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Abstract, A neural network architecture for clustering and classification is described. The 
Adaptive Kernel Neural Network (AKNN) is a density estimation technique closely related to 
kernel estimation. The accompanying learning scheme adjusts the connection weights, activation 
functions, and the number of nodes in the network. The network, as described here, is made up 
of three layers of nodes: the input layer, a kernel layer and the output, or classification layer. The 
AKNN retains the inherent parallelism that is common in neural network models. Its relationship 
to the kernel estimator allows the network to be understood statistically, and meaningful analysis 
of the internal representations and the outputs is possible. 
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INTRODUCTION 

The problem of pattern recognition has been studied for 
many years using many techniques. A typical recognition 
task consists of a set of exemnlars from each class, with the 
task being to produce a system which can correctly identify 
the members of each class. Of course, in many applications, 
the classes overlap, and the best that can be done is to give a 
measure of the probabilities for each class. One way to do 
this is to estimate the probability density functions of the 
different classes, and use these as discriminators. 

Recently, the technique of neural networks has enjoyed a 
resurgence. These networks have a number of interesting 
and useful attributes: they are inherently parallel, they 
“learn” by example, and they “generalize”, in the sense that 
they interpolate the function sought, rather than 
“memorizing” the teaching set. Some networks can continue 
to adapt after the initial learning, which can be useful in 
changing environments. However, many of the neural 
network architectures currently used have drawbacks. For 
examule. backurouaeation can reauire a large number of 
iteratibns through ;he”training set, and canno&crementally 
learn. The networks are often difficult to analyze, making 
probabilistic information about the output difficult to obtain. 
Finally, network size is usually determined in an ad hoc 
manner. 

In this paper a neural network architecture which addresses 
these drawbacks is described. The Adaptive Kernel Neural 
Network (AKNN) requires a single pass through the data. 
If new training sets become available they can be 
incorporated in the system without requiring retraining on 
the original data set. Thus it is an adaptive system in the true 
sense of the word. It can run in both supervised and 
unsupervised modes. Finally, it creates nodes as needed, 
and so the network grows to the size required by the 
problem. 

The architecture is based on the kernel estimator, a non- 
parametric technique for estimating the probability density 
function of the data. This paper gives a brief description of 
the kernel estimator, and the modifications necessary to 
produce an adaptive network architecture. Finally, the 
network is compared to the kernel estimator for some 
simulated data. 

KERNEL ESTIMATORS 

Given a set xl, x2, . . . . xn of independent, identically 
distributed points taken from a distribution with probability 
density f, the task is to estimate f. If f is known to come 
from a particular class of densities, there are a number of 
parametric and non-parametric techniques to find the best 
match of a member of the class to the data. Without this a 
priori information, we would still like to get an estimate of 
the density. This is what the kernel estimator is designed to 
do. 

Perhaps the most familiar technique of density estimation is 
the histogram. The idea is to partition the input space into 
rectangles and count the number of points that fall within 
each rectangle. Intuitively, a point near the edge of a 
rectangle. or bin, should effect the estimate of the 
neighb&ing bin, while a point near the center of the 
rectangle should have a lesser effect on adjacent bins. In the 
histog& estimate, all points within a bin-are treated equally 
and there is no effect on adjacent bins. 

The naive estimator is a modification of the histogram in 
which a rectangle is placed at each point, and the rectangles 
are summed to produce the estimate. More generally, any 
probability density function could be used in place of the 
rectangles. This is the idea behind the kernel estimator. The 
kernel estimator for f is defined as 

where K is a mobabilitv densitv function, and h is called the 
bandwidth 0; window width. For more &formation on the 
kernel estimator, see Silverman (1986). 

For the remainder of this paper, the kernel K will be the 
multivariate normal or Gaussian distribution. The summand 
then becomes: 

G(x)=& e- l/2 (Y-pyx-1 (x-p) 
(2) 

for d-dimensional data. Here, bold-faced characters are 
vectors, and C is the covariance matrix. For practical 
considerations, when d is large, C will usually be a diagonal 
matrix, rather than the full covariance matrix. 

This paradigm can easily be realized as a network 
architecture. Figure 1 shows a univariate implementation of 
the kernel estimator as a neural network. Each node has as 
its transfer function the Gaussian (2), with the covariance 
held locally and the mean stored as the connection weights 
into the node. The second, or hidden, layer computes a 
difference between the input and its weight vector, rather 
than the usual dot product. The drawback of this approach 
is clear. The number of nodes required by the middle layer 
is equal to the number of points in the training set, and so the 
network can become extremely large. Also, the kernel 
estimator should be modified to allow a different variance 
(bandwidth) for each kernel. 

The network implementation provides a new perspective 
which allows a solution to these uroblems. Each node can 
independently determine its covariance from the data. In 
addition, the network can decide to add a new node based on 
how well the data point is covered by existing nodes. This 
is the basis for the AKNN. 
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&, 1. Network Imnlementation of the Kernel Estimator 

DETERMINING NETWORK SIZE 

The network size is a global property of the network and 
hence cannot be determined locally. When a data point is 
presented to the network, each node reports the distance 
from its mean to the new point. If none of the nodes are 
close, a new node is created with mean equal to the new 
point. In this manner, the network grows to a size sufficient 
to cover the data within a predefined distance. This is 
similar to the diameter-invariant cluster technique described 
in Sklansky and Wassel (1981). The difference is that the 
distance measure used is the Mahalanobis distance which 
uses the covariance matrix. Since the covariance adapts to 
the data, as will be described below, the diameter is not 
really futed in this amhitecture. 

The algorithm for the creation of a new node is simple. A 
constant c, called the create threshold, is defined which 
determines the resolution of the estimate. A scaled version 
of the Gaussian is used as a distance measure (3), which is 
essentially the Mahalanobis distance, exponentiated so that 
the values run from 0 to 1. 

d(x,p) = e -112 (X-l# z-’ (X-!J) (3) 

If no node reports d(x,p) > c, then a new node is created. 
If any node reports d(x,p) 2 c, then the point is considered 
to be covered, and no new node is created. 

A bandwidth or variance still must be chosen for the node, 
but since this variance will be adapted to fit the data (section 
IV below), this choice is not as critical as in the case of the 
kernel estimator. Like the create constant, the choice of 
initial variance controls the number of nodes created, as can 
be seen from the distance function d. 

Although it would at first seem that c should be bounded 
between 0 and 1, this is not necessarily the case. Two 
interesting extremes are nroduced when c is chosen outside 
this range. If c > 1, then the condition d(x,p) > c is never 
satisfied, and so a node is created for each point. This is the 
kernel estimator described above. If-c c 0 then the 
condition is always satisfied, after the first node is created, 
and so the estimate consists of a single Gaussian. In this 
way, the network spans the range between the parametric 
estimator of a single Gaussian and the non-parametric kernel 
estimator. 

UPDATING NETWORK PARAMETERS 

The network must also update the means and covariances of 
the nodes. It is important that this be done recursively. In 
many problems, it is costly or impossible to obtain large data 
sets for which the true classification is known. Training 
must be done on-line, as data is collected. The network 
must therefore’ adapt to each point, rather than allowing the 
luxury of repeated iterations through a fixed data set. This 

allows the network to be a truly adaptive system, which 
continues to “learn” as each datum is presented, rather than 
in an off-line method requiring the storage of previous data 
and (often a prohibitively long) time to retrain on the data. 

Two different approaches will be described. The first uses a 
decision similar to the create rule to decide whether a node 
should be updated, and then uses recursive formulations of 
the sample mean formula to effect the update. In this 
architecture the covariance is held fixed. The second uses a 
Bayes-like rule to update all the nodes proportionally to the 
likelihood that the point came from the distribution covered 
by the node. The first technique is a purely local 
computation, but requires the user to determine another 
constant defining the update region. The second technique 
does not require this user intervention, but it is not local, 
requiring feedback from the output nodes. 

In the first technique described, the decision to update the 
node is made in a manner similar to the decision to create a 
new node. Unlike the creation decision, this is a local 
decision. A constant u, the update threshold, is chosen, and 
each node for which d(x,p) > u updates its mean using the 
new point x. An alternative learning rule would be to update 
only the node with the largest value for d(x,p). Note that u 
should satisfy u < c. For the two extremes of a single 
Gaussian and a kernel estimator, equality should hold. 

The formula for updating the mean is an iterative version of 
the sample mean calculation: 

Pk = Pt.1 + $-bk - Pk.,) 
k 

Nk = Nk., + 1 

where subscripts indicate time. 

Here Nk is the number of points that have been used by the 
node after the k* input. The vector x, is the new data point 
that is to be included in the statistics for the node. The 
weight on the connection from hidden node i to output 
(class) node j is then: 

N, wij = yyy 

The notation i->j is shorthand for “node i is connected to 
node j”. There is a recursive formulation for the 
computation of the weights wlj , but this is unnecessary for 
this architecture. 

It is possible to define a recursive update formula for the 
variance in this architecture. Unfortunatelv, the hard 
threshold of the constant u has the effect of ignoring points 
in the tail of the Gaussian, which causes a bias in the 
estimate of the variance. Although it mieht be nossible to 
correct for this, the second leariing ruie, which will be 
described below, eliminates this problem in a more natural 
way. As mentioned above, this first rule, with the variance 
fixed, is essentially a diameter-invariant clustering technique. 

It is instructive to think of the network as fitting a mixture of 
normals to the data. A considerable amount of work has 
been done in the problem of estimating the parameters of a 
mixture of normals, and this work can be used in the context 
of the network architecture. For simplicity, as above, we 
consider the case of estimating the probability density 
function of a single class. This work follows that of 
Titterington et al. (1985). First, we view the estimate as a 
mixture of Gaussians: 
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(7) 

Here Clj is a Gaussian with mean pj and covariance x. 

Let 

Then 

Pr = H-1 + &j-b, - k-1) (9) k-1 k 

(11) 

xij =$ (12) 

This is a recursive technique, but is not local in the neural 
network sense, since it requires feedback from an output 
node for the computation of the pk. This is a minor 
consideration, particularly if one is willing to grant neural 
network status to backpropagation. In this learning rule, 
both the mean and the covariance are updated. Points from 
the tails of the nodes are used in the computation of the 
covariance, and in fact if the network size is fixed, this is a 
recursive version of the EM algorithm used in mixture 
models (McLachlan and Basford 1988). 

Note that once again the weights w can be determined 
recursively. Also, if N is a fixed constant for the mean and 
covariance update formulas, this has the effect of putting a 
window on the data, allowmg the network to track slowly 
moving nonstationary distributions. This is a topic for 
future research. 

EXAMPLES 

Since the architecture described here models the data as a 
mixture of Gaussian, or normal, distributions, it is natural to 
consider its performance on data drawn from a mixture of 
Gaussians. One might hope that in this case the network 
would use the correct number of nodes to model the data: if 
the data came from a mixture of n Gaussians, the network 
should have n Gaussian nodes. This is too much to ask, 
especially without a rule for the deletion of nodes. In fact, 
the problem of identifying the number of components in a 
mixture is an unsolved problem in the theory of mixture 
distributions. If the number of components is known, then 
the network size can be fixed at the appropriate amount, and 
the parameters of the mixture will be estimated from the data. 

In a typical classification task, there will be a training data set 
for which the correct classification is known. This allows 
the network to be initialized at an estimate which is 
consistent with the training set. This will improve the 
performance of the network if the training set is 
representative of the overall distribution. In the examples 
described below, however, no such training set is assumed. 
The network must start from scratch. This has the danger, 
one shared by all recursive estimators, that for small data 
sets the estimate is data dependent. Thus the estimate for a 
data set drawn from a given distribution will be slightly 
different than for another data set drawn from the same 
distribution. The differences are noticeable on the data sets 

described, but not large enough to cause concern. 

For each of the data sets described, 500 points were 
generated. Histograms of the data are plotted, as well as the 
theoretical distribution. The kernel estimator is plotted, 
using the optimal bandwidth described in Silverman (1986), 
page 40. Four data sets were used, showing both unimodal 
and multimodal characteristics. 

Each figure shows a) a histogram of the data plotted against 
the true distribution (dotted), b) a kernel estimator plotted 
aeainst the true distribution. c) the network estimate plotted 
a&inst the true distribution,‘and d) the network estimate plus 
the components (nodes) that make up the estimate. This last 
shows how many nodes were used in the estimate, and how 
the estimate is obtained from local approximations. 

A Mixture of Two Gaussians 

For the first data set, the data is drawn from a distribution of 
the form: 

x -+N(-1,l) + iN(1.1) (13) 

Figure 2 shows the histogram, kernel and network 
estimates. As can be seen, the estimates all detect a slight 
bump on the left, corresponding to the smaller of the two 
comuonents. The bums is smoothed in the true distribution. 
The-network has used 9 nodes (Fig 2(d)), as opposed to the 
kernel estimator’s 500 nodes. The mode at about -2.5 in the 
network estimate is an artifact of the data set: the node was 
created near the end of the data, and not enough data has 
been seen since that to lower the node’s weight. 

The second data set is the same as the first, except that the 
means of the components have been moved to give a 
bimodal distribution. 

x-;N(-2,l) +;N(Z,l) (14) 

The network estimate has used 3 nodes (there are actually 
more, but their weights are effectively 0). Note that the 
network has split the smaller mode between two nodes. 
Given enough points, the left-most node will probably die 
out, leaving essentially a two component mixture. It should 
be stressed that the network cannot be depended upon to find 
the correct mixture representation for the data, as can be seen 
from the first data set. 

A Mixture of Three Gaussian% 

The third data set is a combination of three components, 
giving a bimodal, or trimodal, distribution, depending on 
how one counts modes. 

x - +N(-2,.5) + ; N(O,l) + ; N(2,.5) (15) 

None of the estimators do a very good job on this data set, 
though the kernel estimator is the best. Once again the 
network estimate has come very close to estimating the 
correct number of components. There are 5 nodes, the 
smallest two of which will be driven down to 0 with more 
points, though experience has shown that it can take a large 
number of points to “kill” these nodes. 

A Cauchv Distribution 

The final example shows the effect of using the Gaussian 
mixture model on a distribution for which this model is 
incorrect. The data is drawn from a Cauchy distribution, 
and the network models it as 4 nodes. Since the mode of the 
Cauchv distribution is not really a Gaussian, it is futile to trv 
to fit ii as one. To improve the fit, the network would have 
to create many more nodes, giving a tit similar to the kernel 
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estimator. This can be done by changing the create 
threshold. Note, however, that it does make a creditable 
attempt to model the tails of the Cauchy distribution. 

CONCLUSIONS 

The AKNN is a useful tool for density estimation, and its 
application, classification. The network can model a wide 
range of distributions. It is an adaptive system, and so can 
be used in situations where the system must continue to 
modify its internal representation as data is presented. It can 
learn the network size, given an estimate of the smoothness 
and composition of the density to be approximated. Unlike 
many other network models, training time is not an issue for 
the AKNN. Therefore, this network is applicable any time 
the goal is classification via density estimation. 

Due to its close association with statistical pattern recognition 
techniques (kernel estimators and mixture models) and 
recursive learning procedures, the AKNN is superior to 
conventional neural network architectures in many respects. 

REFERENCES 

McLachlan, G.J. and K. E. Basford (1988). Mixture 
Models: Inference and Auplications to Clustering, 
Marcel Dekker, New York. 

Silverman, B.W. (1986). Densitv Estimation for Statistics 
and Data Analvs&, Chapman and Hall, New York. 

Sklansky, J. and G.N. Wassel(l981). Pattern Classifiers 
and Trainable Machines, Springer-Verlag, New York. 

Titterington, D.M., A.F.M. Smith and U.E. Makov (1985). 
Stat’stical Analvsis of Finite Mixture Distributions, 
JohA Wiley, New York. 

333 


