν,π0,ν))2

−diag( d2ϕµ,σ (χ I
i (w

ν); µν, σ ν) )

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

+
n2∑

i=1

[
dϕµ(χ II

i (wν); µν, σ ν)
(
diag(π0,ν)dϕσ (χ II

i (wν); µν, σ ν)
)T

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

−diag(d2ϕµ,σ (χ II
i (wν); µν, σ ν))

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]}

,

d Hν
µ ≡ diag(π0,ν)

{
n1∑

i=1

[
dϕµ(χ I

i (w
ν); µν, σ ν)

(
diag(π0,ν)dϕµ(χ I

i (w
ν); µν, σ ν)

)T

(ψ(χ I
i (w

ν); µν, σ ν,π0,ν))2

−diag(d2ϕµ(χ I
i (w

ν); µν, σ ν))

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

+
n2∑

i=1

[
dϕµ(χ II

i (wν); µν, σ ν)
(
diag(π0,ν)dϕµ(χ II

i (wν); µν, σ ν)
)T

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

−diag(d2ϕµ(χ II
i (wν); µν, σ ν))

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]}

,

d Hν
w ≡ diag(π0,ν)

{
n1∑

i=1

[
(π0,ν)T dϕx(χ

I
i (w

ν); µν, σ ν)

( ψ(χ I
i (w

ν); µν, σ ν,π0,ν) )2
dϕµ(χ I

i (w
ν); µν, σ ν)

− d2ϕµ,x(χ
I
i (w

ν); µν, σ ν)

ψ(χ I
i (w

ν); µν, σ ν,π0,ν)

]

X I
i · +

n2∑

i=1

[
(π0,ν)T dϕx(χ

II
i (wν); µν, σ ν)

( ψ(χ II
i (wν); µν, σ ν,π0,ν) )2

dϕµ(χ II
i (wν); µν, σ ν)

− d2ϕµ,x(χ
II
i (wν); µν, σ ν)

ψ(χ II
i (wν); µν, σ ν,π0,ν)

]

X II
i ·

}

.
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