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Abstract

Classi#cation of high-dimensional data is inherently di1cult. We present an exploratory data analysis methodology for
characterizing the scale dimension of a classi#cation problem. The idea is to characterize the support of one distinguished
target class as a collection of balls covering the class, with each ball centered at an observation in that class such that the
radius is maximal without containing observations from the other classes. The scale dimension is de#ned to be the number of
distinct radii (ball sizes) required to cover the class without covering observations from the other class. A greedy algorithm
is used to #t the balls. The balls then provide a description of the support of the target class, with information about the
complexity of the classi#cation problem implicit in the number, radii, adjacency and position of the balls. Clustering the balls
by radius and pruning the cluster tree yields an estimate of the scale dimension for the problem. We illustrate the methodology
with pedagogical simulations and a chemical sensor data analysis application. Published by Elsevier Science Ltd on behalf of
Pattern Recognition Society.
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1. Introduction

This article presents an exploratory data analysis method-
ology for the investigation and characterization of the scale
dimension of high-dimensional classi#cation problems.
Scale dimension is de#ned in terms of the number of equal
radius balls needed to characterize the problem. The balls
are centered on exemplars from one class, referred to as
the target class, such that they cover no observations of the
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other class. The ball centers are then the only target class
observations retained by the classi#er. Classi#cation is per-
formed by projecting observations based on the distance to
the ball centers. This results in a form of reduced kernel es-
timator classi#er. Section 2 develops the methodology, Sec-
tion 3 presents pedagogical simulation examples designed to
give an intuitive understanding of the algorithm, and Section
4 presents a case study for a chemical sensor data analysis
application.

1.1. Statistical pattern recognition

We consider statistical pattern recognition in the super-
vised case (classi#cation as opposed to clustering). An
available training database Dn consists of (X; Y ) pairs;
Dn = [(X1; Y1); : : : ; (Xn; Yn)], where the multi-variate or
function-valued (�-valued, say) random variables Xi rep-
resent training observations (data collected for exemplar
i) and their associated class labels Yi take their values
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in {0; 1}. We shall consider the two-class problem through-
out, although the methodology can be extended to the
multi-class case. The class-conditional samples are repre-
sented by Xj = {Xi : Yi = j} for j=0; 1, with X0 ∪X1 =X

and X0 ∩X1 = ∅. The cardinality of the set Xj is |Xj|= nj ,
and therefore the database Dn consists of n0 observations
from class 0 and n1 observations from class 1, for a total
of n= n0 + n1 observations. (The class-conditional training
sample sizes nj may be taken to be design variables rather
than random variables.) For Xi ∈Xj , the Xi are assumed
to be independent and identically distributed Fj . For sim-
plicity, we will further assume that the random variables Xi

are continuous; that is, the probability density functions fj
exist. Hence, ties occur with probability zero, and the ob-
servations are distinct almost surely. This will be implicitly
assumed throughout.

A common approach to the distribution-free analysis of
two or more high-dimensional samples involves the consid-
eration of the interpoint distances [1]. The choice of distance
is of fundamental importance; in general, we let �(·; ·) :
�×� → R+ = [0;∞) be an appropriate distance function.
Then, for Xi ∈X and W ⊂ X, we de#ne

�(Xi; W ) = min
X ′∈W

�(Xi; X
′):

Thus, Xi ∈W ⇒ �(Xi; W ) = 0 while Xi �∈ W ⇒ �(Xi; W )
¿ 0 a.s.

1.2. Motivation

When the dimensionality of the original data (the dimen-
sionality of �) is large, it is di1cult at best to perform statis-
tical pattern recognition in the domain space—the “curse of
dimensionality” suggests that the sample size n is likely too
small. See for example Refs. [2] or [3]. We are interested
in understanding the geometry of the classi#cation problem,
and to this end we would like to be able to determine the
scale of the data in a given region of its support. Thus, we
are looking for witness sets Wl and their associated balls. In
particular, we want to know the ball centers and radii that
cover the support of the X observations.

How shall we choose the witness sets Wl; that is, how
shall we choose the number d, the size of the witness sets,
and the witness elements therein? Designate a distinguished
target class J ∈{0; 1}. Then the nontarget class is 1 − J .
(The proposed procedure is nonsymmetric in the two classes,
meaning that the results depend upon the choice of J .) Con-
sideration of multiple witness sets allows consideration of
multiple scales. The lth scale applies to the local region near
the witness elements of the lth witness set. We will show
how this gives a way of exploring the geometry of the target
class relative to class 1− J .

One reason for performing this mapping is to allow a bet-
ter understanding of the data through visualization or other
low-dimensional exploratory data analysis. A second reason,
mentioned above, is the inherent di1culty of performing

analysis and estimation in high-dimensional spaces; classi-
#cation performance may be superior under a reduced com-
plexity model. Thus, the selection of an appropriate cover
is of great interest to the pattern recognition practitioner.

2. Methodology

2.1. Class covering

Given an integer d¿ 1, let W = [W1 · · ·Wd]′ be a vec-
tor of witness sets Wl ⊂ XJ for l = 1; : : : ; d, and let R =
[r1 · · · rd] be a vector of nonnegative scalars (represent-
ing radii); rl ∈ (0;∞) for l = 1; : : : ; d. Let B(x; r) = {x′ :
�(x; x′)¡r} be the (open) ball in � of radius r centered at
x. If

XJ ⊂
d⋃
l=1

⋃
X∈Wl

B(X; rl);

then (W;R) is said to be a proper cover of class J . (For
speci#city, we will use the adjective proper to denote covers
which contain all of the target class observations in order to
distinguish them from generalizations de#ned in the sequel.)
If, furthermore,

X1−J ∩

 d⋃

l=1

⋃
X∈Wl

B(X; rl)


= ∅;

then (W;R) is said to be a pure cover of class J . We say
that d is the dimensionality of the cover. If R = [r · · · r]—
all radii are the same—we say that the cover (W;R) is
homogeneous. Similarly, we say the cover is heterogeneous
if the radii are not equal.

Pure covers exist with dimensionality d6 nJ and witness
set cardinality |Wl|6 nJ .

Example 1. There exists (a.s.) �¿ 0 such that (W =
[XJ ]; R= [�]) is a pure (and trivially homogeneous) cover
with dimensionality d= 1 and |W1|= nJ .

Example 2. For d=nJ there exists (a.s.) some small �¿ 0
such that letting W be the nJ -vector with elements Wi =
{Xi} for each Xi ∈XJ and setting R=[� · · · �] yields a pure
homogeneous cover. Thus; d= nJ and |Wi|= 1.

Example 3. LetW be the nJ -vector with elements {Xi} for
each Xi ∈XJ and settingR=[d(X1;X1−J ) · · · d(Xn;X1−J )]
yields a pure heterogeneous cover. This cover will be im-
portant in the sequel. Once again; d = nJ and |Wi| = 1 for
this cover.

The above examples represent the phenomenon of over-
#tting, which is in general to be avoided.

We call a cover (W;R) for which |Wl| = 1 for all l
a unit cover. Thus (from Example 2), there always (a.s.)
exists a pure proper homogeneous unit cover with d6 nJ . A
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construction for approximating a minimal—that is, one for
which d is as small as possible—pure proper homogeneous
unit cover is given in Ref. [4], and computational complexity
results for this construction are provided.

The cover de#ned in Example 3 de#nes the class cover
catch digraph as follows. Following Ref. [5], we de#ne a
graph to be a set of vertices V and unordered pairs of vertices
called edges. The set of edges is denoted E. We write the
edge u; v, between vertices u and v, as uv. The vertices u and
v are called neighbors. If the pairs are ordered, we call the
graph a directed graph, or digraph. If uv is a directed edge,
then v is a neighbor of u. If there is no edge vu, then u is not
a neighbor of v. A sphere digraph [6] is constructed from a
set of balls as follows. Each ball corresponds to a vertex of
the digraph, and there is a directed edge from one vertex to
another if the center of the ball corresponding to the second
vertex is contained in the interior of the ball corresponding to
the #rst. The class cover catch digraph (CCCD) is the sphere
digraph corresponding to the balls in Example 3. That is, it
is the digraph on nJ vertices, corresponding to the nJ balls
centered on the Xi ∈XJ , with a (directed) edge between u
and v if and only if the ball corresponding to u covers the
center of the ball corresponding to v. The operations that we
will be performing on the covers can be understood in terms
of operations on the underlying CCCD. Priebe et al. [7]
discuss a particular one-dimensional case of a CCCD. The
CCCD is thus the sphere digraph with spheres of maximal
radius (maximal in the sense of not covering observations
from class X1−J ).

The covers described above are typically redundant. We
would like to #nd a cover that uses fewer balls, both because
it is a more compact representation, and because it allows
faster computations. To this end we utilize the concept of a
dominating set.

A set of vertices D is called a dominating set of G if
every vertex of G not in D is a neighbor of a vertex of D. A
dominating set of minimum cardinality is called a minimum
dominating set. The cardinality of a minimum dominating
set of G is denoted �(G), or just � if the underlying graph
is understood. A dominating set that contains no (strict)
subsets which are themselves dominating sets is called a
minimal dominating set. Note that a minimum dominating
set is minimal, but the converse is not necessarily true.

The CCCD is a type of random graph. The edges are
de#ned in terms of a random sample drawn from the two
classes. This de#nes a class of random graphs as those which
can be realized as CCCDs for a particular classi#cation prob-
lem.

Given a CCCD, there are a number of ways one can use
the cover to construct a classi#er. We de#ne one such as
follows. LetW ⊂ XJ be a set of points with associated balls
{B(s; r)|s∈W}. We classify an observation x as class J if
x∈⋃

s∈W B(s; r). Otherwise, we assign the observation class
1− J . This can easily be extended by scaling by the radius
of the balls, or by constructing the CCCD on X1−J and
using a tie-breaking rule when the observation is contained

in balls from each class. We will only be concerned with the
simplest of these, as our purpose is to explore the concept of
scale dimension rather than the construction of the classi#er.
Thus, we de#ne the CCCD classi#er gW as

gW(x) = 1− J + (2J − 1)I

{
x∈

⋃
s∈W

B(s; r)

}
:

It is easy to see that gW(x)= J ⇔ x is interior to one of the
balls de#ned by W, otherwise gW(x) = 1− J .
The class-conditional resubstitution error rate estimate for

class J for the CCCD classi#er gW is given by

L̂
(R)
J (gW) =

1
nJ + n1−J


 ∑

x∈XJ

I

{
x �∈

⋃
s∈W

B(s; r)

}

+
∑

y∈X1−J

I

{
y∈

⋃
s∈W

B(s; r)

}
 :

Note that if (W;R) is a pure proper cover of class J , then
L̂
(R)
J (gW) = 0.
While a pure proper cover (W;R) ⇒ L̂

(R)
J (gW) = 0, the

converse is not true. We will argue, in the sequel, in favor
of the utility of heterogeneous nonunit nonpure covers.

2.2. Algorithm

The goal of the algorithm is to #nd a pure proper unit
cover of minimal dimensionality. This will provide us with
a compact representation of the classi#cation region, and
reduce the computational burden of the classi#er. The opti-
mization problem under consideration may be stated as

#nd (W;R)
so as to
minimize the number of witness sets d
subject to the constraint that (W;R)
is a pure proper unit cover of target class J .

Note that the cover is not constrained to be homogeneous.
Let us de#ne dmin to be the minimizing number of witness
sets for the optimization problem stated above. Conditional
on the training set Dn, dmin is well de#ned even though there
is not necessarily a unique minimizing cover. In the graph
theory terminology de#ned above, we are concerned with
#nding a minimum dominating set for the CCCD. We have
16dmin6dhomogeneous6 nJ , where dhomogeneous is the mini-
mizing number of witness sets for the analogous opti-
mization problem in which the cover is constrained to be
homogeneous [4].

Consider the random nJ × nJ binary matrix A = [ai; j]
with elements given by ai; j = I{�(Xi; Xj)¡�(Xi;X1−J )}
for Xi; Xj ∈XJ and i; j = 1; : : : ; nJ . That is, ai; j = 1 if Xj

is an element of the pure open ball of maximum possible
radius centered at Xi. (Here “pure” means “contains no class
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1− J observations”.) A is the augmented adjacency matrix
corresponding to the (random) CCCD. Then the goal is to
#nd a solution to the optimization problem

Minimize 1̃Tx̃
subject to ATx̃ ¿ 0̃ (or; equivalently; ATx̃¿ 1̃)
N:B: x̃∈{0; 1}nJ ; and the inequalities are component-wise .

The elements xi of the binary vector x̃ of length nJ indicate
whether there is a ball centered at observation Xi ∈XJ ; i.e.,
Xi is a witness element. The unit cover sought is given by the
observations indicated by the nonzero elements of a vector
x̃ which solves the optimization problem, and their associ-
ated radii. This can be seen to be an NP-hard optimization
problem by transformation to the classical “dominating set”
problem of graph theory (see Refs. [4,8]).

Our deterministic “greedy heuristic” algorithm [9] pro-
ceeds as follows:

Set J =XJ ; d= 0; l= 0
While J �= ∅
l= l+ 1
X=argmaxX ′∈XJ |B(X ′; �(X ′;X1−J ))∩J| [break

ties arbitrarily]
Wl = {X }
rl = �(X;X1−J )
J =J \ {X ′ : �(X; X ′)¡rl}

EndWhile
Set d= l
Return (W = [W1 · · ·Wd]′;R = [r1 · · · rd]′).

The algorithm presented herein is fast, and is guaranteed
to #nd a pure proper (heterogeneous a.s.) unit cover of the
speci#ed target class J . The algorithm is not guaranteed to
#nd a minimal cover; we de#ne d̂min to be the cover dimen-
sionality obtained by the algorithm. Given class-conditional
distributions and training sample sizes nj , dmin and d̂min are
random variables. Conditional on the training sample Dn,
dmin and d̂min are scalars and d̂min¿dmin. An interesting
open question concerns the magnitude of d̂min − dmin.

2.3. Cover generalizations

The drawback, in general, of requiring pure proper covers
is clear: over#tting. We de#ne the cardinality c of the cover
to be the total number of witness elements; c =

∑d
l=1 |Wl|.

Requiring purity may result in a cover with an unacceptably
large cardinality. For example, a small number of nontar-
get class observations amongst the mass of target observa-
tions will force c to be large, in which case allowing a small
amount of impurity might greatly reduce c. Similarly, the
requirement for a proper cover may result in a cover with
an unacceptably large dimension (and cardinality) due to
a small number of outlying target class observations, each
of which requires its own witness element. We now con-
sider generalizations of the pure proper covers presented
above.

For 06 s6 nJ , de#ne (W;R) to be an s-missing cover
of class J if∣∣∣∣∣∣XJ ∩


 d⋃

l=1

⋃
X∈Wl

B(X; rl)



∣∣∣∣∣∣¿ nJ − s:

The proper covers de#ned earlier are 0-missing covers. Note
that for s¿ 1, s-missing covers are no longer necessarily
proper but may or may not be pure. For 06 t6 n1−J , de#ne
(W;R) to be a t-tainted cover of class J if∣∣∣∣∣∣X1−J ∩


 d⋃

l=1

⋃
X∈Wl

B(X; rl)



∣∣∣∣∣∣6 t:

Note that 0-tainted covers are pure. For t¿ 1, t-tainted cov-
ers are no longer necessarily pure but may or may not be
proper.

2.4. Cover simpli8cation

The combinatorics of #nding directly an s-missing
t-tainted cover for speci#ed s and t is daunting. Therefore,
we propose beginning with a pure proper unit cover (W;R)
generated by an approximation algorithm such as the one
presented above and “simplifying” the cover ex post facto.

We have the notion of collapsing a cover. This operation
decreases the number of witness sets while preserving pu-
rity and properness. The idea is to take an original cover
(W;R) and cluster those witness sets with identical radii into
a single, larger witness set. Let R′ =[r′1 · · · r′d′ ]′ be a vector
whose elements are the d′6d distinct radius values in the
cover (W;R). For l∈{1; : : : ; d′}, letW ′

l =
⋃

l′:rl′=r′l
Wl′ and

W′=[W ′
1 · · ·W ′

d′ ]
′. Then (W′;R′) is a cover of dimension-

ality d′. The result of collapsing a pure proper heterogeneous
unit cover (W;R) of dimension d is a pure proper hetero-
geneous (not necessarily unit) cover (W′;R′) of dimension
d′6d in which the radii r′l are distinct. (These distinct radii
are exact “fundamental scales” for the cover—a collection
of ball sizes which can yield a pure proper cover.) Note that
any homogeneous cover can be collapsed to a cover of di-
mensionality d′ = 1. For example, the cover in Example 1
can be obtained by collapsing the cover in Example 2.

This idea of collapsing the cover carries over into the
graph domain as well. Let S= {S1; : : : ; Sk} be a collection
of disjoint sets of vertices of a digraph G. We call the con-
densation of G the graph on the vertices {S1; : : : ; Sk} such
that there is a (directed) edge from Si to Sj if and only if
there is an edge from an element of Si to an element of Sj in
G. (This de#nition of condensation is slightly broader than
that given in Ref. [10], where the sets are required to be the
strong components.) We denote the condensed graph GS.
While no two radii in a cover produced by the fore-

going greedy algorithm will be identical (almost surely),
we consider the generalization to radii ranges, in which
the elements of R in a cover (W;R) are intervals
rather than scalars. That is, rl �→ (rminl ; rmaxl ), where
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rminl = maxX∈⋃
X ′∈Wl

B(X ′ ;rl)∩XJ �Wl(X ) is the minimum ra-
dius such that the most remote target point that needs to be
covered remains covered and rmaxl = �Wl(X1−J ) is the max-
imum allowable radius. If we consider radii ranges in the
operation of collapsing a cover then perhaps dimensionality
can be reduced further, as the requirement for radii equality
can be replaced with a notion of overlapping ranges. Thus,
R′ is a vector of values such that, for each radius range
(rminl ; rmaxl ) in the original cover (W;R), there exists at least
one element r′l ∈ (rminl ; rmaxl ). Thus, any cover for which there
exists an r ∈ (rminl ; rmaxl ) for all l can be collapsed to a cover
of dimensionality d′ = 1.

For a pure proper heterogeneous unit cover (W;R) of
dimensionality d̂min obtained via the greedy algorithm, let
(W′;R′) denote the cover obtained by the operation of col-
lapsing (W;R) (using radii ranges) so that the dimension-
ality d̂

′
min of (W′;R′) is minimal. Then d̂

′
min6 d̂min. The

cardinality c = d̂min is unchanged by the operation of
collapsing the cover (W;R). Furthermore, L̂

(R)
J (gW′) =

L̂
(R)
1−J (gW′) = 0.
As noted above, Cannon and Cowen [4] give an algo-

rithm for #nding a homogeneous unit cover which is approx-
imately minimal among all homogeneous unit covers. This
cover can be collapsed to a cover of dimensionality d′ = 1.
The cost of a focus on homogeneity is a potentially large
number of witness elements (dmin6dhomogeneous). Thus, min-
imal collapsed dimensionality (d′ = 1) is traded for high
cardinality c. Heterogeneity may yield a higher collapsed
dimensionality (d′¿ 1). The gain may be a smaller total
number of witness elements. This issue will be considered
further in the examples (Sections 3 and 4).

Collapsing a pure proper cover yields a pure proper cover.
We now consider the notions of clustering a cover and prun-
ing a cover.

Given a cover (W;R), pruning the cover (removing
elements from the cover) will decrease cardinality (total
number of witness elements). Pruning can also reduce the
dimensionality of the cover. Pruning a pure proper unit
cover yields a pure s-missing unit cover. Pruning a cover
(at p¿ 1) simply eliminates those witness sets which ac-
count for fewer than p of the target class observations.
That is, the pruned cover (W′

p;R
′
p) has as its vector of

witness sets those witness sets Wl in the original cover for
which |XJ ∩ ⋃

X∈Wl
B(X; rl)|¿p. (Pruning at p = 1 is

no pruning at all.) For example, pruning singleton witness
sets which cover only their own witness element to get an
s-missing cover will alleviate over#tting. So, given a pure
proper heterogeneous unit cover (W;R) of dimensionality
d̂min and cardinality c = d̂min obtained as the algorithmic
output, pruning at level p yields a pure heterogeneous unit
cover (W′

p;R
′
p) of cardinality cp6 d̂min and dimensional-

ity dp6 d̂min.
In the CCCD, pruning corresponds to removing vertices

(and the edges to and from them). This results in an induced
subgraph of G, which we denote prunep(G).

Given a cover (W;R) of dimensionality d′, clustering the
cover decreases range-space dimensionality without e=ect-
ing the cardinality c. The resulting cover may be t-tainted
and=or s-missing. The clustering operation proceeds as
follows. First the cover radii are clustered, yielding a den-
dogram. For instance, the examples in Sections 2 and 3
below consider complete linkage clustering [11]. Given the
dendogram output of this clustering, there is (a.s.) a canon-
ical clustering into a cover of dimensionality d for each
16d6d′. For a given target dimensionality d this canon-
ical clustering is given by cutting the dendogram at a level
for which there are d branches and de#ning for each branch
the witness set W ′

l for the clustered cover (W′
d;R

′
d) to be

the union of the leaf witness sets Wl under that branch. So,
given a pure heterogeneous unit cover (W′

p;R
′
p) of cardi-

nality cp6 d̂min and dimensionality dp6 d̂min obtained by
pruning at level p the pure proper heterogeneous unit algo-
rithmic output (W;R), we can for any d6dp produce a
cover (W′

p;d;R
′
p;d) of cardinality cp and dimensionality d.

The radii within each cluster are all set to be equal. Sev-
eral choices for the radius of the cluster are available, such
as minimum, average, median, etc. We choose to use the
minimum of the radii within the cluster. Thus, the balls are
all reduced to be the size of the smallest ball contained in
the cluster. This guarantees that no new X1−J observations
are covered, at the possible expense of the properness of the
cover.

At the graph level, clustering produces a collection S=
{S1; : : : ; Sk} of clusters, which in turn produces a collapsed
graph GS. Pruning this results in a #nal graph prunec(GS),
where the c denotes the pruning criterion used.

Pruning decreases the cardinality, while both pruning and
clustering decrease the dimensionality. As a rule, the (resub-
stitution) classi#cation error will increase under both prun-
ing and clustering. For the special case of collapsing the
cover, where equal radius balls are combined, the resubsti-
tution error is not e=ected.

Our proposed methodology produces a cluster tree for
the pure proper heterogeneous unit cover produced by the
greedy algorithm. Nonunit covers, as well as missing and
tainted covers, are generated via pruning, collapsing, and
clustering.

2.5. Scale dimension

Given a cover (W;R), two important parameters charac-
terizing the complexity of the cover, and hence of the classi-
#cation problem, are the dimensionality d and the cardinal-
ity c. (Recall that the results are asymmetric in target class.)

We begin with a pure proper unit heterogeneous cover
produced by the greedy algorithm with dimensionality
d̂min¿dmin. Consider #rst the parameter c as a function of
the level of pruning p. At p = 1 (no pruning) cp = d̂min
and dp = d̂min; cp and dp decrease as p increases, but at a

cost of increasing L̂
(R)
J . The trade-o= is to choose p so as
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to reduce the cardinality cp (and hence reduce over#tting)

without too dramatic an adverse e=ect on L̂
(R)
J .

The second curve of interest represents dimensionality,
and considers the error L̂

(R)
J as a function of the level of

clustering d. When d is large, L̂
(R)
J (gW′

p;d
) will be small. In

particular, d = dp, the dimensionality of the pruned cover

(W′
p;R

′
p), implies L̂

(R)
J (gW′

p;d
)=L̂

(R)
J (gW′

p
) by construction.

Furthermore, for d=d′
p, the dimensionality of the collapsed

pruned cover, implies L̂
(R)
J (gW′

p;d
) = L̂

(R)
J (gW′

p
). As d ↘ 1,

L̂
(R)
(gW′

p;d
) will increase. The location of the “elbow” in

this curve can be interpreted as the “scale dimension” of the
high-dimensional classi#cation problem, and represents the
number of “fundamental scales” required for the target class
cover.

Given p¿ 1 and 0∈ [0; 1], the scale dimension or the
“elbow” in the dimensionality vs. error curve is de#ned to
be d?=d?0;p=min{argmind L̂

(R)
J (gW′

p;d
)+ 0d}. Our inves-

tigations involve beginning with the algorithmically gener-
ated cover (W;R) and investigating simultaneously: (i) the
error L̂

(R)
J as a function of the level of clustering d and (ii)

the cardinality cp of this curve as a function of the level of
pruning p.

The reduction in complexity provided by the dominating
set can have a large e=ect on the computational requirements
of the classi#er. The scale dimension also reduces the com-
plexity, by requiring fewer radii to be speci#ed. The idea is
to estimate the fundamental scales of the data. Fig. 1 illus-
trates the bene#ts of the reduction in complexity. Two simu-
lations were performed. In each, 2-dimensional, 2 class data
were drawn. The classes had disjoint compact supports. The
CCCD, its dominating set, and the scale dimension were
computed. The error between the ball coverage and the true
target distribution was then computed. This error is de#ned
as the area of nontarget support covered by the balls plus the
area of target support not covered. This was repeated 100
times, and box plots of the error are depicted for each case.
In both simulations the nontarget observations corresponded
to uniform observations drawn from a rectangle containing
the target support. In the top plot the target support was a
thin rectangle, while in the bottom plot the target support
consisted of the disjoint union of 4 balls, 2 of radius 1 and
2 of radius 2.

For the error computation using the scale dimension, the
balls were clustered into d? clusters and for each cluster all
the radii were set to the minimum radius within the cluster.
This has the e=ect of reducing the amount of over#tting
of the nontarget support. Other values for the radius are
possible, such as the median or average of the radii in the
cluster. These are not pursued here. The choice was made
for purposes of illustration only.

As can be seen by the plots, using the dominating set
dramatically reduces the error in the estimation of the target
class support. This reduction is a result of the reduction in
the over#tting of the CCCD. Since the CCCD covers all the
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Fig. 1. Box plots of the errors in estimating the support for two dif-
ferent target distributions. In the top plot the target distribution is
the rectangle de#ned by the corners (1:25; 1); (1:75; 2). There were
100 target observations and 1800 nontarget observations within the
region de#ned by the portion of the rectangle (0; 0); (3; 3) exterior
to the support of the target class. In the bottom plot the support is the
union of the balls B((0; 0); 1); B((3; 0); 1); B((5; 4); 2); B((0; 4); 2).
There were 300 target observations and 500 nontarget observa-
tions within the region de#ned by the di=erence of the rectangle
(−3;−3); (8; 8) and the target support. In each case 100 replica-
tions were performed to obtain the box plots.

area to the nearest nontarget observations it tends to err in
the direction of covering too much of the nontarget support.
The reduction by the dominating set tends to reduce this
over#tting, at the expense of possibly covering less of the
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Fig. 2. An example of the e=ect of reduction of complexity. The support of the target class is indicated as gray circles. The upper left
depicts the data overlayed on a depiction of the target support. The upper right, lower left and lower right depict the error regions for the
CCCD, dominating set, and scale dimension respectively, where regions of error are indicated by the small black dots.

target support. As these examples illustrate, the reduction in
overcoverage of the nontarget tends to be greater than the
undercoverage of the target.

This is illustrated for a particular example in Fig. 2. In
this case we see a data set plotted over a representation of
the support, with the regions of error for the CCCD, the
dominating set, and the scale dimension. This shows the
trade-o= between (nearly) complete coverage of the target
support and overcoverage of the nontarget support provided
by the reduction to the dominating set.

The scale dimension is best thought of as a method for
investigating the structure of the data, rather than as a way
to further reduce the complexity of the CCCD. If used as
a classi#er, the choice for cluster radius is critical for the
functioning of the classi#er. An alternative use would be as
an input to an algorithm to cover the target class under the
restriction of using at most d? di=erent sized balls.

3. Simulation examples

To demonstrate the concepts developed above, we present
four pedagogical simulation examples.

3.1. Case I

For Case I the domain space class-conditional scatter plot
(� = R2) and the algorithmically produced cover (W;R)
for the target class observations XJ are presented in Fig. 3,
The class-conditional probability density functions fj for
this case are both uniform; for the target class (observations
represented in Fig. 3 by circles) the support of fJ is the
union of 2 disjoint balls with di=erent radii, while for class
1−J the observations (represented in Fig. 3 by triangles) the
density is uniform on [−0:5; 1:5]×[−0:5; 1:5]\support(fJ ).
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Fig. 3. Case I. The domain space class-conditional scatter plot
(� = R2) and the algorithmically produced cover (W;R) for the
target class observations XJ (represented by “o”s). The scale di-
mensional d? = 2, and the cardinality c = 2; a cover with two

fundamental scales and two witness elements yields L̂
(R)
J = 0.

For this simplest nontrivial problem there are two funda-
mental scales. Note, however, that the data, being random,
need not cooperate. That is, there is positive probability that
no target class observation will fall close enough to the cen-
ter of one or both target class domain regions to allow for
a pure proper unit cover with exactly two witness sets. Fur-
thermore, the algorithm used to determine the cover is not
guaranteed to #nd the best cover. Fig. 3 indicates that, in
this case, the probability gods have smiled on us and the al-
gorithm is successful with L̂

(R)
J = 0 using exactly two unit

witness sets. No pruning is necessary, so the cardinality for

this example is c1 =2. Our error L̂
(R)
J (gW′

1;2
)=0 so the scale

dimensional for this example is d? = 2.

3.2. Case II

For Case II, the domain space class-conditional scatter
plot and the algorithmically produced cover (W;R) for the
target class observations XJ are presented in Fig. 4(a) and
the dendogram for the complete linkage clustering of the ball
radii R is presented in Fig. 4(b). The algorithmic result is a
cover (W;R) with dimensionality d̂min=6. For this example
there are two fundamental scales; support(fJ ) is the union
of one big ball and a collection of smaller balls arranged in
an inverted “∪”. The algorithmic result is 1 big ball and 5
smaller balls with similar radii. None of the small balls are
superOuous, so pruning (at p = 2, say) has no e=ect. The
domain-space depiction and the dendogram suggest a clus-
tering at d= 2; one witness set of size one and one witness
set of size #ve—the latter consisting of the #ve witness el-
ements from the 5 small balls. This suggests a #nal cover
of (W′

2;2;R
′
2;2) with dimensionality d = 2 and cardinality

c= 6. Fig. 5 gives the error L̂
(R)
J (gW′

2; d
) as a function of the

level of clustering d for this example. Clearly d? =2. (Pre-
cisely, d?0 = 2 for 0∈ [0:02; 0:16).) The cardinality cp of
this curve as a function of the level of pruning p is equally
clear; L̂

(R)
J (gW′

p;2
) = 0 and cp = 6 for p about 15 and then,

once pruning takes e=ect, L̂
(R)
J (gW′

p;2
) begins to increase as

cp decreases for p increasing beyond 15. Clearly c = 6 to-
tal witness elements is the correct number to use for this
example.

Fig. 6 shows the intersection graph of the cover from Fig.
4(a). In this, there is an edge between two vertices if their
balls intersect. We can see that this provides us with some
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Fig. 4. Case II. (a) The domain space class-conditional scatter plot (� = R2) and the algorithmically produced cover (W;R) for the target
class observations XJ (represented by “o”s). The cover depicted is of dimensionality d̂min =6. (b) The dendogram for the complete linkage
clustering of the 6 ball radii R. The radii label the leaves of the tree. (The canonical two-clustering uses the two fundamental scales, 1 large
and 5 small balls. See Fig. 5.)
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Fig. 5. Case II. The dimensionality vs. error curve. The scale
dimension d? = 2, and the cardinality c= 6. (The former result is
based on the location of the “elbow” in the curve. The latter stems
from inspection of Fig. 4; pruning the smallest of the covering
balls increases the error signi#cantly.)

Fig. 6. Case II. The intersection graph of the cover in Fig. 4(a). An
edge occurs between two vertices if and only if their corresponding
balls intersect. The singleton corresponds to the large ball, while
the chain corresponds to the #ve balls de#ning the “U”.

information about the geometry of the problem. The graph
has two components, indicating that the support is discon-
nected, and the chain corresponds to the “U” indicating that
there is a “tube” in the support. Further information can be
obtained by careful analysis of the relationships between the
balls.

3.3. Case III

We now consider the case where the two distributions
overlap. This is illustrated in Fig. 7. This is essentially the
same as Case I, where now the distributions overlap in a
small annulus about each circle. This results in a large num-
ber of very small balls, each covering a small number of
observations, as depicted in Fig. 7(a).

Using this cover, C1, we have the dendogram depicted
in Fig. 7(b). Fig. 7(c–d) depicts the cover and dendogram
resulting from prune5(C1).

Another possible approach to producing a smaller cover
presents itself if we consider the cover C2 resulting from
the algorithm applied to X1−J . This is depicted in Fig. 7(e).
Note that it too has the problem of too many small balls.
The idea is to prune this cover (in this case at p = 5), and

then remove the observations pruned from the training set.
The algorithm is then run for XJ using this reduced training
set. The result is depicted in Fig. 7(f).

This second approach suggests the following extension to
the algorithm. First, construct covers for each class. Prune at
some level p (possibly di=erent for each class) and remove
the points pruned from the training set. Then recompute the
cover using the reduced training set. The error curves for
this example are depicted in Fig. 8. Both approaches suggest
the same value for the scale dimension, d? = 2.

3.4. Case IV

It is important to remember that the scale dimension is not
related to the Euclidean dimension of the data. To illustrate
this we drew data from the following distributions:

Class 0 : N (0; I);
Class 1 : N (41; I);

where 41 = (4; 0; : : : ; 0) is (possibly) nonzero only in the
#rst coordinate, and I is the identity matrix. Two-hundred
observations were drawn from each class. We plot the error
curves for these data as 4 runs from 0 to 8 in Fig. 9. As
can be seen, the scale dimension is 8 or greater for 4 = 0
(complete overlap of the classes), and nearly 3=4 of the
observations (143) are needed to cover the class, indicative
of the overlap. By 4 = 3 we start to see some indication of
an elbow, which is quite pronounced at 4 = 5. The scale
dimension in this case is 2, and it is clear that one cluster
covers the bulk of the data while the other covers points
within the region of high overlap of the classes, close to the
classi#cation boundary.

This example also points out a slightly nonintuitive aspect
of the scale dimension. Rather than a single “scale” corre-
sponding to the target distribution, there are di=erent scales,
de#ned by the di=erent sized balls, as the ball centers tran-
sition into the region of high overlap. As can be seen from
the plots in Fig. 9, for reasonably low overlap the scale di-
mension is 2, corresponding to the small balls in the overlap
region and large balls away from the overlap. Ultimately, as
the di=erence in means increases, the scale dimension goes
to 1.

Contrast this example with Cases I–III. In the #rst two,
the scale dimension corresponded closely to the number of
di=erent sized components of the support of the target class
density. Case III illustrated the e=ect of overlap, as investi-
gated in this example. This illustrates the fact that scale di-
mension is fundamentally tied to the classi#cation problem.
It, along with the cover itself, provides information about the
relative amount of overlap in various regions of the domain.

4. Arti cial nose experimental example

This section presents an empirical investigation of the
Tufts arti#cial nose sensor data. These data are taken from
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Fig. 7. Case III. (a) The domain space class-conditional scatter plot and the cover (W;R) for the target class observations XJ (represented
by “o”s). (b) The dendogram for the clustering of the ball radii. (c) The pruned cover, pruned at p= 5. (d) The dendogram for the pruned
cover. (e) The cover produced using X1−J . (f) The cover for XJ resulting from eliminating those X1−J observations pruned at p = 5.
Observations removed from processing are indicated with a “+”.
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Fig. 8. Case III. The dimensionality vs. error curves. The triangles
correspond to the default algorithm (Fig. 4(c)) while the circles
correspond to the reduced version (Fig. 4(f)).

a #ber optic system constructed at Tufts University. The
Tufts sensor consists of a 19-#ber optic bundle. The #bers
are chemically doped with a solvatochromic dye (see Ref.
[12]). This doping results in a sensor for which a change
in Ouorescence intensity is in response to interactions of
the dye in each #ber with the chemical environment [13].
An observation is obtained by passing an analyte (a single
compound or a mixture) over the #ber bundle in a four
second pulse, or “sni=”. The information of interest is the
change over time in emission Ouorescence intensity of the
dye molecules for each of the 19-#ber optic sensors (see
Fig. 10).

The data set we will consider here consists of recordings
of sensor responses to various analytes at various concen-
trations. Each observation is a measurement of the Ouores-
cence intensity response at each of two wavelengths (620
and 680 nm) for each sensor in the 19-#ber bundle as a
function of time. The Tufts sensor produces functional ob-
servations x5;6i for #bers 5∈{1; : : : ; 19} and wavelengths
6∈{1; 2}. (The index i = 1; : : : ; n represents the observa-
tion number.) While the process is naturally described as
functional with t ranging over a 20 s interval, the data as
collected are discrete with the 20 s recorded at 60 equally
spaced time steps for each response. Construction of the
database involves taking replicate observations for the vari-
ous analytes in various concentrations. Thus, each observa-
tion consists of 2280 values: 19 #bers at two wavelengths
sampled 60 times.

The sensor responses are inherently aligned due to the
“sni=” signifying the beginning of each observation. The re-
sponse for each sensor for each observation is normalized
by subtracting the background sensor Ouorescence (the in-

tensity prior to exposure to the analyte) from each response
to obtain the change in Ouorescence intensity for each #ber
at each wavelength.

The task at hand is the identi#cation of an odorant
observation. Speci#cally, we consider the detection of
trichloroethylene (TCE) in complex backgrounds. (TCE, a
carcinogenic industrial solvent, is of interest as the target
due to its environmental importance as a ground water
contaminant.)

In addition to TCE in air, eight diluting odorants are
considered: BTEX (a mixture of benzene, toluene, ethyl-
benzene, and xylene, denoted BTE in the #gures), benzene
(Ben), carbon tetrachloride (CTe), chlorobenzene (ClB),
chloroform (Clf), kerosene (Ker), octane (Oct), and Cole-
man fuel (WGa). A “T” in front of one of the above trigraphs
indicates that the observation contains TCE, and hence is
a target observation. Dilution concentrations of 1:10, 1:7,
1:2, 1:1, and saturated vapor are considered. In addition,
there are 40 observations of TCE alone, with no confusers
(denoted TCE below). Fig. 11 presents example sensor re-
sponse signals indicating the importance of analyte mixture
type, analyte mixture presentation, and #ber band.

The database Dn contains n0 = 352 observations from
class 0, the TCE-absent class. These consist of 32 observa-
tions of pure air and 40 observations of each of the eight
diluting odorants at various concentrations in air. There are
likewise n1 = 760 class 1 (TCE-present) observations; 40
observations of pure TCE, 80 observations of TCE diluted
to various concentrations in air, and 80 observations of TCE
diluted to various concentrations in each of the eight diluting
odorants in air are available. Thus, there are n=n0+n1=1112
observations in the training database Dn. This database is
well designed to allow for investigation of the ability of the
sensor array to identify the presence of one target analyte
(TCE) when its presence is obscured by a complex back-
ground; this is referred to as the “needle in the haystack”
problem.

Our goal is to investigate this high-dimensional data
analysis problem, and perhaps to understand its structure.
Fig. 12 presents the clustering dendogram for the case in
which TCE-present is the target class, where pruning is
employed at p=5. Fig. 13 depicts four views of the largest
component of the catch digraph of the pruned dominat-
ing set. This component consists of 47 elements, slightly
more than half the elements. In this picture the directions
of the arcs have been suppressed to avoid clutter. Recall
that the observations that de#ne this graph are very high
dimensional, and so it is not surprising that the graph is
not planar. We provide several projections of the graph
onto the plane to aid in understanding the graph structure.
One can see several cycles within this graph, indicating a
large amount of overlap of the balls. There are also some
chains, providing some evidence that the TCE class is not
spherical, but rather somewhat spread out.

The other components of the catch digraph are all of order
3 or fewer, with 2 components of order 3, 4 of order 2, and
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Fig. 9. Case IV. The dimensionality vs. error curves for data from two 50 dimensional normals. The distributions are identical N (0; I) except
for one variate, which has a di=erent mean in 8 of the 9 plots (as indicated by the titles). The number of witness elements (vertices) in the
graph are also displayed in the titles.

15 of order 1, for a total of 22 components. This indicates
some measure of spread of the target class relative to the
nontarget class.

The catch digraph does not give a full understanding of
the geometry of the class. A related graph is the intersection
graph, in which an edge is placed between vertices if their
balls intersect. This can provide a better understanding of the
geometry of the space. In this case, the intersection graph for
the 76 elements of the pruned dominating set is connected.
The graph is not the complete graph, in fact the ratio of
the number of edges to the total number possible is 0.55,
indicating that nearly half the possible edges are missing.

Fig. 14 depicts the histogram of the degrees of the ver-
tices for the intersection graph. The #ve vertices with small-

est degree are all chloroform. In fact, 7 of the smallest 9 are
chloroform. The two with the largest degrees (60 and 62)
are a CTe and a Clb, respectively. This suggests that the
chloroform observations are, in general, outliers. This hy-
pothesis has been veri#ed by investigation of the interpoint
distances. This is a potentially valuable insight into the ap-
plication, as it suggests that distinguishing TClf may be a
di1cult task.

The scale dimension curves for this experiment are pre-
sented in Fig. 15. The error is low for maps with range-space
dimensionality down to and including six, and the error in-
creases dramatically when the range-space dimensionality
decreases below 6. The analysis suggests that the scale di-
mension d? ≈ 6. The cardinality for this cover is c5 = 76,
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Fig. 10. The plot represents sensor=analyte signatures for three sensors within the bundled 19-sensor array. This #gure was published in
Nature 382 (1996) 697–700, and is reprinted by permission.

Fig. 11. Depicted are three (unsmoothed) sensor response signal examples: a comparison of a single #ber band for three di=erent presentations
of the same analyte mixture (left panel), a comparison of three di=erent #ber bands for a single analyte mixture presentation (middle panel),
and a comparison of the same #ber band for two di=erent analyte mixture presentations (right panel). “TClf” is TCE in chloroform and
air. (All TClf observations are at the same concentration.) “Kero” is Kerosene, sans TCE. This #gure originally appeared in IEEE PAMI
23 (4) (2001) 404–413, C.E. Priebe, Olfactory classi#cation via interpoint distance analysis, copyright IEEE, and is reprinted by permission.
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Fig. 12. Cluster tree for the Tufts arti#cial nose, after pruning at p = 5. (The cardinality c5 = 76.) The leaf label indicates the chemical
content of the observation.
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Fig. 13. Four views of the largest component of the catch digraph of the dominating set for the nose data after pruning
at p = 5. The vertices are numbered according to the chemical confuser: 0 = TWGa; 1 = TAir; 2 = TBTE, 3 = TCE ; 4 = TBen;
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Fig. 14. Histogram of the degrees for the vertices in the intersection
graph of the dominating set for the nose data after pruning at p=5.

indicating that 10% of the target class training observations
are used as exemplars in the model.

Consider the clusters resulting from the scale dimension
of 6. Looking at the radii that make up the clusters we ob-
tain the statistics of Table 1. The last (largest radius) cluster,
corresponds to a single chloroform observation. The ball as-
sociated with this observations contains only 13 chloroform
observations. The next to last cluster consists of two ben-
zenes, a chloroform and a chlorobenzene. These cover 101
observations among them. These two clusters have only two
observations of overlap, so they are quite distinct.

It is also clear that the vast majority of the balls are
relatively small, indicating that much of the data lies close
to the nontarget class. The smallest cluster of 52 elements
covers 353 observations (nearly half of the total target
observations). These are primarily observations consist-
ing of low-concentration TCE and=or high-concentration
confusers.

Through analysis of the CCCD, the dominating set, and
the related graphs, we obtain quite a bit of information about
the structure of the TCE class and its relationship to the
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Fig. 15. Complexity characterization for the Tufts arti#cial nose.
(The target class is TCE-present.) The x-axis is the range-space
dimensionality of the nonlinear point-to-subset map �W′

p
, and the

y-axis is the estimated error rate L̂
(R)
J (gW′

p
) for a given level of

pruning p. The di=erent curves represent di=erent levels of pruning
applied to the cover cluster tree. Pruning at p = 5 yields an error
nearly as good as that of no pruning (p = 1); other levels of
pruning yield higher error. This analysis suggests that the scale
dimension for this problem is d? ≈ 6. (The cardinality of the
cover at p=5 is c5 =76, or approximately 10% of the target class
training observations.)

Table 1
Radii ranges for the 6 clusters of the nose data. The column labeled
“Size” indicates the number of elements in the cluster

Min radius Max radius Size

281.1803 689.5605 52
737.0896 1104.3983 11
1243.1260 1660.4067 6
2091.1148 2244.6562 2
2422.3908 2653.1308 4
2913.0716 2913.0716 1

confusers. We see that chloroform is somewhat di=erent
from the other analytes. It is farthest from the nontarget class,
and there is evidence that it clusters. However, it is fairly
spread out, as seen by the fact that the observations with
smallest degree in the intersection graph are chloroform.

From Table 1 we see that there are few very small or
very large balls. Recall that we have pruned at p=5 so we
have eliminated balls containing few observations. These
balls might reasonably be thought to be ones close to the
nontarget observations, and hence of small radius. This is
an area for further analysis.

Note that if one were to draw 1112 observations uniformly
from the unit cube in R2280 one would expect the interpoint
distances to be roughly equal ([2, p. 29] shows that all the
observations would be in the corners), which would result in
a CCCD consisting of very few arcs, and yet the intersection
graph would be essentially the complete graph. The analysis
shows that there is quite a bit more structure to these data
than this.

5. Discussion

In his 1992 book [2, p. 196], Scott writes “Fortunately,
it appears that in practical situations, the dimension of the
structure seldom exceeds 4 or 5”. While our de#nition of
“structure” is quite di=erent than Scott’s, our investigation of
the Tufts arti#cial nose data set gives, we think, evidence in
favor of Scott’s premise; the scale dimension d? of this data
set, for classi#cation purposes, is determined to be d? ≈ 6.
At this stage, our approach is exploratory. We believe

that investigating scale dimension and cover cardinality for
high-dimensional classi#cation problems will provide in-
sights into the structure of the data which will, in turn, prove
useful in model building. Edward J. Wegman [personal com-
munication] suggests “Data Mining is an extension of ex-
ploratory data analysis and has basically the same goals,
the discovery of unknown and unanticipated structure in the
data. The chief distinction between the two topics resides in
the size and dimensionality of the data sets involved. Data
mining in general deals with much more massive data sets
for which highly interactive analysis is not fully feasible”.
Thus, we see our methodology as determining the exem-
plars for vector quantization (e.g. radial basis functions,
k-means clustering, support vector machine) for data min-
ing applications (see, for example, Refs. [14,15]). Returning
to Fig. 12 and Table 1 we #nd that one of the dimensions is
characterized by a single Clf witness element, one by two
Ben witness elements, a chloroform and a chlorobenzene,
and one by a benzene and a chlorobenzene. Thus, the largest
balls, and hence the observations least like nontarget, are
chloroform, benzene and chlorobenzene. The implications
of this analysis for sensor design and model building are
under investigation.

Additional investigations are called for. First, error inves-
tigations using the deleted (cross-validation) error estimate
L̂
(D)

as opposed to the resubstitution error estimate L̂
(R)

will
be valuable. Development of an unsupervised methodology,
as opposed to the supervised procedure detailed here, is of
interest. The Tufts arti#cial nose chemical sensor data anal-
ysis problem is in fact polychotomous; while the detection
of a distinguished analyte (such as TCE) is often relevant,
in many cases the question at hand involves identi8cation of
an unknown analyte. Popular approaches to the multi-class
problem involve addressing multiple two-class subproblems
[16,17]; thus, our methodology remains applicable. Further
investigation of the multi-class case in ongoing. Finally,
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inferring topological structure from the cover is di1cult, and
is an area for future research.

6. Summary

We present an exploratory data analysis methodology for
obtaining information about the high-dimensional decision
boundary characterizing the dimensionality of a classi#-
cation problem and provide a nonlinear map under which
classi#cation can be performed. We characterize the support
of one distinguished target class as a collection of balls cov-
ering the class, with each ball centered at an observation in
that class such that the radius is maximal without containing
observations from the other classes. A greedy algorithm for
#tting the balls is proposed. The balls then provide a de-
scription of the support of the target class, with information
about the complexity of the classi#cation problem implicit
in the number, radii, adjacency and position of the balls.
Clustering the balls by radius, pruning the cluster tree, and
mapping the data based on distances to the clusters yields
a nonlinear map to a (usually lower-dimensional) space
in which classi#cation can be performed. The range-space
dimensionality of this map is de#ned to be the scale di-
mension of the classi#cation problem. We illustrate the
methodology with pedagogical simulations and an “arti#cial
nose” chemical sensor data analysis application.
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