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Abstract

More data helps us generalize to a task. But real datasets
can contain out-of-distribution (OOD) data; this can come
in the form of heterogeneity such as intra-class variabil-
ity but also in the form of temporal shifts or concept drifts.
We demonstrate a counter-intuitive phenomenon for such
problems: generalization error of the task can be a non-
monotonic function of the number of OOD samples; a small
number of OOD samples can improve generalization but if
the number of OOD samples is beyond a threshold, then the
generalization error can deteriorate. We also show that if
we know which samples are OOD, then using a weighted ob-
jective between the target and OOD samples ensures that the
generalization error decreases monotonically. We demon-
strate and analyze this issue using linear classifiers on syn-
thetic datasets and medium-sized neural networks on CIFAR-
10.

1. Introduction

We procure more data with the goal of improving the
generalization error. The central assumption of doing so—
which is baked into learning theory [1]—is that this data
comes from the desired task. But real data is often highly
heterogeneous [2]; this heterogeneity can arise from nui-
sances, geometric ones such as viewpoint or semantic ones
such as chairs of different shapes. Datasets curated at the
Internet-scale [3] may also be susceptible to data poisoning
attacks [4]. Such “out-of-distribution” (OOD) data, i.e., data
that does not come from our desired task can be detrimental
to performance.

We demonstrate a counter-intuitive phenomenon:
generalization error on the target task can be a non-
monotonic function of the number of OOD samples. In
other words, there exist situations when a small number of

To be presented as a short paper at the Out-of-Distribution General-
ization in Computer Vision (OOD-CV) workshop, ECCV 2022.

OOD samples can improve the generalization error but if
the number of OOD samples is beyond a threshold, then
the generalization error deteriorates. If we know which
samples are OOD, e.g., using a two-sample test to check
for changes in the distribution [5], then the non-monotonic
nature of the generalization error may be mitigated by simply
ignoring the OOD samples. We show how one can do better:
using a weighted objective between the target and OOD
samples, we can ensure that the generalization error on
the target task decreases monotonically with the number
of OOD samples.

2. Generalization error is non-monotonic in the
number of OOD samples

We define a task P as a joint distribution over the input
domain X and the output domain Y . We model the hetero-
geneity in the dataset as two distributions: n samples drawn
from a target task Pt and m samples drawn from an out-of-
distribution (OOD) task Po. We would like to minimize the
generalization error et(h) = E(x,y)∼Pt

[h(x) ̸= y] on the
target task. In order to do so, we may find a hypothesis that
minimizes the empirical loss

ê(h) =
1

n+m

n+m∑
i=1

ℓ (h(xi), yi) , (1)

using the dataset {(xi, yi)}n+m
i=1 ; here ℓ measures the dis-

crepancy between the prediction h(xi) and the label yi. If
Pt = Po, then classical results in learning theory show
that et(h) − ê(h) = O((n + m)−1/2). But if Pt ̸= Po,
then we should expect that the error on Pt of a hypothesis
obtained by minimizing the average empirical loss can be
sub-optimal, especially in cases when the number of OOD
samples m ≫ n.

2.1. An example using Fisher’s Linear Discriminant

Consider a binary classification problem with one-
dimensional inputs in Fig. 1. Target samples come from
a Gaussian mixture model (with means {−µ, µ} for the two
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Figure 1. Left: A schematic of the Gaussian mixture model corre-
sponding to the target task (top) and the OOD task (bottom). The
OOD sample size (m = 28) at which the target generalization error
is minimized at ∆ = 1.6 is indicated in the diagram. Right: For
n = 100, we plot the generalization error of FLD on the target
task as a function of the ratio of OOD and target samples m/n, for
different OOD tasks corresponding to different values of ∆. This
plot was computed using the analytical expression for the general-
ization error in (2); see Appendix B.6 for a numerical simulation
study. For small values of ∆, when the two tasks are similar to
each other, the generalization error et(h) decreases monotonically.
However, beyond a certain value of ∆, the generalization error is
non-monotonic in the number of OOD samples. The optimal value
of m/n which leads to the best generalization error is a function
of the relatedness between the two tasks, as governed by ∆ in this
example. This non-monotonic behavior can be explained in terms
of a bias-variance tradeoff with respect to the target task: a large
number of OOD samples reduces the variance but also results in a
bias with respect to the optimal hypothesis of the target task.

classes) and OOD samples are drawn from a Gaussian mix-
ture with means {−µ+∆, µ+∆}; also see Appendix B.1.
We can use Fisher’s linear discriminant (FLD) to get an an-
alytical expression for the generalization error of the target
task

et(ĥ) =
1

2

[
Φ

(
m∆− (n+m)µ√
(n+m)(n+m+ 1)

)
+Φ

(
−m∆− (n+m)µ√
(n+m)(n+m+ 1)

)]
(2)

where Φ is the CDF of the standard normal distribution;
see Appendices B.2 and B.3 for the derivation.

We can capture this discussion as a theorem, and our FLD
example provides the proof.

Theorem 1. There exist target and OOD tasks Pt and Po

respectively such that the generalization error on the target
task of the hypothesis that minimizes the empirical risk in (1)
is non-monotonic in the number of OOD samples.

2.2. Demonstrating non-monotonic generalization
error in neural networks

A non-monotonic trend in the generalization error can
arise from geometric intra-class nuisances, which are very
common in curated datasets [6]. We constructed sub-tasks

from CIFAR-10 to study this aspect (Appendix C.1). We
consider a binary classification problem (Bird vs. Cat) as the
target task and introduce different kinds of OOD samples as
images rotated by an angle between 0◦-135◦. Fig. 2 (left)
shows that the generalization error decreases monotonically
for small rotations but it is non-monotonic for larger angles.

Large datasets can contain categories whose appearance
evolves in time (e.g., a typical laptop in 2022 looks very
different from that of 1992), or categories can have semantic
intra-class nuisances (e.g., chairs of different shapes). We
split CIFAR-10 into five binary classification tasks to study
this phenomenon (see Appendix C.1) and evaluated the trend
in generalization error for all 20 distinct pairs of tasks. Fig. 2
(middle, red curves) illustrates non-monotonic trends for 3
such pairs; see Appendix C for more details.

3. Exploiting the non-monotonic nature of gen-
eralization error

Suppose we knew which samples in our dataset were
OOD for the target task. It stands to reason that we should
be able to not only mitigate the non-monotonic nature of the
generalization error but also exploit it, as suggested below.

Theorem 2 (Paraphrased from [7]). For tasks Pt and Po,
let ĥα be the minimizer of the α-weighted empirical risk
êα(h) = αêt(h) + (1− α)êo(h). The generalization error

et(ĥ) ≤ et(h
∗
t )+4

√(
α2

n
+

(1− α)2

m

)√
VH − log δ

+ 2(1− α)dH(Pt, Po),

with probability at least 1− δ. Here h∗
t = argminh∈H et(h)

is the target error minimizer; VH is a constant proportional to
the VC-dimension of the hypothesis class H and dH(Pt, Po)
is a notion of relatedness between the tasks Pt and Po.

In simple words, if we use an appropriate value of α that
makes the second and third terms on the right-hand side
small, then we can mitigate the deterioration of generaliza-
tion error due to OOD samples. If the OOD samples are
very different from those of the target task, i.e., if d(Pt, Po)
is large, then this theorem suggests that we should pick an
α ≈ 1. Doing so effectively ignores the OOD samples
and the generalization error then decreases monotonically as
O(n−1/2).

3.1. Choosing the optimal α∗

If we define ρ =
√
VH−log δ

dH(Pt,Po)
to be, roughly speaking, the

ratio of the capacity and the distance between tasks, then a
short calculation shows that for α ∈ [0, 1]

α∗(n,m) =

{
1 if n ≥ 4ρ2,

n
n+m

(
1 +

√
m2

4ρ2(n+m)−nm

)
else.
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Figure 2. Left: A binary classification problem (Bird vs. Cat) is the target task and images of these classes rotated by different angles θ◦ are
the OOD task. We see non-monotonic curves for larger values of θ◦. For 135◦ in particular, the generalization error at m/n = 50 is worse
than the generalization error with no OOD samples, i.e. OOD samples actively hurt generalization. Middle: Generalization error on the
target task is plotted against the number of samples from the OOD task for 3 different pairs of target-OOD tasks constructed from CIFAR-10
for three settings: task-agnostic ERM where we minimize the total average risk over both tasks (red), an objective which minimizes the sum
of the average loss of the target and OOD tasks which corresponds to α = 1/2 (task-aware, yellow) and an objective which minimizes an
optimally weighted convex combination of the target and OOD empirical loss (green). Right: The optimal α∗ obtained via grid search for
the three problems in the middle column plotted against different number of OOD samples. Note that the appropriate value of α lies very
close to 1 but it is never exactly 1. In other words the OOD samples always benefit if we use the weighted objective in Theorem 2, even if
this benefit is marginal in cases when OOD samples are very different from those of the target. See Appendix C.2 for experimental details
and Appendix C.6 for experiments on more task pairs.

This suggests that if we have a hypothesis space with small
VC-dimension or if the OOD samples and target samples
come from very different distributions, then we should train
only on the target samples to obtain optimal error. Otherwise,
including the OOD samples after appropriately weighing
them using α∗ can give a better generalization error.

It is not easy to estimate ρ because it depends upon the
VC-dimension of the hypothesis class [7, 8]. But in general,
we can treat α as a hyper-parameter and use validation data
to search for its optimal value. For our FLD example we can
do slightly better: since we know the exact expression for
the generalization error for the hypothesis that minimizes
the α-weighted empirical loss (see Appendix B.4 and Ap-
pendix B.5), we can calculate α∗ by numerically sweeping
over α ∈ [0, 1].

Fig. 3 shows that regardless of the number of OOD sam-
ples (m) and the relatedness between the OOD and the target
tasks (∆), we can obtain a generalization error that is always
better than that of a hypothesis trained without any OOD
samples. In other words, if we choose α∗ appropriately (the
example in Fig. 1 corresponds to choosing α = 1/2), then
we do not suffer from non-monotonic generalization error

on the target task.

3.2. Training neural networks using a weighted ob-
jective

In §2.2 we found that for some pairs of tasks, the gen-
eralization error is non-monotonic in the number of OOD
samples. In this section, we show that if we knew which
samples were OOD, then we can rectify this phenomenon
by using an appropriate value of α∗ to weigh the target and
OOD samples. In Fig. 2 (middle), we track the test error of
the target task for three settings: training is agnostic to the
presence of OOD data (task agnostic setting in red), naively
uses α = 1/2 (yellow) and training uses an optimal value
of α selected using a grid-search (green). We observe that
searching over α improves the test error on all 3 pairs of
target-OOD tasks. We discuss how data augmentation can
also lead to non-monotonic behavior of the risk in Fig. 4.

Remark 3 (Sampling mini-batches during training). For
m ≫ n, mini-batches that are sampled uniformly randomly
from the dataset will be dominated by OOD samples. As a
result, the gradient even if it is still unbiased, is computed
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Figure 3. Left: Generalization error of the target task for the Gaus-
sian mixture model using a weighted objective from Theorem 2
in place of classical FLD; see Appendix B.4. Note that unlike
in Fig. 1, the generalization error monotonically decreases with the
number of OOD samples m. Right: The optimal α∗ that yields
the smallest target generalization error as a function of the number
of OOD samples. Note that α∗ increases as the number of OOD
samples m increases; this increase is more drastic for large values
of ∆ and is more gradual for small values of ∆. Observe that
α∗ = 1/2 for all values of m if ∆ = 0. See Appendix B.6 for a
numerical simulation study.

using very few samples from the target task. This leads to
an increase in the test-error, which is particularly noticeable
with α∗ chosen appropriately after grid search. We therefore
use a biased sampling procedure where each mini-batch
contains a fraction β samples from the target task and the
remainder 1− β consists of OOD samples. This parameter
controls the bias and variance of the gradient of the target
task (β = n

n+m gives unbiased gradients with respect to the
unweighted total objective and high variance with respect
to the target task when m ≫ n, see Appendix C.4). We
evaluated β = {0.5, 0.75} and find that both improve the
test error; see Fig. 7.

Remark 4 (Weighted objective for over-parameterized
networks). It has been argued previously that weighted
objectives are not effective for over-parameterized mod-
els such as deep networks because both surrogate losses
êt(h) and êo(h) are zero when the model fits the training
dataset [9]. It may therefore seem that the weighted objective
in Theorem 2 cannot help us mitigate the non-monotonic
nature of the generalization error; indeed the minimizer of
αêt(h)+(1−α)êo(h) is the same for any α if the minimum
is exactly zero. Our experiments suggest otherwise: the
value of α does impact the generalization error—even for
deep networks. This is perhaps because even if the cross-
entropy loss is near-zero for a deep network towards the end
of training, it is never exactly zero.

 
 

0.12

0.14

0.16

Ta
rg

et
 G

en
. E

rr
or

Target: T1, OOD: T5

5 10 15 20
m/n, n=100

0.91

0.93

O
pt

im
al

 

Task-Agnostic Setting
Naive Task-Aware Setting
Optimal Task-Aware Setting

Figure 4. Data augmentation (padding with random cropping and
random left/right flipping) during training has an interesting effect
in the presence of OOD samples. Although the network trained
in the task-agnostic setting (red) continues to perform poorly with
lots of OOD samples, even a naive weighing of the target and OOD
loss (α = 1/2) is enough to provide a monotonically decreasing
error (yellow). This suggests that data augmentation can mitigate
some of the anomalies that arise from OOD data, although we can
do better by addressing them specifically using, for instance, the
weighted objective (green).

4. Discussion
While we are compelled to use generic supervised learn-

ing algorithms under the i.i.d assumption if we do not know
about the presence of OOD samples, there are several dif-
ferent ways to find a hypothesis that generalizes well if we
know which samples are OOD. For example, pre-training
on all data and fine-tuning on the target task, e.g., doubly-
robust estimation. We next plan to broaden our empirical
study and explore the influence of multiple OOD tasks on the
generalization error of the target task, provide a theoretical
explanation for the non-monotonic trend in the generaliza-
tion error of the target task, and develop efficient ways of
determining the optimal weighing parameter α.
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A. Related Work
There is a large body of work that has used weighted-ERM based methods [7, 10–16]; this is either done to address domain

shift or to address different distributions of tasks in a transfer or multi-task problem. The main idea is to obtain a single
hypothesis h by minimizing an α-weighted combination of the empirical error of the target and source task αêt(h) + (1−
α)ês(h) with the goal of generalizing to new data from the target task. This body of work forms the primary motivation for
our paper; in our case, the “source” task is the OOD samples.

It has been argued recently [8] that the generalization bounds of such approaches, building primarily upon [7] are loose.
In this paper, we identify an unusual non-monotonic trend in the generalization error of the target task. First note that the
calculations in [7] can be used directly for the case when we do not know the identity of the OOD samples by setting α = n

n+m .
One can get an insight into the non-monotonic trend of the target error from Theorem 3 in [7] because the second term

4

√(
α2

n + (1−α)2

m

)√
VH − log δ decreases with increasing m while the third term 2(1 − α)dH(Pt, Po) increases because

α → 0. While such a trend in the upper bound does not directly imply a non-monotonic trend in the error itself, this discussion
suggests that the results from our experiments are not inconsistent with existing theory. There is a discrepancy here, e.g., we
notice that [7]’s upper bound for naively weighted empirical error (α = 1/2) does not have a non-monotonic trend (again, this
is only an upper bound on the target error).

A more recent paper [12] presents an exact characterization of the target generalization error using conditional symmetrized
Kullback-Leibler information between the output hypothesis and target samples given the source samples. While this work does
not discuss the non-monotonic trends in target generalization error, it would be of interest to leverage this exact characterization
to provide a theoretical explanation behind it.

B. Fisher’s Linear Discriminant (FLD)
B.1. Synthetic Tasks

0 ∆

µ µ

µ µ

Target

OOD

Figure 5. A schematic of the synthetic tasks

The target task Pt and the OOD task Po are both binary classification problems with one-dimensional inputs. In both tasks,
each class is sampled from a univariate Gaussian distribution. The OOD task is the target task translated by ∆. In summary,
the target task has the class conditional densities,

ft,0
d
= N (−µ, σ2)

ft,1
d
= N (+µ, σ2),

while the OOD task distribution has the class conditional densities,

fo,0
d
= N (∆− µ, σ2)

fo,1
d
= N (∆ + µ, σ2).

We also assume that both the target and OOD tasks have the same label distribution with equal class prior probabilities, i.e.
p(yt = 1) = p(yo = 1) = π = 1

2 . Fig. 5 depicts the Pt and Po pictorially.



B.2. Task-Agnostic Fisher’s Linear Discriminant

In this section, we derive FLD when we have samples from a single task – which is also applicable to the task-agnostic
setting. Consider a binary classification problem with Dt = {(xi, yi)}ni=1 ∼ Pt where xi ∈ X ⊆ Rd and yi ∈ Y = {0, 1}.

Let fk and πk be the conditional density and prior probability of class k (k ∈ {0, 1}) respectively. The probability that x
belongs to class k is

p(y = k | x) = πkfk(x)

π0f0(x) + π1f1(x)
,

and the maximum a posteriori estimate of the class label is

h(x) = argmax
k∈{0,1}

p(y = k | x) = argmax
k∈{0,1}

log(πkfk(x)). (3)

Fisher’s linear discriminant (FLD) assumes that each fk is a multivariate Gaussian distribution with the same covariance
matrix Σ, i.e,

fk(x) =
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(x− µk)

⊤Σ−1(x− µk)

)
.

Under this assumption, the joint-density f of (x, y) becomes,

f(x, y) ∝
1∏

k=0

[
πk

|Σ|1/2
exp

(
− 1

2
(x− µk)

⊤Σ−1(x− µk)

)]1[y=k]

Therefore, the log-likelihood l(µ0, µ1,Σ, π0, π1) over Dt is given by,

l(µ0, µ1,Σ, π0, π1) =

1∑
k=0

∑
(x,y)∈Dt,k

[
log πk − 1

2
log |Σ| − 1

2
(x− µk)

⊤Σ−1(x− µk)

]
+ const.

where Dt,k is the set of samples of Dt that belongs to class k. Based on the likelihood function above, we can obtain the
maximum likelihood estimates µ̂k, Σ̂, π̂k. The expression for the estimate µ̂k is

µ̂k =
1

|Dt,k|
∑

(x,y)∈Dt,k

x. (4)

Plugging these estimates into (3), we get,

ĥ(x) = argmax
k∈{0,1}

[
log π̂k − 1

2
log |Σ̂| − 1

2
(x− µ̂k)

⊤Σ̂−1(x− µ̂k)

]
= argmax

k∈{0,1}

[
log π̂k − 1

2
log |Σ̂|+ x⊤Σ̂−1µ̂k − 1

2
µ̂⊤
k Σ̂

−1µk

]
Therefore, ĥ(x) = 1 iff,

x⊤Σ̂−1µ̂1 −
1

2
µ̂⊤
1 Σ̂

−1µ1 + log π̂1 > x⊤Σ̂−1µ̂0 −
1

2
µ̂⊤
0 Σ̂

−1µ0 + log π̂0

x⊤Σ̂−1µ̂1 − x⊤Σ̂−1µ̂0 >
1

2
µ̂⊤
1 Σ̂

−1µ1 −
1

2
µ̂⊤
0 Σ̂

−1µ0 + log π̂0 − log π̂1

(Σ̂−1(µ̂1 − µ̂0))
⊤x > (Σ̂−1(µ̂1 − µ̂0))

⊤
(
µ̂0 + µ̂1

2

)
+ log

π̂0

π̂1

Hence the FLD decision rule ĥ(x) is

ĥ(x) =

{
1, ω⊤x > c

0, otherwise

where ω = Σ̂−1(µ̂1 − µ̂0) is a projection vector and c = ω⊤( µ̂0+µ̂1

2

)
+ log π̂0

π̂1
is a threshold. When d = 1 and π0 = π1, the

decision rule reduces to

ĥ(x) =

{
1, x > µ̂0+µ̂1

2

0, otherwise
(5)



B.3. Deriving the Generalization Error of the Target Task for Synthetic Tasks with FLD

We would like to derive an expression for the average generalization error of the target task, when we consider the synthetic
tasks described in Appendix B.1. For simplicity, we set the variance σ2 of the class conditional densities of the synthetic tasks
to 1.

In the task-agnostic setting, the learning algorithm sees a single dataset D = Dt ∪Do of size n+m which is a combination
of both target and OOD samples. We can estimate µk using (4) to obtain

µ̂k =
1

|Dk|
∑

(x,y)∈Dk

x =

∑
(x,y)∈Dt,k

x+
∑

(x,y)∈Do,k
x

nk +mk

=
nkx̄t,k +mkx̄o,k

nk +mk

=
nx̄t,k +mx̄o,k

n+m
.

(6)

where Dk is the set of samples of D that belongs to class k, nk = |Dt,k| and mk = |Do,k| for k ∈ {0, 1}. x̄t,k and x̄o,k

denote the sample means of class k in target and OOD datasets respectively. We assume that π = 1
2 from which it follows that

nk = nπk = n
2 and mk = mπk = m

2 . We cannot explicitly compute x̄t,k and x̄o,k in the task-agnostic setting, because we
cannot separate target samples from OOD samples in D.

Since the samples are drawn from Gaussians, their averages also follow Gaussian distributions. Hence, the threshold
ĉ = µ̂0+µ̂1

2 of the hypothesis ĥ, estimated using FLD, is a random variable with a Gaussian distribution i.e., ĉ ∼ N (µh, σ
2
h)

where

µh = E[ĉ] =
m∆

n+m
,

σ2
h = Var[ĉ] =

1

n+m
.

The target error of a hypothesis ĥ is

p(ĥ(x) ̸= y | x, ĉ) = 1

2
px∼ft,1 [x < ĉ] +

1

2
px∼ft,0 [x > ĉ]

=
1

2
+

1

2
px∼ft,1 [x < ĉ]− 1

2
px∼ft,0 [x < ĉ]

=
1

2

[
1 + Φ(ĉ− µ)− Φ(ĉ+ µ)

]
(7)

Using (7), the expected error on the target task et(ĥ) = Eĉ∼N (µh,σ2
h)
[p(ĥ(x) ̸= y | x, ĉ)] is given by,

et(ĥ) =

∫ ∞

−∞

1

2

[
1 + Φ(ĉ− µ)− Φ(ĉ+ µ)

] 1

σh
ϕ

(
ĉ− µh

σh

)
dĉ

=

∫ ∞

−∞

1

2

[
1 + Φ(yσh + µh − µ)− Φ(yσh + µh + µ)

]
ϕ(y)dy

=
1

2

[
Φ

(
µh − µ√
1 + σ2

h

)
+Φ

(
−µh − µ√
1 + σ2

h

)]
In the last equality, we make use of the identity

∫∞
−∞ Φ(cx+ d)ϕ(x)dx = Φ

(
d√
1+c2

)
where ϕ and Φ are the PDF and CDF of

the standard normal. Substituting the expressions for µh, σ
2
h into the above equation, we get

et(ĥ) =
1

2

[
Φ

(
m∆− (n+m)µ√
(n+m)(n+m+ 1)

)
+Φ

(
−m∆− (n+m)µ√
(n+m)(n+m+ 1)

)]
(8)

For synthetic tasks with σ2 ̸= 1, the target generalization error can be obtained by simply replacing µ and ∆ with µ
σ and ∆

σ
respectively in (8).



B.4. Task-Aware Weighted Fisher’s Linear Discriminant

We consider a target dataset Dt = {(xi, yi)}ni=1 and an OOD dataset Do = {(xi, yi)}mi=1, which are samples from the
synthetic tasks from Appendix B.1. This setting differs from Appendix B.3 since we know whether each sample from
D = Dt ∪Do is OOD or not. This difference allows us to consider a log-likelihood function that weights the target and OOD
samples differently, i.e. we consider

l(µ0, µ1, σ
2
0 , σ

2
1) =

1∑
k=0

(
α·

∑
(x,y)∈Dt,k

[
−log σk−

(x− µk)
2

2σ2
k

]
+(1−α)·

∑
(x,y)∈Do,k

[
−log σk−

(x− µk)
2

2σ2
k

])
+const. . (9)

α is a weight that controls the contribution of the OOD samples in the log-likelihood function. Under the above log-likelihood,
the maximum likelihood estimate for µk is

µ̂k =
α
∑

(x,y)∈Dt,k
x+ (1− α)

∑
(x,y)∈Do,k

x

α|Dt,k|+ (1− α)|Do,k|
. (10)

We can make use of the above µ̂k to get a weighted FLD decision rule using (5).

B.5. Deriving the Generalization Error of the Target Task for Synthetic Tasks with Weighted FLD

We consider the synthetic tasks in Appendix B.1 with σ2 = 1. We re-write µ̂k from (10) using notation from Appendix B.3:

µ̂k =
nαx̄t,k +m(1− α)x̄o,k

nα+m(1− α)
.

We can explicitly compute x̄t,k and x̄o,k in the task-aware setting since we can separate target samples from OOD samples.
For the synthetic dataset, the threshold ĉα = µ̂0+µ̂1

2 of the hypothesis ĥα follows a normal distribution N (µhα, σ
2
hα) where

µhα = E[ĉα] =
m(1− α)∆

nα+m(1− α)

σ2
hα = Var[ĉα] =

α2n+ (1− α)2m

(αn+ (1− α)m)2

Similar to the Appendix B.3, we derive an analytical expression for the expected target risk of the weighted FLD, which is

et(ĥα) =
1

2

[
Φ

(
µhα − µ√
1 + σ2

hα

)
+Φ

(
−µhα − µ√
1 + σ2

hα

)]
(11)

B.6. Additional Experiments using FLD
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Figure 6. The FLD generalization error (Y-axis) on the target task is plotted against the ratio of OOD samples to target samples (X-axis).
Figures (a) and (c) are plotted using the analytical expressions in (8) and (11) respectively while figures (b) and (d) are the corresponding
plots from Monte-carlo simulations. The Monte-carlo simulations agree with the plots from the analytical expression, which validates its
correctness. (a) and (b): The figure is identical to Fig. 1 and considers synthetic tasks with n = 100, µ = 5 and σ = 10 in the task-agnostic
setting. While a small number of OOD samples improves generalization on the target task, lots of samples increase the generalization error
on the target task. (c) and (d): The figures consider synthetic tasks with n = 4, µ = 1 and σ = 1 in the task-aware setting. If we consider
the weighted FLD trained with optimal α∗, then the average generalization error monotonically decreases with more OOD samples.



C. Experiments with Neural Networks
C.1. Image Classification Dataset

Experiments with neural nets make use of tasks from Split-CIFAR10 [17] which are five binary classification tasks
constructed by grouping consecutive labels of CIFAR-10. Each task has 10,000 training images and 2000 test images. The 5
tasks are airplane vs. automobile (T1), bird vs. cat (T2), deer vs. dog (T3), frog vs. horse (T4) and ship vs truck (T5).

We consider two sets of tasks to study the impact of OOD data. The first set considers geometric intra-class nuisances
which we study using a classification task as the target task and rotated versions of the same task as different OOD tasks. The
second set studies category shifts and concept drifts using two different target and OOD classification problems.

The two sets of tasks are constructed as follows:

1. T2 as Target and Rotated T2 as OOD: We choose the bird vs. cat (T2) task as the target task. We then rotate the
images of T2 by an angle θ◦ counter-clockwise around their centers to form a new task denoted by θ-T2, which we
consider as the OOD task. For each random seed, we randomly select a fixed sample of size n = 100 from the target
task. Next, we select samples from the OOD task of varying sizes m = {0, 100, 200, 300, 400, 500, 1000, 2000} such
that each progressive sample is a subset of the next sample. The samples from both target and OOD tasks preserve the
ratio of the classes. When selecting multiple sets of OOD samples, the OOD images that correspond to the 100 selected
target images are disregarded. We perform the experimental routine for θ = {0◦, 10◦, 45◦, 90◦, 135◦}.

2. Ti as Target and Tj as OOD: We choose a pair of distinct tasks and consider one as the target task and the other as
the OOD task. First, we randomly select a fixed set of size n = 100 from the target task. Like in the previous set of
tasks, we select samples from the OOD task of varying sizes m = {0, 100, 200, 300, 400, 500, 1000, 2000} such that
each progressive sample is a subset of the next sample. The samples from the target and OOD tasks preserve the ratio of
the two classes. We perform experiments for all pairs of tasks (20 in total) in Split-CIFAR10.

C.2. Experimental Details

For both the task-agnostic and task-aware settings, at each m-value, we construct a combined dataset containing the n sized
target set and m sized OOD set. We use a CNN for experiments in the task-agnostic and task-aware settings. We experiment
with α fixed to 0.5 (naive task-aware model) and with the optimal α∗. We average the runs over 10 random seeds and evaluate
on a test set of size 2000.

In the optimal task-aware setting, we use a grid-search to find the optimal α∗ for each value of m. We use an adaptive
equally-spaced α search set of size 10 such that it ranges from α∗

prev to 1.0 (excluding 1.0) where α∗
prev is the optimal value

of α corresponding to the previous value of m. We use this search space since we expect α∗ to be an increasing function of m.

C.3. Neural Architectures and Training

We use a small convolutional neural network (0.12M weights) with 3 convolution layers (kernel size 3 and 80 filters)
interleaved with max-pooling, ReLU, batch-norm layers, with a fully-connected classifier layer in our experiments. The
networks are trained using stochastic gradient descent (SGD) with Nesterov’s momentum and cosine-annealed learning rate.
The hyper-parameters used for the training are, learning rate of 0.01, mini-batch size of 128, and a weight-decay of 10−5. All
the images are normalized to have mean 0.5 and standard deviation 0.25. In the task-agnostic setting, we use sampling without
replacement to construct the mini-batches. In the task-aware settings, we construct mini-batches with a fixed ratio of target and
OOD samples. See Appendix C.4 and Fig. 7 for more details.

C.4. Construction of Mini-Batches

Consider a mini-batch {(xbi , ybi)}Bi=1 of size B. Let the randomly chosen mini-batch contains Bt target samples and Bo

OOD samples (B = Bt + Bo). Let êB,t(h) and êB,o(h) denote the average mini-batch surrogate losses for the Bt target
samples and Bo OOD samples respectively.

In the task-aware setting, êB,t(h) and êB,o(h) can be computed explicitly for each mini-batch resulting in the mini-batch
gradient

∇̂êB(h) = α∇̂êB,t(h) + (1− α)∇̂êB,o(h). (12)

If we were to sample without replacement, we expect the fraction of the target samples in every mini-batch to approximately
equal n

n+m on average. However, if m >> n, we run into a couple of issues. First, we observe that most mini-batches have no



target samples, making it impossible to compute ∇̂êB,t(h). Next, even if the mini-batch does have some target samples, there
are very few of them, resulting in high variance in the estimate ∇̂êB,t(h).

Hence, we find it beneficial to consider alternative sampling schemes for the mini-batch. Independent of the values of n
and m, we use a sampler which ensures that every mini-batch has a fixed fraction of target samples, which we denote by β.
For example if the mini-batch size B is 20 and if β = 0.5, then every mini-batch has 10 target samples and 10 OOD samples
regardless of n and m. Note that this sampling biases the gradient, but results in reduced variance estimates. In practice, we
observe improved test errors when we set β to either 0.5 or 0.75.

C.5. Comparing the Effect of Using Conventional and Custom Batches
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Figure 7. The test error of a neural network on the target task (Y-axis) is plotted against the number of samples from the OOD task
(X-axis) for the target-OOD task pair of T1 and T5. One set of curves (lightest shade of green and yellow) considers mini-batches which are
constructed using sampling without replacement; This is the conventional strategy used in supervised learning. The other curves consider
β = 0.5 (intermediate shades of orange and green) and β = 0.75 (darkest shade of red and green). All plots are in the task-aware setting.
Left: If we consider α = 0.5, then the choice of β has little effect on the generalization error. Right: However, if we use the α∗ to weight
the OOD and target losses, then the generalization error depends on the the choice of β with β = 0.75 having the lowest test error.



C.6. Target Generalization Error Curves for all the SplitCIFAR-10 Task Pairs
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Figure 8. (a) We plot the test error on the target task (Y-axis) against the ratio of number of samples from the OOD task to the number of
samples on the target task (X-axis), for all target-OOD task pairs from Split-CIFAR10. A neural net trained with a loss weighted by α∗ is
able to leverage OOD data to improve the networks ability to generalize on the target task. (b) The optimal α∗ (Y-axis) is plotted against
the number of OOD samples (X-axis) for the optimally weighted task-aware setting. As we increase the number of OOD samples, we see
that α∗ increases. This allows us to balance the variance from few target samples and the bias from using OOD samples from a different
disitribution.
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