
Math1 Compur. Modelling, Vol. 14, pp. 328-333, 1990
Printed in Great Britain

The Adaptive Kernel Neural Network

David J. Marchette
Carev E. Priebe
Na&l Ocean Systems Center, Code 421
San Diego, Ca. 92152 USA

0895-7177/90 $3.00 + 0.00
Pergamon Press plc

Abstract, A neural network architecture for clustering and classification is described. The
Adaptive Kernel Neural Network (AKNN) is a density estimation technique closely related to
kernel estimation. The accompanying learning scheme adjusts the connection weights, activation
functions, and the number of nodes in the network. The network, as described here, is made up
of three layers of nodes: the input layer, a kernel layer and the output, or classification layer. The
AKNN retains the inherent parallelism that is common in neural network models. Its relationship
to the kernel estimator allows the network to be understood statistically, and meaningful analysis
of the internal representations and the outputs is possible.

Kevwords, Neural networks; Density estimation; Kernel estimator; Mixture model.

INTRODUCTION

The problem of pattern recognition has been studied for
many years using many techniques. A typical recognition
task consists of a set of exemnlars from each class, with the
task being to produce a system which can correctly identify
the members of each class. Of course, in many applications,
the classes overlap, and the best that can be done is to give a
measure of the probabilities for each class. One way to do
this is to estimate the probability density functions of the
different classes, and use these as discriminators.

Recently, the technique of neural networks has enjoyed a
resurgence. These networks have a number of interesting
and useful attributes: they are inherently parallel, they
“learn” by example, and they “generalize”, in the sense that
they interpolate the function sought, rather than
“memorizing” the teaching set. Some networks can continue
to adapt after the initial learning, which can be useful in
changing environments. However, many of the neural
network architectures currently used have drawbacks. For
examule. backurouaeation can reauire a large number of
iteratibns through ;he”training set, and canno&crementally
learn. The networks are often difficult to analyze, making
probabilistic information about the output difficult to obtain.
Finally, network size is usually determined in an ad hoc
manner.

In this paper a neural network architecture which addresses
these drawbacks is described. The Adaptive Kernel Neural
Network (AKNN) requires a single pass through the data.
If new training sets become available they can be
incorporated in the system without requiring retraining on
the original data set. Thus it is an adaptive system in the true
sense of the word. It can run in both supervised and
unsupervised modes. Finally, it creates nodes as needed,
and so the network grows to the size required by the
problem.

The architecture is based on the kernel estimator, a non-
parametric technique for estimating the probability density
function of the data. This paper gives a brief description of
the kernel estimator, and the modifications necessary to
produce an adaptive network architecture. Finally, the
network is compared to the kernel estimator for some
simulated data.

KERNEL ESTIMATORS

Given a set xl, x2, xn of independent, identically
distributed points taken from a distribution with probability
density f, the task is to estimate f. If f is known to come
from a particular class of densities, there are a number of
parametric and non-parametric techniques to find the best
match of a member of the class to the data. Without this a
priori information, we would still like to get an estimate of
the density. This is what the kernel estimator is designed to
do.

Perhaps the most familiar technique of density estimation is
the histogram. The idea is to partition the input space into
rectangles and count the number of points that fall within
each rectangle. Intuitively, a point near the edge of a
rectangle. or bin, should effect the estimate of the
neighb&ing bin, while a point near the center of the
rectangle should have a lesser effect on adjacent bins. In the
histog& estimate, all points within a bin-are treated equally
and there is no effect on adjacent bins.

The naive estimator is a modification of the histogram in
which a rectangle is placed at each point, and the rectangles
are summed to produce the estimate. More generally, any
probability density function could be used in place of the
rectangles. This is the idea behind the kernel estimator. The
kernel estimator for f is defined as

where K is a mobabilitv densitv function, and h is called the
bandwidth 0; window width. For more &formation on the
kernel estimator, see Silverman (1986).

For the remainder of this paper, the kernel K will be the
multivariate normal or Gaussian distribution. The summand
then becomes:

G(x)=& e- l/2 (Y-pyx-1 (x-p)
(2)

for d-dimensional data. Here, bold-faced characters are
vectors, and C is the covariance matrix. For practical
considerations, when d is large, C will usually be a diagonal
matrix, rather than the full covariance matrix.

This paradigm can easily be realized as a network
architecture. Figure 1 shows a univariate implementation of
the kernel estimator as a neural network. Each node has as
its transfer function the Gaussian (2), with the covariance
held locally and the mean stored as the connection weights
into the node. The second, or hidden, layer computes a
difference between the input and its weight vector, rather
than the usual dot product. The drawback of this approach
is clear. The number of nodes required by the middle layer
is equal to the number of points in the training set, and so the
network can become extremely large. Also, the kernel
estimator should be modified to allow a different variance
(bandwidth) for each kernel.

The network implementation provides a new perspective
which allows a solution to these uroblems. Each node can
independently determine its covariance from the data. In
addition, the network can decide to add a new node based on
how well the data point is covered by existing nodes. This
is the basis for the AKNN.

328

Proc. 7th Int. Co& on Mathematical and Computer Modelling 329

&, 1. Network Imnlementation of the Kernel Estimator

DETERMINING NETWORK SIZE

The network size is a global property of the network and
hence cannot be determined locally. When a data point is
presented to the network, each node reports the distance
from its mean to the new point. If none of the nodes are
close, a new node is created with mean equal to the new
point. In this manner, the network grows to a size sufficient
to cover the data within a predefined distance. This is
similar to the diameter-invariant cluster technique described
in Sklansky and Wassel (1981). The difference is that the
distance measure used is the Mahalanobis distance which
uses the covariance matrix. Since the covariance adapts to
the data, as will be described below, the diameter is not
really futed in this amhitecture.

The algorithm for the creation of a new node is simple. A
constant c, called the create threshold, is defined which
determines the resolution of the estimate. A scaled version
of the Gaussian is used as a distance measure (3), which is
essentially the Mahalanobis distance, exponentiated so that
the values run from 0 to 1.

d(x,p) = e -112 (X-l# z-’ (X-!J) (3)

If no node reports d(x,p) > c, then a new node is created.
If any node reports d(x,p) 2 c, then the point is considered
to be covered, and no new node is created.

A bandwidth or variance still must be chosen for the node,
but since this variance will be adapted to fit the data (section
IV below), this choice is not as critical as in the case of the
kernel estimator. Like the create constant, the choice of
initial variance controls the number of nodes created, as can
be seen from the distance function d.

Although it would at first seem that c should be bounded
between 0 and 1, this is not necessarily the case. Two
interesting extremes are nroduced when c is chosen outside
this range. If c > 1, then the condition d(x,p) > c is never
satisfied, and so a node is created for each point. This is the
kernel estimator described above. If-c c 0 then the
condition is always satisfied, after the first node is created,
and so the estimate consists of a single Gaussian. In this
way, the network spans the range between the parametric
estimator of a single Gaussian and the non-parametric kernel
estimator.

UPDATING NETWORK PARAMETERS

The network must also update the means and covariances of
the nodes. It is important that this be done recursively. In
many problems, it is costly or impossible to obtain large data
sets for which the true classification is known. Training
must be done on-line, as data is collected. The network
must therefore’ adapt to each point, rather than allowing the
luxury of repeated iterations through a fixed data set. This

allows the network to be a truly adaptive system, which
continues to “learn” as each datum is presented, rather than
in an off-line method requiring the storage of previous data
and (often a prohibitively long) time to retrain on the data.

Two different approaches will be described. The first uses a
decision similar to the create rule to decide whether a node
should be updated, and then uses recursive formulations of
the sample mean formula to effect the update. In this
architecture the covariance is held fixed. The second uses a
Bayes-like rule to update all the nodes proportionally to the
likelihood that the point came from the distribution covered
by the node. The first technique is a purely local
computation, but requires the user to determine another
constant defining the update region. The second technique
does not require this user intervention, but it is not local,
requiring feedback from the output nodes.

In the first technique described, the decision to update the
node is made in a manner similar to the decision to create a
new node. Unlike the creation decision, this is a local
decision. A constant u, the update threshold, is chosen, and
each node for which d(x,p) > u updates its mean using the
new point x. An alternative learning rule would be to update
only the node with the largest value for d(x,p). Note that u
should satisfy u < c. For the two extremes of a single
Gaussian and a kernel estimator, equality should hold.

The formula for updating the mean is an iterative version of
the sample mean calculation:

Pk = Pt.1 + $-bk - Pk.,)
k

Nk = Nk., + 1

where subscripts indicate time.

Here Nk is the number of points that have been used by the
node after the k* input. The vector x, is the new data point
that is to be included in the statistics for the node. The
weight on the connection from hidden node i to output
(class) node j is then:

N, wij = yyy

The notation i->j is shorthand for “node i is connected to
node j”. There is a recursive formulation for the
computation of the weights wlj , but this is unnecessary for
this architecture.

It is possible to define a recursive update formula for the
variance in this architecture. Unfortunatelv, the hard
threshold of the constant u has the effect of ignoring points
in the tail of the Gaussian, which causes a bias in the
estimate of the variance. Although it mieht be nossible to
correct for this, the second leariing ruie, which will be
described below, eliminates this problem in a more natural
way. As mentioned above, this first rule, with the variance
fixed, is essentially a diameter-invariant clustering technique.

It is instructive to think of the network as fitting a mixture of
normals to the data. A considerable amount of work has
been done in the problem of estimating the parameters of a
mixture of normals, and this work can be used in the context
of the network architecture. For simplicity, as above, we
consider the case of estimating the probability density
function of a single class. This work follows that of
Titterington et al. (1985). First, we view the estimate as a
mixture of Gaussians:

330 Proc. 7th Int. Conf on Mathematical and Computer Modeiiing

(7)

Here Clj is a Gaussian with mean pj and covariance x.

Let

Then

Pr = H-1 + &j-b, - k-1) (9) k-1 k

(11)

xij =$ (12)

This is a recursive technique, but is not local in the neural
network sense, since it requires feedback from an output
node for the computation of the pk. This is a minor
consideration, particularly if one is willing to grant neural
network status to backpropagation. In this learning rule,
both the mean and the covariance are updated. Points from
the tails of the nodes are used in the computation of the
covariance, and in fact if the network size is fixed, this is a
recursive version of the EM algorithm used in mixture
models (McLachlan and Basford 1988).

Note that once again the weights w can be determined
recursively. Also, if N is a fixed constant for the mean and
covariance update formulas, this has the effect of putting a
window on the data, allowmg the network to track slowly
moving nonstationary distributions. This is a topic for
future research.

EXAMPLES

Since the architecture described here models the data as a
mixture of Gaussian, or normal, distributions, it is natural to
consider its performance on data drawn from a mixture of
Gaussians. One might hope that in this case the network
would use the correct number of nodes to model the data: if
the data came from a mixture of n Gaussians, the network
should have n Gaussian nodes. This is too much to ask,
especially without a rule for the deletion of nodes. In fact,
the problem of identifying the number of components in a
mixture is an unsolved problem in the theory of mixture
distributions. If the number of components is known, then
the network size can be fixed at the appropriate amount, and
the parameters of the mixture will be estimated from the data.

In a typical classification task, there will be a training data set
for which the correct classification is known. This allows
the network to be initialized at an estimate which is
consistent with the training set. This will improve the
performance of the network if the training set is
representative of the overall distribution. In the examples
described below, however, no such training set is assumed.
The network must start from scratch. This has the danger,
one shared by all recursive estimators, that for small data
sets the estimate is data dependent. Thus the estimate for a
data set drawn from a given distribution will be slightly
different than for another data set drawn from the same
distribution. The differences are noticeable on the data sets

described, but not large enough to cause concern.

For each of the data sets described, 500 points were
generated. Histograms of the data are plotted, as well as the
theoretical distribution. The kernel estimator is plotted,
using the optimal bandwidth described in Silverman (1986),
page 40. Four data sets were used, showing both unimodal
and multimodal characteristics.

Each figure shows a) a histogram of the data plotted against
the true distribution (dotted), b) a kernel estimator plotted
aeainst the true distribution. c) the network estimate plotted
a&inst the true distribution,‘and d) the network estimate plus
the components (nodes) that make up the estimate. This last
shows how many nodes were used in the estimate, and how
the estimate is obtained from local approximations.

A Mixture of Two Gaussians

For the first data set, the data is drawn from a distribution of
the form:

x -+N(-1,l) + iN(1.1) (13)

Figure 2 shows the histogram, kernel and network
estimates. As can be seen, the estimates all detect a slight
bump on the left, corresponding to the smaller of the two
comuonents. The bums is smoothed in the true distribution.
The-network has used 9 nodes (Fig 2(d)), as opposed to the
kernel estimator’s 500 nodes. The mode at about -2.5 in the
network estimate is an artifact of the data set: the node was
created near the end of the data, and not enough data has
been seen since that to lower the node’s weight.

The second data set is the same as the first, except that the
means of the components have been moved to give a
bimodal distribution.

x-;N(-2,l) +;N(Z,l) (14)

The network estimate has used 3 nodes (there are actually
more, but their weights are effectively 0). Note that the
network has split the smaller mode between two nodes.
Given enough points, the left-most node will probably die
out, leaving essentially a two component mixture. It should
be stressed that the network cannot be depended upon to find
the correct mixture representation for the data, as can be seen
from the first data set.

A Mixture of Three Gaussian%

The third data set is a combination of three components,
giving a bimodal, or trimodal, distribution, depending on
how one counts modes.

x - +N(-2,.5) + ; N(O,l) + ; N(2,.5) (15)

None of the estimators do a very good job on this data set,
though the kernel estimator is the best. Once again the
network estimate has come very close to estimating the
correct number of components. There are 5 nodes, the
smallest two of which will be driven down to 0 with more
points, though experience has shown that it can take a large
number of points to “kill” these nodes.

A Cauchv Distribution

The final example shows the effect of using the Gaussian
mixture model on a distribution for which this model is
incorrect. The data is drawn from a Cauchy distribution,
and the network models it as 4 nodes. Since the mode of the
Cauchv distribution is not really a Gaussian, it is futile to trv
to fit ii as one. To improve the fit, the network would have
to create many more nodes, giving a tit similar to the kernel

Proc. 7th Int. Conf: on Mathematical and Computer Modelling 331

Re.2: rn onent mixtur ,

332 Proc. 7th Int. Conf. on Mathematical and Computer Modeling

(a)

1 ,.I+ \
/ I \

-1 -2

Ei . .4.,

(a)

!?ie. 5: A Cauchv Distribution,

Proc. 7th Int. Conf on Mathematical and Computer Modelling

estimator. This can be done by changing the create
threshold. Note, however, that it does make a creditable
attempt to model the tails of the Cauchy distribution.

CONCLUSIONS

The AKNN is a useful tool for density estimation, and its
application, classification. The network can model a wide
range of distributions. It is an adaptive system, and so can
be used in situations where the system must continue to
modify its internal representation as data is presented. It can
learn the network size, given an estimate of the smoothness
and composition of the density to be approximated. Unlike
many other network models, training time is not an issue for
the AKNN. Therefore, this network is applicable any time
the goal is classification via density estimation.

Due to its close association with statistical pattern recognition
techniques (kernel estimators and mixture models) and
recursive learning procedures, the AKNN is superior to
conventional neural network architectures in many respects.

REFERENCES

McLachlan, G.J. and K. E. Basford (1988). Mixture
Models: Inference and Auplications to Clustering,
Marcel Dekker, New York.

Silverman, B.W. (1986). Densitv Estimation for Statistics
and Data Analvs&, Chapman and Hall, New York.

Sklansky, J. and G.N. Wassel(l981). Pattern Classifiers
and Trainable Machines, Springer-Verlag, New York.

Titterington, D.M., A.F.M. Smith and U.E. Makov (1985).
Stat’stical Analvsis of Finite Mixture Distributions,
JohA Wiley, New York.

333

