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Computing Scan Statistic p Values Using 
Importance Sampling, With Applications to 

Genetics and Medical Image Analysis 

Daniel Q. NAIMAN and Carey E. PRIEBE 

We present an importance sampling method for deciding, based on an observed ran- 
dom field, if a scan statistic provides significant evidence of increased activity in some 
localized region of time or space. Our method allows consideration of scan statistics based 
simultaneously on multiple scan geometries. Our approach yields an unbiased p value es- 
timate whose variance is typically smaller than that of the naive hit-or-miss Monte Carlo 
technique when the p value is small. Furthermore, our p value estimate is often accurate for 
critical values that are not far enough in the tails of the null distribution to allow for accurate 
approximations via extreme value theory. The importance sampling approach unifies the 
analysis of various random field models, from (spatial) point processes to Gaussian random 
fields. For a scan statistic M, the method produces a p value of the form P[M > r] = Bp, 
where B is the Bonferroni upper bound and the correction factor p measures the conser- 
vativeness of this upper bound. We present the application of our importance sampling 
estimator to multinomial sequences (molecular genetics), spatial point processes (digital 
mammography), and Gaussian random fields (PET scan brain imagery). 

Key Words: Multiple testing; Random fields; Simultaneous inference; Spatial point pro- 
cesses. 

1. INTRODUCTION 

Consider a random field Y = {Yx, x E X} observed at various locations x E X, 
where X is an arbitrary domain. Our goal is to perform a test of homogeneity for the 

field versus the alternative that there is a localized subregion of X of nonhomogeneity. 

The location of the nonhomogeneity, which can be interpreted as a signal, is assumed to 
be unknown. In addition, its geometry (size and shape) may be taken to be either known 

or unknown. Examples include detecting a signal of unknown location and geometry in a 

Gaussian random field (GRF) and detecting a cluster of unknown location and geometry in 

a point process or a multinomial sequence. 
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1.1 SCAN ANALYSIS 

An intuitive approach to testing these hypotheses involves the partitioning of the region 
X into disjoint subregions. For cluster detection in spatial point processes this dates to the 
quadrat counts of Fisher, Thornton, and Mackenzie (1922); see Diggle (1983). Absent prior 
knowledge of the location and geometry of potential nonhomogeneities, this approach can 
have poor power characteristics. 

A standard generalization of quadrats involves consideration of overlapping scan re- 
gions with fixed geometry. At each location x in the region X, introduce a scan region R(x) 
about x, and define a scan process 

@V = f{Vx(Y)jx E X'}, 

where X' {x E X: R(x) C X}, and where 

TX (Y) = h({YX, x E R(x)}) 

Here, h denotes a function of observations in a local neighborhood about x. Usually, h is a 
normalized count or average. We will refer to Tx (Y) as a locality statistic. 

If the domain X forms a unit d-cube, then a standard choice for the scan regions are 
d-dimensional cubes 

R(x) = {y: xj - w <yj < xj +w, j = 1, ...,Id}. 

where w > 0 is fixed. 
For detecting clustering in point processes, when Yx denotes a number points appearing 

at x, a common choice for the locality statistic is the number of events in the scan region 

Tx(Y)= E IYy 
yER(x) 

For detecting signals in Gaussian random fields the locality statistic will be a normalized 
average of the field Y in the scan region. 

The scan statistic 

M = maxTx(Y) 
x 

is defined as the maximum locality statistic over all scan regions. 
Analysis of the univariate scan process (d = 1) has been considered by many authors, 

including Naus (1965), Cressie (1977, 1980), and Loader (1991). For a few simple random 
field models exact p values are available; many applications require approximations to the 
p value. The generalization to spatial scan statistics was considered by Naus (1965), Adler 
(1984), Loader (1991), and Chen and Glaz (1996). As noted by Cressie (1993), exact results 
for d = 2 have proved elusive; approximations to the p value based on extreme value theory 
are in general all that is available. 

Although conventional scan analysis is superior to quadrat analysis, as the former cir- 
cumvents the difficulty associated with unknown location, prior knowledge of the geometry 
of the nonhomogeneity is necessary. For applications in which such prior knowledge is un- 
available, a satisfactory scan approach must therefore involve variable geometry. Here, the 
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scan regions are allowed to vary in shape or size, so for each location we have a collection 
of scan regions 

R(x, w), x E W(x), 

where W(x) is a set of scan window geometries (possibly depending on x) so that the 
locality statistics are given by 

x,w (Y) = h({Yx,x IE R(x,w)} 

for x E X and w E W(x), and the scan process 

T = {Tx,w (Y), x E X, w E W(x)} 

is indexed by location and geometry. The problem of choosing an optimal range of window 
geometries is driven by application considerations and is beyond the scope of this article. 
Consideration of the problem when the geometry of the anomaly is unknown has been 
previously considered in Loader (1991), Kulldorf (1997), Alm (1997), and Priebe, Olson, 
and Healy (1997). 

1.2 IMPORTANCE SAMPLING 

Our approach involves simple importance sampling techniques for estimating p values 
for hypothesis tests based on scan statistics. Expositions of importance sampling can be 
found in Fishman (1996, sec. 4.1) and Ross (1990, sec. 8.5). The procedure we employ 
for approximating the p-value is based on improving the naive hit-or-miss Monte Carlo 
simulation. In the naive approach, random fields are generated randomly according to an 
appropriate null distribution, and the rejection frequency is calculated. A single data re- 
alization may be quite extensive, and subsequent calculation of the test statistic can also 
involve extensive computation. Consequently, the number of Monte Carlo replications must 
be small and thus the variance of the Monte Carlo estimate of the p value can be too large 
to be practical when the true p value is small. 

Our method can be viewed as providing a correction to the bound given by the Bon- 
ferroni (1936 a,b) method (see also Worsley 1982, 1985; Naiman and Wynn 1992). Our 
approach builds on the union counting procedure introduced by Frigessi and Versillis (1984); 
see also the "harmonic mean formula" appearing in Aldous (1989, p. 8). For an extensive 
discussion of how importance sampling leads to improved estimates in this context see Fish- 
man (1996, sec. 4.1). Naiman and Wynn (1997) described a more general class of importance 
sampling algorithms based on sharpened higher-depth inclusion-exclusion inequalities. 

Our method yields an unbiased p value estimate whose variance is typically smaller than 
that of the naive hit-or-miss Monte Carlo technique when the p value is small. Furthermore, 
our p value is often accurate for critical values that are not far enough in the tails of the null 
distribution to allow for accurate approximations via extreme value theory. 

1.3 OUTLINE 

Section 2 presents the main result, an importance sampling algorithm for estimating 
the p values for hypothesis tests based on scan statistics. Sections 3,4, and 5 investigate the 
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applicability of the methodology for various random field scenarios and present specific ex- 
amples indicating the utility of the approach. For each application, the general methodology 
of Section 2 is appropriately adapted and extended. Section 3 considers multinomial se- 
quences and presents the example of detecting subsequences representing distinctive charge 
configurations in DNA or protein sequences. Section 4 considers inference for spatial point 
processes and presents the example of detecting clusters of microcalcifications in digital 
mammography. Section 5 considers detecting signals of unknown geometry and location in 
Gaussian random fields and presents the example of performing inference on the existence 
of regionally specific effects in PET scan brain imagery. 

2. MAIN RESULT 

The basic idea behind the method is described as follows. Let Y = {Yx, x E X} 
be a random field whose null distribution is known. This field is assumed to come from 
observations collected in space or time, or some combination of both. Assume we test a 
hypothesis by determining if the scan statistic 

M=max i(Y 
l<i<N 

exceeds some threshold, where Ji are given real-valued functions indexed by i. As in 
Section 1.1 we refer to each Ji (Y) as a locality statistic. Here N is the number of locality 
statistics we consider in forming a scan statistic. Generalizations to cases of continuously 
indexed locality statistics are straightforward and are presented in the examples which 
follow. 

As described in Section 1, in the applications we have in mind the problem is to decide if 
there is significant evidence of increased activity near some location or site in time or space. 
An appropriate null hypothesis might say that the observations were produced by the same 
mechanism that produces noise, or that outcomes occur according to a prespecified rate that 
applies over an entire region. The individual statistics Ji (Y) might be used to measure the 
average of a random field or the number of occurences of a spatial point process, in some 
local region; that is, near an unspecified site. Since this location is a priori unknown, varying 
the index i results in varying the measurement over a finite number of possible locations. 

In addition, there may be little a priori information as to the size and shape of the 
neighborhoods in which to search for increased activity. We use the generic term scan 
geometry to refer to properties of the statistics Ji that have to do with sizes or shapes of 
neighborhoods of points in which activity is measured. Thus, the indices i over which we 
define the 'J- serve a dual purpose in that they can indicate location as well as scan geometry. 

Our goal is to evaluate 

PHO [M T] (2.1) 

for given T (the observed value of M). Since all of the probabilities appearing below are 
evaluated under the null hypothesis, we will dispense with the subscript Ho and denote all 
probabilities using simply P. 
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For the problems described below, the Bonferroni upper bound 

N 

B ZP[J!i (Y) > 7] (2.2) 
i=lI 

is easy to evaluate, but can be too conservative to be practical. A correction to this bound is 
obtained by writing the p value as follows. The probability (2.1) can be expressed as 

f j=_ I{qj(Y)>r} i=N 

BEz~==1 {g(y) P I{q(Y)?>r rdP 

where g(Y) = Z I I{q (Y)},r, the number of indices i for which J'(Y) exceeds T, and 

q, P[Ti(Y) > T 

N= P[Ti(Y) > T] 

so that the qi define a probability distribution on { 1, 2, ... , N}. 
We conclude that the p value takes the form 

P[M > T] Bp, (2.3) 

where 

N 

p qi dP, (2.4) 
i= I 

and the correction factor p can be interpreted as the expected value of the random variable 

pp generated in each iteration p of the following Monte Carlo experiment: 

Importance Sampling Algorithm 

For k from 1 to n do (independently) 

Step 1. Generate a random index Jk E . .... N} according to the probabilities 
qi- 
Step 2. Generate Yk from the conditional distribution of Y given T,Jk (Y) > T. 

Step 3. Count gk = g(Yk) the number of locality statistics 'Ji for which 'Qj (Yk) > 

T, and take Pk = l/gk 

End do 
Return p n 

Pk- 
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Of course, in order for this algorithm to be made practical, it is necessary to be able to 
efficiently generate J according to the given marginal distribution and Y according to the 
required conditional distribution. For the three random field scenarios presented in Sections 
3, 4, and 5 this is indeed practical. 

Since the Y is defined conditionally on J'j (Y) > T, the number of locality statistics for 
which 'Ji (Y) > T, is guaranteed to be at least one, so we always have g(Y) > 1. This leads 
to the conclusion that p < 1, which is to be expected because the Bonferroni procedure is 
known to be conservative. Interestingly, p measures the conservativeness of the Bonferroni 
bound and the source of this conservativeness becomes clear. If, conditionally given that 
a locality statistic yields an extreme value, none of the other locality statistics are likely 
to, then p is close to 1 and the Bonferroni bound is sharp. On the other hand, if there is a 
tendency for many locality statistics to yield extreme values conditionally given that locality 
statistic 'J!j does, then this will be reflected in a larger value of g on average, and hence a 
smaller value of p, and we can improve on the Bonferroni bound. In the extreme case when, 
having conditioned on one of them being extreme, every locality statistic is extreme, we 
find that p reduces to the factor 1/N, so that if all of the probabilities P[xFi(Y) > T] are 
the same, the corrected p value B/N becomes this common value. 

2.1 ALGORITHMS FORp VALUE BOUNDS 

Since the indices i correspond to locations as well as scan geometries, the number of 
indices N can make the last step of the importance sampling algorithm (calculation of the 
number of locality statistics that exceed T) unwieldy. For example, in a two-dimensional 
image that is 500 x 500 pixels, with 10 choices of scan geometries, N would be 2.5 million. 
Instead of estimating the exact p value, a less ambitious and more computationally feasible 
approach is to try to estimate a conservative (i.e., upper) bound for the p value which is 
tighter than B. 

A general approach to achieving this goal is to use the same sampling procedure (Steps 
1 and 2) in the foregoing importance sampling algorithm, but replace evaluation of gk by an 
upper bound on gk. Since gk counts the number of threshold exceedances ID'i(Yk) > T by 
the locality statistics, we obtain an upper bound on 1 /gk by restricting this count to some 
subset of the set of all locality statistics. Since we are conditioning on threshold exceedance 
for a particular locality statistic 'JJk I it seems natural to restrict our count only to those 
locality statistics 'i that are near 'Jk.- Since for small p values the probability of two 
isolated exceedances is small, this can lead to approximations to sharp upper bounds for p 
values whose computation is far more tractable than the exact p value approximations. 

3. DETECTING DISTINCTIVE FEATURES IN DNA OR PROTEIN 
SEQUENCES 

In many molecular biology applications, the random field of interest forms a sequence 
of letters Y = {Yj, i = 1, ... ., L} from an alphabet {a,,.. ., ar} of known size r. This 
sequence is studied and apparently distinctive features are uncovered. A problem is to 
decide whether the features discovered are due to chance, so it is critical to determine how 
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frequently an observed feature arises when the sequence is generated using a given random 
mechanism. Since many of the applications we envision for the methodology above come 
from molecular genetics, we give a brief description of some key concepts from genetics. 

3.1 A BRIEF OVERVIEW OF MOLECULAR GENETICS 

Several examples of alphabets arise in the study of DNA and protein sequences. We 
present a brief overview of some of the more basic ideas and terminology needed from 
molecular genetics (see Watson et al. 1987; Karlin and Altschul 1990). DNA forms a double- 
stranded molecule consisting of a sequence of base pairs of nucleotides. The nucleotides in 
DNA are the purines-adenine and guanine-and the pyrimidines-cytosine and thymine. 
Thus, we can view any portion of DNA as a sequence of letters from a nucleotide alphabet 
of size r = 2 or 4. RNA has a similar description except that the pyramidine thymine 
is replaced by the pyramidine uracil. Messenger RNA (mRNA) serves as a template in 
the synthesis of protein. The bases in mRNA form 3-tuples of bases called codons. There 
are 61 possible codons that can arise (out of the 64 possible 3 letter sequences of 4 bases). 
Therefore, portions of mRNA can be viewed as formed using a codon alphabet of 61 letters. 
Finally, mRNA forms a template in the synthesis of proteins. 

A protein is polymer composed of a large number of amino acids, linked together by 
peptide bonds. Such chains are referred to as polypeptides. There are 20 different amino 
acids that can be found in proteins, so proteins could be described using an amino acid 
alphabet of size 20. Of the 20 amino acids found in proteins two of these, aspartic acid and 
glutamic acid, are acidic and carry a net charge of -1, three of them-lysine, arginine, and 
histidine-are basic and carry a net charge of + 1. The remaining 15 are neutral and carry 
a net charge of 0. This leads to a charge alphabet { -1, 0, + 1 } of size 3. 

3.2 SCORING METHODS FOR DISTINCTIVE SEGMENTS 

To identify distinctive segments in a sequence, one general approach (Karlin and 
Altschul 1990) is to associate a score s(aj), j = 1, . . , r with each letter in the alphabet, 
and define the score associated with the segment at location i of width 2w + 1 to be a 
normalized sum of scores 

I 
i+w 

i,2w+(y) = c(w) E s(Yj), i=w+ 1,...,L-w, 
j=i-w 

where c(w) denotes any normalization constant depending on the window width w. The 
sequence is then searched at each location using different window sizes and a maximum 
scoring segment is found. This segment is declared to be significant if the maximum score 

M = max "i,2w+I (Y) 
2W 

exceeds some threshold. 
There are various possible criteria for choosing the normalization constants c(w). One 

idea (see Section 4.1) is to choose c(w) so that the individual false detection probabilities, 
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the ones appearing in the Bonferroni sum (2.2), are roughly the same. The case of c(w) = 1 
is used in the example of Section 3.3. 

For the case of a fixed window size 2w + 1, Karlin, Dembo, and Kawabata (1990) 
gave an asymptotic approximation to the distribution for M as the length of the sequence L 
tends to infinity, for the case when the {Yi, i = 1, .. , L} forms a sequence of iid random 
variables. Karlin and Dembo (1992) gave the limit distribution in the more general setting 
in which the Yi are generated from a Markov chain model and in addition, the window size 
2w + 1 is allowed to vary. 

The importance sampling algorithm described in Section 2 leads to an approximation 
for P[M > T] when {Yi, i = 1, . . . , L} are iid according to some probability distribution 
on the alphabet {al, ... ., ar}. The important extension of the importance sampling method 
to situations in which the Yi are dependent, for example, the Markov chain case, is the focus 
of current research. 

Steps 1 and 2 are carried out as follows. First, we introduce some notation. Let Ut,2w+I 
denote the set of letter sequences {Yi, i = I. . ., 2w + 1 } of length 2w + 1 for which 

c(w) I1 

C() s(yj) 

for each window size 2w+ 1, and for each t > T. LetYl:2W+l denote {Yi, i = 1,. . ., 2w+ }. 
To carry out Steps 1 and 2, we do the following: 

Step i. Generate an exceedance value T > T according to the distribution PT where 

PT(t) - Zw(L - 2w) EyCUt,2,+1 P[YI:2W+I = Y] 

Et>1- Zw(L - 2w) EyeUt,2W+l P[YI:2w+I = YI 

for t > T where the probabilities are calculated from the alphabet distribution. 

Step ii. Conditionally, given T = t generate W according to the distribution 

(L - 2w) ZYEUt2w?, P[Yi:2w?li Y] 

PWfT(Wlt) 
PT (t) 

Step iii. Conditionally, given T and W generate an index I in {W + 1,... , L - W} 
uniformly. 

Step iv. Conditionally, given T, W, and I generate (YIW,. , YI+w) from UT,2W+? 

uniformly, and take the remaining Yi, i V {II - ... W , I + W} to be iid and distributed 
according to the alphabet distribution. 

In general, the start-up costs associated with these steps can be substantial. On the 
other hand, this algorithm is quite feasible when applied to the problem described in the 
next section. Feasibility of the algorithm under more complex distributional assumptions- 
for example, Markov assumptions-requires further study. This will be the subject of future 
investigation. 
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3.3 EXAMPLE: TESTS FOR DISTINCTIVE CHARGE CLUSTERS IN PROTEINS 

To illustrate the method in some real examples, we consider the sequences of charges 
in proteins. Here, each amino acid Yi in the protein is given a score of -1,0 or +1, to 
represent its associated charge s(Yi). Following Karlin, Blaisdell, Mocarski, and Brendel 
(1989) we define the net charge in a window of width 2w + 1 at a location i to 

i+w 

i,w (Y) = E s(Yj1). 
j=i-w 

We then search the sequence using varying window sizes w [Karlin et al. (1989) suggested it 
is appropriate to use 30 < w < 60] at various locations and charge clusters are determined 
to be significant if the maximum (or minimum) net charge 

M - max max i w(Y) 
30<W<60 w+?<i<L-w 

exceeds some threshold. 
Karlin et al. (1989) provided an approximation to the p value of this test, treating w as 

fixed. Karwe and Naus (1997) gave a formula for the exact p value based on a fixed window 
size, assuming the charges s(Yi) form an iid sequence with frequencies fo, f_ and f+ given 
by the empirical charge frequencies for the entire sequence. Karlin et al. (1989) identified 
significant charge configurations for a collection of 20 sequences taken from Epstein-Barr 
virus polypeptides, and for each of these they gave an approximate p value. Karwe and 
Naus (1997) provided a table of exact p values for these 20 examples and compared these 
to the approximations. 

We are motivated by two goals. One is the desire to see, for this same set of examples, 
how close the importance sampling approximation is to the exact p value, when a fixed 
window size is assumed. Second, we wish to determine the degree to which the p value is 
affected by accounting for variability in the window width. The results are given in Table 
1. For the case when a fixed window size is assumed, we have found that for 19 of the 
20 examples, when we used a Monte Carlo sample size of 1,000 the relative error for the 
importance sampling p value is always less than 0.1. Observe that for one entry, BRRF2, 
there is not close agreement between our approximate p value and the p value reported by 
Karwe and Naus (1997). We believe that their reported value is in error in this case. 

Running on a 166 Mhz Pentium PC using the Windows 95 operating system, using a 
C program written by one of authors and compiled using the Watcom C Compiler version 
10.6, the computation time for each of the 20 p value approximations was about 1 second 

To study the effect of using multiple window sizes, we approximate the p value for each 
of the 20 significant clusters as if the search for significant clusters had been restricted to 
all windows of size w - u through w + u, where w denotes the size of cluster found, and u 
denotes a nonnegative integer. Thus, 2u + 1 gives the number of different sizes for windows 
scanned. In particular, the case of u = 0 corresponds to treating the window size as fixed at 
w. We calculated the approximate p value for u ranging from 0 through 10. In every case, 
the plot of the approximate log I0(p value) appears close to linear in u, especially for small 
values of u. In Table I we report the slope of the simple linear least squares regression 
line fitted to these data. This slope could be used to determine the first-order effect of not 
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Table 1. Approximate p Values for Charge Configurations in Epstein-Barr Virus Polypeptides 

Charge Fixed w Variable w 

Random field configuration Exact Approx rel regression 

ORF L f+ (%) f- (%o) r w p value p value error ,B MAD 

BYRF1 512 7.4 10.2 13 32 2.6 x i0-4 2.54 x 10-4 -0.02 0.11 0.03 

BYRF1 512 7.4 10.2 13 35 1.1 x 10-5 1.03 x 10-5 -0.06 0.098 0.02 
BPLF11 3149 11.1 11.1 16 35 3.5 x 10-5 3.46 x 10-5 -0.01 0.13 0.03 

BMLF1 459 11.8 16.3 16 38 9.8 x 10-6 1.01 x 10-5 0.03 0.10 0.02 

BLLF1 907 6.7 6.6 8 33 4.6 x 10-2 4.67 x 10-2 0.02 0.048 0.02 

BERF1 839 10.5 11.0 12 30 9.2 x 10-4 9.30 x 10-4 0.01 0.095 0.02 

BERF1 839 10.5 11.0 11 30 7.1 x 10-3 7.45x 10-3 0.05 0.081 0.02 

BERF2B 840 10.2 12.6 15 39 8.8 x 10-4 8.46x 10-4 -0.04 0.092 0.01 
BERF2B 840 10.2 12.6 16 30 2.7 x 10-7 2.71 x 10-7 0.002 0.17 0.04 

BERF4 872 9.6 12.6 12 36 1.1 x 10-3 1.15 x 10-3 0.04 0.075 0.02 

BZLF1 200 6.5 8.0 12 43 5.5 x 10-4 5.56x 10-4 0.01 0.068 0.02 

BRRF2 537 12.1 10.4 21 55 1.8 x 10-7 3.55 x 10-6 18.72 0.29 0.353 

BKRF1 641 7.5 10.9 13 38 3.0 x 10-3 2.93 x 10-3 -0.02 0.084 0.02 

BKRF1 641 7.5 10.9 18 54 1.1 x 10-4 1.01 x 10-4 -0.09 0.085 0.01 

BKRF1 641 7.5 10.9 10 34 1.9 x 10-3 1.94 x 10-3 0.02 0.063 0.02 
BKRF1 641 7.5 10.9 17 41 3.1 x 10-8 3.17 x 10-8 0.02 0.13 0.02 
BYRF4 226 17.3 12.4 30 58 4.1 x 10-9 3.98 x 10-9 -0.03 0.16 0.02 
BBRF3 405 5.7 9.4 11 31 2.4 x 10-3 2.34 x 10-3 -0.03 0.088 0.02 
BXLF1 607 11.4 15.2 13 40 1.2 x 10-3 1.19 x 10-3 -0.009 0.064 0.02 
BNLF1 386 13.2 7.5 16 45 1.3 x 10-3 1.41 x 10-3 0.08 0.084 0.02 

NOTE: The first four columns describe properties of a particular portion of a protein sequence from the Epstein-Barr 

polypeptide. Column 1 gives an identifier called the open reading frame, column 2 gives the number of amino acids in the 

sequence, and columns 3 and 4 provide the frequencies of positive and negative charged proteins in the sequence. 
These columns appear in Table 1 of Karwe and Naus (1997) and come from Table 1 of Karlin et al. (1989) where a 

complete description is provided. Columns 5 and 6 are determined from these prior tables and describe properties 
of a particular cluster of significant net charge. Column 5 gives the net charge T- for the cluster and column 6 gives 
the number of amino acids in the cluster. Column 7 gives the exact p value from Karwe and Naus (1997), column 8 
gives our p value approximation and column 9 gives its relative error. Columns 10 and 11 give the results of fitting a 

regression line to the approximate log10(p value) versus maximum window size w data; column 10 gives the slope of 
this line and column 11 gives the mean absolute deviation for the fit (in log10 scale). 

knowing which window size to use and specifying a range, as opposed to being fortunate 
enough to have made an optimal a priori guess of the window size to use. 

We summarize the results in Table 1. For illustrative purposes, one of these plots is 
provided for the first entry in Table 1 (BYRF 1) in Figure 1. 

We illustrate how the regression fit can be interpreted for this case. A similar discussion 
can be given for each of the other 19 significant charge clusters found. In the case of BYRF 1, 
the least squares fitting line, which fits the data well, has a slope of . 11 = log 10 (1 .28). Since 
the exact p value is given by 2.6 x 10-4 we conclude that thep value for the multiple window 
case is approximately 

2.6 x 10-4 X 1.28u 

for small values of u (in the range 0 < u < 10.) The nonlinearity of the plot in Figure 1 
suggests that the simplistic approach of using a linear fit has definite limitations. 

The seventh entry of Table 1, the second entry for which the ORF is BERFI provides 
an example of how accounting for the effect of multiple window sizes results in changing a 
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Figure 1. P Value Versus Number of Window Sizes. Open reading frame = BYRF1. 

significant p value (0.007) to an insignificant one. If we assume that window sizes from 15 
- 45 (i.e., u = 15) are searched for significant charge clusters, then importance sampling 
gives an estimated p value of 0.071. 

4. SPATIAL POINT PROCESSES 

In this Section we consider point processes in the unit square [0, 1]2. For concreteness, 
the development in Sections 4.1-4.5 focusses on Poisson point processes, but the methods 
described here are easily modified to handle other index sets and probability models. In 
particular, we consider a binomial process in a grid in Section 4.6.2. 

Let us denote the observed process by Y = {Yu,,, (u, v) E [0, 132}, where Yu,, takes 
the value 0 except at finitely many locations (u, v) where the value is 1. Let the set of these 
locations be denoted by {(U1, VI ), . .. , (UN, VN) }. For a null hypothesis, we assume that 

Y is a homogeneous Poisson point process, so that N - IP(A) and conditionally given N 
the (Ui, Vi) are iid and uniformly distributed in [0, 112. 

4.1 SCAN STATISTICS BASED ON A FINITE NUMBER OF WINDOW SIZES 

There are a number of possible procedures for testing the null hypothesis against the 
hypothesis of a particular type of nonhomogeneity or clustering characterized by a single 
small subregion of increased activity. In this Section, we consider square windows of width 
w centered at (u, v): 

AW,,V = {(U', V') : lU' - ul < w/2, lv/ - vl < w/2}. 
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We require that a window be contained in the unit square which amounts to the constraint 
that u and v lie in the interval 1w = [4w, 1- 1w]. 

In order to detect clustering of the point process Y, we fix a finite set of window sizes 
.w. ... ., Wm} and compute the number of occurences in each window 

N(AW,U,V ) = E Yu/,V/ 
(U',v' )EGAw ,u,v 

(The case when we restrict the window size to lie in an interval reduces to this one, as 
shown in Section 4.5.) We then reject the null hypothesis if there are an extreme number of 
occurences in some window. Thus, we compute an individual p value based on the Poisson 
(Aw2) distribution function 

1 - Fp(AW2)(N(AW,U,V) - 1), 

for each scan window. This is the probability that the Poisson random variable for the 
particular window is at least as large as the actual number of occurences in the window. We 
then reject Ho if one of these p values is sufficiently small; in other words, if the quantity 

1 = min min 1 - Fp(AW2)(N(Aw,u,v) - 1) 
WE{W X...,Wm} U,VGIw 

is sufficiently small, say 1 < C. 
To relate this to the framework introduced in Section 2, we define the locality statistic 

Tw,u,v(Y) =N(Aw,u,v) - cw, 

where 

cw= FkAW2)(l - C) + 1. 

Here we use the standard definition of the inverse distribution function found in Serfling 
(1980) for example. Using an elementary property of the inverse distribution (Serfling 
1980, Lemma iii, p. 3), it follows that 1 - Fp(AW2)(N(Aw,u,v) - 1) < C if and only if 

N(AW,U,V) > cw, so the test is then equivalent to the one that rejects Ho if M > 0 where 
M denotes the scan statistic 

M sup sup IW,',Uv(Y). 
WC{Wi,..,Wm} U,VGIw 

4.2 EXCEEDANCE PROBABILITY VIA IMPORTANCE SAMPLING 

The situation just described does not fit exactly into the framework of Section 2 because 
here the scan statistic involves the supremum of a continuum of locality statistics. In addition, 
the interpretation of the importance sampling approach as providing a correction to the 
Bonferroni bound no longer makes sense because the Bonferroni bound is +oC. However, 
it is possible to derive a version of the importance sampling algorithm in this case. The 
essential idea is to replace the index set for the windows, which is a square, by a lattice 
which is finite but arbitrarily. Since the exceedance probability in the continuum case can 
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be approximated by the exceedance probability in the finite lattice case, and expressions 
(2.3) and (2.4) hold for lattice case, we can use a simple limiting argument making use of 
Fubini's theorem (see Rudin 1974) to give analogous expressions to (2.3) and (2.4) for the 
continuum case. Letting 

Pw = P[w,u,v > ?0], for u,v E I, 

we define 

B*= Ep (1-W)2Pw, 

qW = PW (I _-W)2 IB* 

9*(Y)= S Area ({(u, v) C Iw X w : Jw,u, v(Y) > ?}), 
WC{WI ,...,WmI 

and 

i(w, U, V) f 1 
g*(y) P[{,IU V(Y) > d] 

It then follows that 

P[M > 0] = B*p* (4.1) 

where 

f-w/2 r I -w/2 

p* S qw 
/ / 

rj(w, u, v)dvdu/( -w)2. 
wE{Wi ....Wml J =w/2 Jv=w/2 

This expression translates into the following algorithm. 

For k from 1 to n do (independently) 

Step 1. Generate a random window size W according to the probabilities qw. 
Step 2. Generate a random location (U, V) uniform in the set Iw x Iw. 
Step 3. Generate Yk from the conditional distribution of Y given '1'w,u,v (Y) > 

0. 

Step 4. Compute the quantity g*(Y) and take fk I /g*(Y). 

End do 
Return B* p where P- n Z=l Pk 

Step 3 is trivial to carry out. We first generate 'w,u,v (Y),conditioned on 'w,u,v (Y) > 

0, which amounts to generating a random variable N' = N(Aw,uv) , 'P(AW2) condi- 
tioned on N(Aw,u,v) > cw. Then we generate (Ui', Vi'), i 1, .= . , N' iid uniform in 
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Aw, U, V. Finally, we generate N" _P(A p* 1 - W2)) and (Ui", Vi"), i = 1, ... , N" iid 

uniform in [0, 1]2\Aw,u,v. Then we define Y by taking N = N' + N" and 

{(Ui, Vi), i = 1, .I,N} = {(U',Vi'), i = 1, ... , N'} U {(Ui", Vi"), i = 1, ... . N"} . 

s There are only finitely many Poisson tail distributions involved so instead of generating 
from a given one on the fly, it is possible to store what is needed to generate from them in 
data structures during the setup step. 

4.3 CALCULATING THE AREA OF THE THRESHOLD EXCEEDANCE SET 

The computation in Step 4 requires the area of the set 

{,v) :N (AW ,V C} (4.2) 

for each w E wI, ... I, wm }. To compute this area for fixed window size w, order the distinct 
points Ui ? 2 w, Z = 1, . . ., N which lie in the interval IW, and let the ordered sequence of 
points Ui obtained in Step 3 of the current iteration be denoted by U(i) i = 1, . I, N, - 1. 
Also define U(o) = 2w and U(Nu) = 1- 2w, so that 

1 1 
2W = U(O, < U(,) < ..< U(Nu) = 1 W. 

Do the same for the Vi ?w, i = 1, .. . , N to give an ordered sequence V(), i 1,.. NV 
with 

-W = V(O) < V(1) < ..< V(NV) = -2W. 1 1 

Observe that the set 

{i EE {1, ... ., NJ (Ui,I Vi) e AW1U'V} 

and thus N(Aw,u,v), is unchanged as we vary the center (u, v) over the (open) rectangle 

(U(i) IU(i+ 1)) x (V(j)I V(j + 1) 

Consequently, the area in (4.2) is given by 

E 3 i+o - U(0(V(j+1) - V()), (4.3) 
(inj)E,1w 

where 

.Fw {(i,j) E {1,... NUj x {1, ...N} N N(Aw,,j) > CW, (4.4) 

Ui = Wm + U(i+I)), 

and 

(V(j) + V(j+1))- 
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Note that 

N(Aw,i,gVj)- {r :Ui-w < Ur < Ui + w, and Vj-W<Vr?<1j+w}I. 

In our implementation of the importance sampling algorithm, instead of checking every 
possible pair of indices (i, j) for inclusion in J-w we proceed as follows. For each index i 
we compute the set 

F = {r : Ci-w < Ur < Ci + w} 

and we store in a list all of the fW1% for which I.Fwu'l > cw. Similarly, for each index j we 
compute 

FWVJ = {r: Uj-w < Ur < Uj? } 
+W 

and store in a list all of the Fwv,j for which I w,i I > cw. Finally, the sum (4.3) is calculated 
using the fact that 

nw - (i,i) 1u, i n -FwvjI > CW 

and in the right side only the stored .wu,' and .wF,i need be considered. 

4.4 BOUNDS FOR THE EXCEEDANCE PROBABILITY 

As described in Section 2.1, it is possible to obtain an upper bound for P[M > r] by 
replacing the function g* in (4.1) and in Step 4 by a lower bound whose calculation requires 
considerably less computational effort. We have implemented the following simple idea for 
bounding g* (Y) below. 

Choose any F > 0. Assume W, U, and V are obtained from Steps 1 and 2 of the 
algorithm. In the calculation of g* (Y), instead of using the points Ui ? I w, i 1,... , N 
which lie in the interval IW, to define the U(i) we use only the ordered Ui ? 2 W, i = , N 
which lie in the interval U FW, and we take U(o) -U- FW and U(N ) = U + 2FW. 
We define the Vcj) analogously. 

4.5 SCAN STATISTICS BASED ON AN INTERVAL OF WINDOW SIZES 

If we restrict the window size w to lie in an interval, say w E [WL, WH], then we show 
in this section that the resulting scan statistic reduces to one in which there are finitely many 
window sizes and so this case is handled by the methods described above. As above, we 
compute an individual p value for each choice of w E [WL, WH] and for each u, v E IW, 
and we reject Ho for sufficiently small values of 

1 = inf inf 1 - Fp(AW2)(N(Aw,U,v)), 
WE[WL,WHI U,V,eIt 

say 1 < C. In other words, based on the locality statistic 

w,u,v(Y)=N(Aw,u,v) -CW 
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where 

CW = Fw(a2 ( 1C), 
Fp W 2)(-C) 

the test is equivalent to the one that rejects Ho if M > 0 where M denotes the scan statistic 

M = sup sup J',u, (Y) 
WC[WL,WH] U,VEIw 

The calculation of M is simplified by noting that the constant cW changes at only 
finitely many window widths in the interval [CL, cw]. Let 

WL = WO <Wl <W2 < ... < Wm-I < Wm = WHi, 

where the wi satisfy 

Fp(,XW2) (CWJ) 1C, i= l.,m 1 

Then 

cw=cwi for wi I<w<wi. 

If w < w', then any window of width w is contained in some window of width w'. 
Thus, 

sup N(Aw,,,,v) < sup N(Aw,1lxv). 
u,VEIw u,VEIw, 

If, in addition, cw = cw' then we have 

sup W,1,V sup W/,1,V 
u,VEIw u,VEIw, 

Since the critical constants cw change only at the wi we conclude that 

M sup sup Tw,?i,v 
WC{WO,..,Wm} U,VEIwi 

4.6 POINT PROCESS EXAMPLES 

4.6.1 Monte Carlo Simulation Experiment 

We now present the results of a Monte Carlo simulation experiment designed to compare 
the importance sampling algorithm with naive hit-or-miss sampling in terms of relative 
efficiency, 

R hit-or-miss computation time 
importance computation time' 

where the sample sizes for the two procedures are determined so that they give equal width 
confidence intervals for the target p value. 
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Figure 2. Comparison of Importance Sampling and Naive Estimation for the Spatial Poisson Case. 

We consider a point process defined on the unit square and compare p value estimates 
obtained from the importance sampling algorithm and naive sampling for a test of the 
Poisson (P(A)) null hypothesis against the general alternative. We consider simultaneously 
five square scan window sizes w in {0. 1, 0.125, 0.15, 0.175, 0.2} representing a search for 
a cluster of between 1% and 4% of the overall process domain. 

The simulation consists of specifying a value for the scan statistic M and running both 
Monte Carlo estimators to determine their per-trial variance and per-trial computational 
costs. For small p values the additional cost incurred in the importance sampling algorithm 
due to the requirement of generating samples from the appropriate conditional distribution 
will be compensated for by a smaller per-trial variance, yielding a relative efficiency greatly 
than unity and suggesting the superiority of the importance sampling approach. 

Figure 2 shows log(Relative Efficiency) for this simulation experiment. Plots are pre- 
sented for (2a) A - 10 and (2b) A = 20 for various values of the exceedance probability 
corresponding to various choices for the observed value of the scan statistic. 

Investigation of Figure 2 indicates that the importance sampling algorithm outperforms 
naive hit-or-miss sampling at small p values, that the performance improvement can be quite 
dramatic, and that the performance improvement can be realized at practically important 
p values (the range of p values for which importance sampling is recommended is (0, c) 
where c > 0.01). 
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Table 2. Comparison of Importance Sampling With Extreme Value Approximations 

Std. Improved 
Product-type Poisson Poisson Bonf. -type 

Import. Naive Rel. Monte Carlo approx. approx. approx. upper bd. 
k Sampling Sampling Effic. (C&G) (C&G) (C&G) (C&G) (C&G) 

15 0.2437 0.2446 4.52 0.2420 0.2830 0.4853 0.2954 0.4305 
(.0040) (.0086) 

16 0.1060 0.1070 16.4 0.1068 0.1170 0.2077 0.1232 0.1613 
(.0015) (.0062) 

17 0.0401 0.0408 59.8 0.0383 0.0423 0.0734 0.0446 0.0559 
(.00051) (.00040) 

18 0.0138 0.0149 233. 0.0132 0.0138 0.0232 0.0146 0.0181 
(.00016) (.0024) 

19 0.00438 0.00370 729. 0.0052 0.0042 0.0067 0.0044 0.0054 
(.000044) (.00121) 

NOTE: The table presents the exceedance probability for an iid Binomial (5,0.05) process defined on a 25 x 25 grid 
using a 5 x 5 scan window. The Monte Carlo approaches (columns 1, 2, and 4) are each based on 10,000 trials. For 

columns 1 and 2 the number in parentheses is two times the standard error of the estimate. Columns 5-8 present the 
results of various extreme value estimators. Columns 4-8 are due to Chen and Glaz (1996). 

4.6.2 Comparison of Importance Sampling with Extreme Value Approximations 

As has been demonstrated, our method yields an unbiased p value estimate whose 
variance is typically smaller than that of the naive hit-or-miss Monte Carlo technique when 
the p value is small. Furthermore, as demonstrated in Table 2, our p value estimate is often 
accurate for critical values that are not far enough in the tails of the null distribution to allow 
for accurate approximations via extreme value theory. 

Chen and Glaz (1996, tab. 3) presented a comparison of five approximations to the 
exceedence probability for a binomial process. The model consists of an 25 x 25 grid with 
the random variable at each grid location 

YU, ,iid Binomial(5, 0.05). 

Scan windows AU,V, u = 1, . .. ,21, v = 1,. . ., 21 forming 5 x 5 squares fitting inside the 
grid are considered, and the exceedence probability P[M > k] for the scan statistic 

M = max N(Au,v) 
u,v 

is approximated by (1) naive simulation based on 10,000 trials, (2) Bonferroni-type inequal- 
ity, (3) a standard Poisson approximation, (4) an improved Poisson approximation, and (5) 
a product-type approximation. 

Table 2 presents a comparison of the performance of our importance sampling algorithm 
with these various competing approximations. An investigation of the table reveals that, as 
suggested by Chen and Glaz (1996), the product-type approximation and the improved 
Poisson approximation are reasonably accurate in the extreme tails of the null distribu- 
tion (more accurate in fact than the Chen and Glaz Monte Carlo estimates). However, for 
practically important values of the exceedance probability not so far in the tails, such as 
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0.04 - P[M > 17], these approximations are in error by more than ten standard deviations 
while at the same time the relative efficiency of importance sampling versus naive sampling 
approaches two orders of magnitude. Furthermore, these importance sampling estimates 
require only a matter of seconds in terms of their computational burden. 

4.7 DIGITAL MAMMOGRAPHY EXAMPLE 

The Monte Carlo simulation experiment presented in Section 4.6.1 was designed to 
have relevance to the problem of identifying cancer indicators in X-ray mammography. 

Spiculated lesions, circumscribed masses, and clustered microcalcifications are among 
the important early indicators of malignant breast cancer, and early detection has been shown 
to improve survivability (Kopans 1998). Thus, the detection of clustered microcalcifications 
in screening mammograms is an area of considerable research activity in the computer-aided 
detection and diagnosis (CAD) community. The proceedings from the first four international 
workshops on digital mammography (Bowyer and Astley 1994; Gail, Astley, Dance, and 
Cairns 1994; Doi, Giger, Nishikawa, and Schmidt 1996; Karssemeijer, Thijssen, Hendriks, 
and van Erning 1998) include results from numerous efforts addressing this application. 

We consider the map of detected candidate microcalcifications in a mammogram to be a 
realization of a point process and perform a test for homogeneity of the point process versus 
the alternative that the process has higher intensity in some subregion of the mammogram. 
Rejection of the null hypothesis of homogeneity identifies the region of higher intensity as 
a potential cluster of microcalcifications. Homogeneity may imply the "uniformly healthy 
tissue" case while a cluster warrants closer inspection. 

To investigate the utility of spatial scan analysis in digital mammography, a mammo- 
gram is digitized and a microcalcification detector produces an observed point pattern of 
potential microcalcifications. (The point pattern may contain both true microcalcifications 
and false detections; furthermore, true microcalcifications that are present in the mam- 
mogram may be missed by the detector.) The example digitized mammogram presented in 
Figure 3 is from the Digital Database for Screening Mammography (DDSM) available from 
the University of South Florida and supported through a grant from the DOD Breast Cancer 
Research Program, U.S. Army Research and Material Command DAMD17-94-J-4015. The 
mammogram depicted in Figure 3 contains a cluster of microcalcifications (pathology: ma- 
lignant) representing less than 4% of the image. A simple matched filter microcalcification 
detector (e.g., Castleman 1996; Jain 1989) produces a point pattern with 10 detections. The 
p value for this pattern, estimated via both importance and naive sampling with extraordi- 
narily large sample sizes, is p = 0.00085. As the CAD application can be a time-critical 
one, a reasonable question is: How much computation is necessary to allow for a confident 
statement that the p value is less than 0.001 ? 

To address this question, note that Figure 2(a) suggests that the relative efficiency for 
this problem is significantly greater than unity. (In fact, we estimate the relative efficiency 
to be 39.2.) In order to obtain an estimate of the p value with a standard deviation vi <= 
0.000075, and thereby yielding p + 2 * vi <= 0.001, the importance sampling algorithm 
requires a computation time of 1 second. For the naive estimator to obtain the same accuracy 
((Jn = 0.000075) requires a nearly 40-fold increase in computational effort, or 39.2 seconds 
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the number of iterations, and when the exceedance probability is small, we have a better 
method for quantifying the quality of the volume of tubes approximation than is provided 
by naive hit-or-miss sampling. 

We now describe the setting in which the importance sampling procedure is used. 
Consider a Gaussian random field Y = {Yx, x C X} indexed by some finite set X. Under 
the null hypothesis Y has mean 0 and some given covariance structure. We can represent 
this random field as obtained by forming linear combinations of a white noise sequence, so 
assume 

h 

j=1 

for some constants axj, where Ej, j = 1, .. ., h are iid N(O, 1) random variables. 

Consider a finite collection of locality statistics {'Ti, i C I} where each 'i is a linear 
function, say 

i(Y) = bixYx. 
XEX 

As a result, we have 

h 

Ti(Y) E ECijEj, 
j=1 

where 

Ci= bixax3. 
XEX 

The marginal null distribution of 'iJ(Y) is therefore N(O, >h=t c2). 
A key to applying the importance sampling algorithm of Section 2 to approximating 

the distribution of M = maxiEI I'i (Y) is the ability to generate the random field Y con- 
ditionally given 'Ji (Y) for any particular choice of i C I. This conditional distribution is 
described using the following elementary Lemma, which follows from the distribution of a 
multivariate normal random variable conditioned on a particular linear combination being 
fixed, and simple linear algebra. 

Lemma 1. Let E,.. ., 6jh be iid N(O, 1) and supposecl .... . Ch are constants with 
Cr $? Ofor some particular index r. Then conditionally given Eht = t, the Eq, q 54 r 
are jointly distributed as 

hCj Zj) )Cq 
+ Zqi for q 

7& r, ( ii c jE{i -}\{r} 
) 

where the zj are iid N(O, 1), and 

Zj7$rj{~ Z\ |c ) 
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The lemma leads to an algorithm for generating Yx, x c X conditionally given 
"i (Y) = t, the critical Step 2 of the importance sampling algorithm. Pick any index r 
such that cir $& 0. Next, generate zq, q $& r iid N(O, 1) and take 

Eq 
h\{r}CijZJ)) 

Ciq + Zq, 
for q$ r, 

j= Iij iEf{I, * ,h}\{r} 

and 

t - 
EZjr CijEj 

Cir 

(i.e., solve the equation Zh.= cijEj = t for Er). Finally, take 

h 

Yx =Z axjEj for x C X. 
j=1 

Remarks. 
1. In the importance sampling algorithm we need to determine how many indices i 

are such that 'i (Y) > T for some threshold T, and for this it is not necessary to calculate 
Y directly, since the random field 'Ji (Y), i C I can be obtained using 

h 

i (Y)= EZcijj. 
j=l 

The constants cij can be determined as part of the setup for the algorithm. 

2. If the locality statistic 'i is the average of the random field Y at a small set of 
points, then generating the noise sequence Ej, j = 1,... , h conditionally given 'i (Y) 
involves modifying a white noise random field at a small set of points, where the number 
of sites for modification corresponds to the number of nonzero coefficients from among the 
cij, j = l, ...,Ih. 

3. For the special case when we scan the random field for a linear combination with 
a high z score, the cij are normalized so that jhI c2 = 1, for each i C I. As a result, the 
probabilities 

qi P[XFj(Y) > t] 

EiEI P[XF (Y) > t] 

in the importance sampling algorithm (see Section 2) are all equal, so the index J generated 
in Step 1 of the algorithm is uniformly distributed in I. 

In addition, we have 

r1 

1 ? Cr 
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5.1 EXAMPLE: CONVOLUTIONS OF A GRFs ON A TOROIDAL GRID 

An important example to consider is a GRF indexed by a toroidal grid, where the white 
noise and the locality statistics have the same index set, and both the random field and the 
locality statistics are obtained by convolution. Then much of the computational effort can 
be carried out efficiently using fast Fourier transforms (FFTs). The model is natural from 
a mathematical point of view, and appears, at first glance, to be unnatural from a practical 
point of view. However, if the GRF is indexed by a rectangular grid, and the locality statistics 
are not modified to take into account edge effects, then we can embed the rectangular grid 
in a larger toroidal grid, and modify the toroidal importance sampling algorithm in a simple 
way to handle this case, and thus retaining much of the efficiency gained from the use of 
FFTs. 

The framework we consider is the following. The index set X forms a d-dimensional 

mI x x md toroidal grid, X = Z1 x ... x Zd. This is the d-dimensional integer lattice 

with points (xl,. ..,Xd) and (xl ...., xd) identified if xi _x' (mod mi) for i = 1, . . ., d. 
Addition of elements of X is performed coordinatewise using modulus arithmetic. The 
random field Y is taken to be of the form 

Yx = E auex-u, 
uEX 

the convolution of a white noise random field ex, x C X by a linear filter {ax, x C X} (a 
collection of constants indexed by X). The locality statistics are also indexed by X and are 
obtained by convolving with another filter {bx, x C X}, so that 

''v (Y) = E bwYv-w 

wEX 

and consequently 

'Iv'(Y)= E cwev-w= 

wEX 

where the filter coefficients satisfy 

CW= bwau-w. 
uEX 

The fact that we get the locality statistic process by convolving the noise with a 
filter allows us to create the conditional locality statistic field using fast Fourier trans- 
forms (FFTs). After computing the conditional noise field, we get the locality statistic field 

{IT x(Y), x C X} by making a forward FFT of the noise field, coordinatewise multiplying 
by the FFT of the filter {cx, x C X} (which need only be calculated once) and performing 
an inverse FFT. 

5.2 EVALUATING THE "VOLUME OF TUBES" APPROACH 

An alternative approach to the approximation of exceedance probabilities is to replace 
the discrete index set for the locality statistics by a continuous approximation, and use 
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techniques from differential geometry, in particular, the key Hotelling (1939) and Weyl 
(1939) volume of tubes formula and related developments. See Naiman (1986), Naiman 
(1990), Knowles and Siegmund (1989), Siegmund and Zhang (1993), Siegmund and Wors- 
ley (1995), Worsley (1995a), and Worsley (1995b). The resulting p values are multidimen- 
sional integrals giving close approximations to p values in the tails of the distribution. 

Although importance sampling can give an improvement to hit-or-miss Monte Carlo 
sampling for approximating exceedance probabilities, it can be also be used to determine 
how well the tube approximations perform. We demonstrate this with a simple example. 
First, we give a brief review of the volume of tubes approach. An extensive overview of 
the volume of tubes approach is given by Adler (1998). Assume that our locality statistics 
are all normalized so that I -c2 1 for i C I. Then we can write the exceedance 
probability of interest as 

P[M > t] =P [miaIx(( E) > t] (5.1) 

where -y(i) denotes the unit k vector with components cij and E is the random k vector 

with components Ej, j = 1, . . ., k. Write E = RU where R = and U E, 

so that U is uniformly distributed in Sk- I the unit sphere in Rk, R2 _X2 , and U and R 
are independent. Writing the probability of interest as an integral and making a change of 
variables leads to the expression 

P [max(y(i) U) ? t/r ] fX2 (r2)2rdr 

flr/2 ~ _t2 2t2 sin 0d 
]__ [[D(F, )] fX -dcos2 0) cos3O 

where 

F {(i) i CI} CSk-l, 

D(F, 0) denotes the so-called tubular neighborhood of F, of angular radius 0, which is the 
set of points in Sk-l whose angular distance from F is at most 0, and p, denotes the uniform 
measure in Sk-l . 

If F is approximated by a submanifold F* (possibly having a boundary) in Sk-l of 
some appropriate dimension, then we can use ,u [D(F* 0)] to approximate ,u [D(F, 0)] 
This idea was applied by McCann and Edwards (1996) in conjunction with the inequality 
in Naiman (1986) (see below) to compute critical values for certain multiple comparison 
procedures. 

Fortunately, if F* is sufficiently smooth and without self-overlap, and 0 is sufficiently 
small Weyl and Hotelling's tube formulas and related results (see, e.g., Naiman 1990) give 
exact expressions for the latter measure, which take the form of integrals over F* (and 
integrals over its boundary). 

The key consequence of the assumptions that enables one to use differential geometry 
to determine the tube volume is that geodesic curves of length 0 which emanate from the 
set F* along normals to the set from different points do not intersect. In particular, if F* 
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does not have a boundary, the tube D(F*, 0) can be coordinatized in a natural way using the 

product space F* x Bkl- dim(r*) (0) where Bp (0) denotes a p-dimensional ball of radius 
0. The analogue of this statement when F* does have a boundary was described by Naiman 
(1990). 

For one- and two-dimensional sets F*, expressions for the measure of the tube are 
rather simple to describe. If F* forms a simple closed curve (the one-dimensional case) 
and the coordinatization condition mentioned above holds, then Hotelling's (1939) formula 
states that 

I(F*I0) -BN-2 1(sin2(0)), (5.2) 
27r 2' 

the normalized length of the curve multiplied by the curve's cross-sectional area. Here 
B.,. (.) denotes the beta distribution function. 

Even if the coordinatization condition fails, this formula gives an approximation for 
the measure of the tube. For the case when F* is a one-dimensional curve with endpoints, 
this expression is corrected by adding an additional term so that 

[1(r ,IO) = I 
BN-1 (sin 2(0)) + - BN-2 , (sin 2(O)). (5.3) 

2 2 2 27r 2 

On the other hand, Naiman (1986) (see also Johnstone and Siegmund 1989 and the 
references therein) showed that for a curve, either closed or not, even if the coordinatization 
condition fails, inclusion of the additional term always gives an upper bound for the measure 
of the tube. Knowles and Siegmund (1989) gave analogous expressions for the case of a 
two-dimensional submanifold with boundary. Sun (1993) gave an approach to bounding 
the exceedance probability for the case of higher-dimensional sets F*. 

Siegmund and Worsley (1995) introduced the volume of tubes approach to p value 
approximation for detecting a signal of unknown location and shape in a stationary Gaussian 
random field. Their starting point is a Gaussian random field on a continuous set, so that the 
set F is already a submanifold. They also derive the same approximations for exceedance 
probabilities using the alternative expected Hadwiger characteristic of the excursion sets. 

Since F and I parameterize the space of locality statistics, and F* can be viewed as doing 
this in an approximate sense, the volume of tubes approach and the importance sampling 
approach are similar in that both rely on p value expressions that can be viewed as integrals 
over locality statistic space. However, the differential geometric approach fails to correctly 
account for multiple overlap of the tube when it occurs. Even when the coordinatization 
condition holds for r* there remains the issue for the differential geometric approach that 
F* is only an approximation for F, when F is discrete. A program of research designed to 
further investigate the relative performance of the two approaches is currently underway. In 
the next section, we present a comparison for a simple case, when F* is one-dimensional. 

5.3 EXAMPLE: ASSESSING VOLUME OF TUBE APPROXIMATIONS FOR A GRF IN THE 

CIRCLE 

We illustrate how importance sampling can be used to assess the volume of tubes 

approximation to exceedance probabilities by focusing on a simple but important special 
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case-approximating the distribution of the maximum of a stationary Gaussian random 
field indexed by a finite number N of equispaced points in the unit circle; that is, the 
one-dimensional case of a GRF in the toroidal grid. We take the random field to be the 
convolution of white noise with the filter having coefficients 

c = C2 ( 2ThT) 

where Ixj denotes the angular distance between x and 0 in the circle, and the constant C 
is chosen so that EX c2 = 1. Thus, the filter is define by a discretized Gaussian filter, and 
the quantity h gives the distance (in fraction of the circumference) at which the coefficients 
achieve half of their maximum value. 

In this example, we take the locality statistics to be the observations Yx themselves. We 
chose this simplified example because if we take a random field Y with Gaussian covariance 
function, and use locality statistics formed from Gaussian kernels, the resulting random field 
of locality statistics is approximately of this form. (This holds only "approximately," due to 
the fact that the circle, being compact, requires a truncated Gaussian kernel; the convolution 
of Gaussian kernels is not Gaussian in the circle.) 

For our numerical example, we take the number of grid points N to be 64. In this 
context, the vectors -~(i) of (5.1) are all of the cyclic permutations of the coefficient vector 
C = (Co, . . ., CN l); that is, vectors of the form c(i) = (Ci, Ci1, .+ . ., CN1, co,I . . ., ci_I), 

for i = O, ... , N - 1. This set can be approximated by forming a piecewise great circular 
arc F* by connecting successive points c(),... c(N-1), c() to form a closed loop whose 
length is 

L = Ncos- ((c(?) I ))). 

In fact, a circle of approximately the same length is obtained when we take 

r-= {y(x) ,0<x<27r 

where (X) has coordinates 

(X) C2' 22 / i = 0, ... IN-i. 

Figure 4 graphs three approximations to the exceedance probability P[maxx Yx > t] 
as we vary the half-width half-max for the filter coefficients, and for t = 2, 3, and 4. For 
the importance sampling approximation we used a sample size of 100,000 that yields a 
negligible standard error. 

We see that the tube approximation (5.2) performs well provided h is not too large 
or too small. For large values of h the self-overlap of the tube becomes substantial as 
the approximating curve P* collapses to a point. Then the tube approximation gives an 
underestimate of the exceedance probability and the true value is somewhere between the 
approximation (5.2) and the upper bound (5.3). 

Figure 5 gives the relative efficiency (defined in Section 4.6.1) for importance sampling 
versus hit-or-miss sampling for each of the simulations used to produce Figure 4. We see 
that for even the smallest threshold considered (t = 2) the relative efficiency exceeds 1 
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importance sampling approx 
o - ------------ volume of tubes approx 

---- - volume of tubes upper bd 
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C 

CY 

0C? 

0.0 0.2 0.4 0.6 

h = Half-Width Half-Max for Filter Coefficients (fraction of circumference) 

Figure 4. Comparison of Exceedance Probability Approximations Gaussian Random Field in the Circle. 

throughout the range of values of h, and exceeds 10 when h > .15 For t = 3 the relative 
efficiency is about 100 and for t = 4 it is about 10,000. Thus, as we have seen in the point 
process examples the improvement of importance sampling over hit-or-miss sampling can 
be quite substantial. 

Knowles and Siegmund (1989) used naive Monte Carlo simulation to assess the volume 
of tubes approximation for a different example, with a sample size of 10,000. Importance 
sampling provides a more accurate method for determining true exceedance probabilities 
for their example. 

5.4 PET GRF EXPERIMENT 

We now present the results of an illustrative example designed to suggest the utility of 
the importance sampling algorithm in the GRF setting and the applicability of our algorithm 
to positron emission tomography (PET) scan brain volume analysis. 

PET indirectly measures regional cerebral blood flow (rCBF); see, for example, Cho, 
Jones, and Singh (1993). One application of PET involves collecting volumetric brain image 
data from each of a number of subjects during two different states, A and B, and subtracting 
these to produce a contrast image C = B - A. Local regions of high intensity in the contrast 
image C are considered to be regions with increased blood flow associated with state B 
relative to state A. This in turn is considered to be indicative of increased neural activity 
representing regionally specific effects attributable to state B. Assessing the significance 
of such regions is a stage in the attempt to understand the workings of the brain. 

For a particular tone recognition task under investigation, six scans each of two condi- 
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.a) 

0~~~~~~~~~~~ 

0 c 

St = 

tons 

Tone Recognition Decision + Sensory Motor Control, 

and 

Sensory Motor Control Alone, 

are obtained for each of 12 normal subjects. The contrast, 

C =Tone Recognition Decision 

+Sensory Motor Control -Sensory Motor Control Alone, 

is considered; this application involves the identification of localized neural regions involved 
in the tone recognition decision. 

A common and valuable approach to investigating such data is the statistical paramet- 
ric mapping (SPM) approach of Friston et al. (1995). To facilitate intersubject pooling the 
software package SPM95, available from The Wellcome Department of Cognitive Neurol- 
ogy at University College London, performs anatomical registration of the dataset to the 
standard Talairach & Toumnoux space (Talairach and Toumnoux 1988) and subsequently per- 
forms an ANCOVA normalization routine. The size of the volumetric images in Talairach 
& Tournoux space is 147,030 voxels representing a 65 x 87 x 26 voxel cube with voxel 
spacings of 2mm x 2mm x 4mm. The overall contrast volumetric image is obtained from 
pooling the normalized and registered data from the 12 subjects. After registration and 
normalization, this subtractive application allows for a null hypothesis of no change to be 
modeled as a GRF (or more accurately a large-df t-field) henceforth to be denoted by z. 
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Figure 6 presents the results of an SPM95 analysis of the tone recognition data. The field 
is considered to be a GRF whose spatial covariance function is Gaussian with a resolution 
(the full width half maximum (FWHM)) of [17.9, 20.0, 19.3] mm, so that the correlation 
between a pair of points whose distance apart is (dr, dy, dz)mm is given by 

2-{ (d./(17.9/2))'+(dy/(20-0/2))'+(d./(19.3/2))'I} 

The actual search volume considered in the analysis consists of a subset of 47,s428 voxels 
in the 65 x 87 x 26 voxel Talairach & Tournoux cube; these are the voxels considered to 

SPM{Z} 
contrast 

5 0 20 25 

a - > - ~~ ~ ~~40 _ 

o ~~ ~ ~~~60 

1 00 

_riX ~~~~~~120 
* . ... ..: ... ....... . . . . ... .: . . ... .. .. ..... ..... .. :.: 

.. 

......... . 

~140_ 
5 10 15 20 25 
Design Matrix 

Regional effects: /ego/nma/auditory/normal 

region size {k} P(nrnax > k) Z P(Zmax > U) (Uncorrected) {X,y,z mm} 

1 1072 0.014 6.07 0.000 (0.000) -2 12 48 
2 2473 0.000 5.71 0.000 (0.000) 28 22 4 

5.45 0.000 (0.000) 38 14 8 
5.35 0.000 (0.000) 34 38 12 

3 345 0.263 4.66 0.005 (0.000) -18 -94 -24 
3.79 0.130 (0.000) -14 -74 -28 

4 413 0.194 4.13 0.042 (0.000) -24 12 4 
4.13 0.043 (0.000) -30 18 8 
3.29 0.461 (0.000) -12 12 8 

5 65 0.850 3.66 0.193 (0.000) 4 -36 -12 
6 45 0.901 3.42 0.350 (0.000) 26 -94 -16 
7 73 0.829 3.12 0.616 (0.001) -32 46 12 
8 10 0.973 2.81 0.860 (0.002) -44 -4 44 
9 7 0.978 2.69 0.917 (0.004) 34 -54 32 
10 13 0.967 2.59 0.951 (0.005) 58 -34 -12 
11 6 0.979 2.51 0.969 (0.006) -52 14 4 
12 6 0.979 2.43 0.982 (0.008) 0 -18 4 
13 1 0.988 2.37 0.987 (0.009) -20 -8 44 
14 1 0.988 2.35 0.988 (0.009) 6 -28 4 
15 4 0.983 2.35 0.989 (0.009) 4 -6 4 

Threshold = 2.33; Volume [S] 47428 voxels: df = 120 
FWHM = [17.9 20.0 19.3] mm (i.e. 110 RESELS) 

SPM analysis - date: 22-Oct-97 user: nma 

Figure 6. SPM Analysis for PET Scan Brain image Gaussian Random Field Analysis Example. 
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actually represent locations in the brain. Excursion regions in the realization are defined 
as contiguous regions with z values above a threshold Zt = 2.33. For example, for our 
realization the significance of a three-dimensional excursion region around Talairach & 
Tournoux coordinates (-24,12,4) in what is referred to as the insula on the edge of the 
putamen consisting of nregion = 413 voxels and with a maximum z value of Zmax = 4.13 
is in question (region 4 in Figure 6). To assess the significance of this excursion region, 
SPM95 reports a p value of pz = 0.042 based on the maximum z score and Pn = 0.194 
based on the size of the region. Both of these p values are based on extreme value theory. 
(See Friston et al. 1995, pp. 195-196; see also Adler 1981, Friston et al. 1991, Worsley et 
al. 1992, Friston et al. 1994.) 

We now present an importance sampling simulation designed to provide an alternative 
estimate of the the significance of the excursion region in question. It is perhaps noteworthy 
that the importance sampling approach takes into account both the size of the observed 
excursion region and its z scores, thus allowing for a unified analysis of the region's signif- 
icance. 

We proceed by embedding a 50 x 64 x 16 grid (a search volume of 51,200 voxels) in the 
torus and (ignoring edge effects) considering balls with radii of the form r x r x r/2 voxels 
centered near the reported cluster coordinates (-24,12,4). For each ball we compute the 
locality statistic Ti to be the normalized sum of the z values in that ball. Using r = 5.8 (a 
ball of voxel radius 5.8 x 5.8 x 2.9 yielding a region consisting of 409 voxels, analogous to 
the size of the SPM excursion region in question) yields an observed value of Mobs = 3.420 
for the spatial scan test statistic. The p value estimate for this region is 0.24?0.01, indicating 
that this region is not significant. 

A smaller ball (r = 3.9; the size yielding the maximum locality statistic) yields a test 
statistic value of Mobs = 4.424 and a highly significant p value estimated to be 0.00875 ? 
0.00036. 

Setting aside the fact that we have considered for simplicity only ball-shaped regions, 
it is not surprising that our method leads to an indication that the cluster is smaller in spatial 
extent than reported by SPM. The observed values for the random field in question (the 
PET image) are, due to the definition of the excursion region and the spatial dependence, 
likely to be near the threshold of Zt = 2.33 near the edge of the excursion region. As 
such, an observed locality statistic for spatial scan analysis with a window geometry and 
location identical to that of the excursion region can be smaller than when using smaller 
scan windows centered at the field peak. 

The application-a search for regionally specific effects of unknown spatial extent- 
requires simultaneous consideration of multiple window sizes. Toward this end we consider 
balls ranging in size from 1 voxel (r = 0) to a maximum cluster size of approximately 
2,000 voxels (r = 16) in steps of size /\r = 1. This analysis yields a p value estimate of 
0.03 ? 0.0025. The conclusion is, therefore, that the experiment does suggest a significant 
effect in the insula on the edge of the putamen, and that if attention is restricted to ball-shaped 
regions the significant effect is smaller than the 413 voxel excursion region reported by SPM. 
Furthermore, this example demonstrates the necessity of accounting for the simultaneous 
consideration of multiple window sizes, as the p value increases dramatically (from 0.00875 
to 0.03) when the geometry being searched for is not considered to be known a priori. 
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