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1 Introduction

In this paper we discuss work on graphs defined in terms of alliances between
countries. We will use scan statistics to investigate years in which there are
an unusual number of agreements, not just between one country and its allies,
but amongst the allies themselves. This is related to work on email “chatter”
discussed in Priebe et al. [2006]. In this section we will lay out the basic graph
terminology.

A graph G is a pair (V, E) where V is a set (the vertices) and E is a set of
unordered pairs of elements of V (the edges). We call the order of the graph
n = |V | and the size of the graph s = |E|. See Bollobás [2001]. We will denote
the edge from v to w as vw For v, w ∈ V the distance d(v, w) is defined to be the
minimum path length from v to w in E. The (closed) kth-order neighborhood
(or k-neighborhood) of a vertex v is the set of vertices of distance at most k
from v:

Nk(v) = {w ∈ V : d(v, w) ≤ k}.

The degree of a vertex v is the number of edges incident on v. The induced
subgraph of a set of vertices S, denoted Ω(S), is the graph with vertex set S
and edge set {vw : v, w ∈ S and vw ∈ E}.

A random graph is a graph valued random variable. For the purposes of
this paper, we will assume the vertices are fixed, and the random component is
contained entirely in the edges. One of the simplest (and most common) types
of random graphs is the Erdös-Renýı random graph. In this model, each edge
has a probability p of being in the graph, independent of all the other edges.
This model has been well studied (see for example Bollobás [2001]).

In this paper we investigate a time series of graphs defined in terms of inter-
state alliances: each graph corresponds to alliances in place within a calendar
year; each vertex is a country and there is an edge between two vertices if there
was an alliance between the countries during the current year.
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2 Scan Statistics

Scan statistics are commonly used in the investigation of random fields (for
example, a spatial point pattern or an image of pixel values) for the possible
presence of a local signal. These are known in the engineering literature as
“moving window analysis”; the idea is to scan a small window over the data X
and calculate a local statistic for each window. In point patterns this locality
statistic might be the number of events in the window, while for image analysis
it might correspond to some statistic (for example the average) applied to the
pixels in the window. The supremum or maximum of these locality statistics
is known as the scan statistic, which we denote M(X). Under some specified
homogeneity null hypothesis H0 on X (a Poisson point process, perhaps, or a
Gaussian random field) one specifies a critical value cα such that PH0

[M(X) ≥
cα] = α. If the maximum observed locality statistic is larger than or equal to
cα, then the inference can be made that there exists a nonhomogeneity — a
local region with statistically significant signal.

An intuitive approach to testing these hypotheses involves the partitioning of
X into disjoint subregions. For cluster detection in spatial point processes this
dates to the “quadrat counts” of Fisher et al. [1922]; see Diggle [1983]. Absent
prior knowledge of the location and geometry of potential nonhomogeneities,
this approach can have poor power characteristics. Essentially, one wishes to
select the window location and geometry to maximize the statistic. In the
absense of prior knowledge this cannot be accomplished via disjoint subregions,
and thus scan statistics are recommended.

Analysis of the univariate scan process (d = 1) has been considered by
many authors, including Naus [1965], Cressie [1977], Cressie [1980], and Loader
[1991]. For a few simple random field models exact p−values are available;
many applications require approximations to the p−value. The generalization
to spatial scan statistics is considered in Naus [1965], Adler [1984], Loader [1991],
and Chen and Glaz [1996]. As noted by Cressie [1993], exact results for d = 2
have proved elusive; approximations to the p−value based on extreme value
theory are in general all that is available. Naiman and Priebe [2001] present an
alternative approach, using importance sampling, to this problem of p−value
approximation.

3 Scan Statistics on Graphs

For a non-negative integer k (the scale) and vertex v ∈ V (the location), consider
the closed kth-order neighborhood of v in G. We define the (scale k) scan region

to be the induced subgraph of Nk(v), denoted

Ω(Nk(v)) (1)

with vertices V (Ω(Nk(v))) = Nk(v) and edges E(Ω(Nk(v))) = {(v, w) ∈ E :
v, w ∈ Nk(v)}. A locality statistic at location v and scale k is any speci-
fied graph invariant Ψk(v) of the scan region Ω(Nk(v)). In this work (as in
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the previous work reported in Priebe et al. [2006]) we use the size invariant,
Ψk(v) = |E(Ω(Nk(v)))|, and for convenience define the scale 0 locality statistic
to be the degree. In the case of a weighted graph, the invariant is the sum
of the edge weights. Notice, however, that any graph invariant (e.g. density,
domination number, etc.) may be employed as the locality statistic, as dictated
by application. The “scale-specific” scan statistic Mk is given by some function
of the collection of locality statistics {Ψk(v)}v∈V . We will use the maximum
locality statistic over all vertices,

Mk = max
v∈V

Ψk(v). (2)

This idea is introduced in Priebe [2004] and Priebe et al. [2006].
Under a null model for the random graph G (for instance, the Erdös-Renýı

random graph model) the variation of Ψk(v) can be characterized and a large
value of Mk indicates the existence of an induced subgraph (scan region) Ω(Nk(v))
with excessive activity. A test can be constructed for a specific alternative of
interest concerning the structure of the excessive activity anticipated. How-
ever, if the anticipated alternative is, more generally, some form of “chatter”
in which one (small) subset of vertices communicate amongst themselves (in ei-
ther a structured or an unstructured manner) then our scan statistic approach
promises more power than other approaches.

Time is incorporated through the implementation of a sliding window with
standardization of the Ψ(k). First, we perform vertex standardization by sub-
tracting a recent mean and dividing by a recent standard deviation. Let τ > 1
be a given window width. Then

Ψ̃k,t(v) = (Ψk,t(v) − µ̂k,t,τ (v)) / max(σ̂k,t,τ (v), 1) (3)

where

µ̂k,t,τ (v) =
1

τ

t−1∑

t′=t−τ

Ψk,t′(v) (4)

and

σ̂2

k,t,τ (v) =
1

τ − 1

t−1∑

t′=t−τ

(Ψk,t′(v) − µ̂k,t,τ (v))2. (5)

We also standardize the scan statistic in a similar manner. Given ` > 1, the
window width for the scan statistic, define

Sk,t = (M̃k,t − µ̃k,t,`)/ max(σ̃k,t,`, 1), (6)

where M̃k,t = max Ψ̃k,t(v) and µ̃k,t,` and σ̃k,t,` are the running mean and stan-

dard deviation estimates of M̃k,t based on the most recent ` time steps. In both
of these approaches, the denominators are constrained to be at least 1 in order
to eliminate fragility due to small variations.
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Table 1: Alliance codes in the alliance dataset.
0 or NA No alliance
1 Defense pact intervene militarily if partner attacked
2 Neutrality remain militarily neutral if partner attacked
3 Nonaggression pact consultation and/or cooperation in a crisis

4 The Data

We consider a time series of graphs defined in terms of alliances. The alliance
data represent alliances between a total of 214 nations collected from 1816-2002
(Gibler and Sarkees [2004]). The data are available at cow2.la.psu.edu. For
each nations pair, alliance is coded as in Table 1. There are some missing values
in the interstate alliance data, and in this study we treat these as missing edges.
Various methods for imputing the missing values could be considered instead.
While the edges are colored by alliance type (see Table 1), we will consider only
the simplified graph with binary edges: existence or absence of an alliance.

Note that there are missing values (for reasons unknown to us), and we have
chosen to encode these as “no alliance”.

For each year we form the graph with the nations as vertices, and the al-
liances between nations defining the edges. The alliance encoding is not obvi-
ously ordered. It is easy to argue that in certain scenarios a nonaggression pact
is (or is not) stronger than a defense pact. Therefore, we will focus on the binary
version of alliance/no alliance. Thus, there is an edge in the graph if there was
an alliance of type 1,2 or 3 between the two countries. Figure 1 depicts the sizes
of the graphs. As can be seen, the number of alliances increases dramatically
after the mid 1930’s (the big jump occurs in 1936). In Figure 2 we scale the size
by the number of vertices in the graph (defined by first removing those countries
which have no alliances with any other countries during that year). There are
four major change points evident in these graphs (particularly in Figure 2):

1. 1849 — a sudden dip in density.

2. 1867 — a drop in density.

3. 1936 — an increase in density.

4. 1946 — a sudden dip in density.

The graphs associated with the 1849, 1867 and 1946, are depicted in Figures
3, 5 and 4. The 1936 change point also shows up in the scan statistics, so we
will deal with it later in the paper.

In Figure 3 we see the changes in alliance among the countries of Europe.
One hypothesis is that this is an error in the data: alliances that were in place are
accidently removed from the data in 1849. A similar effect is seen in the dip in
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size at 1946: the changes are displayed in Figure 4, and a reasonable hypothesis
is that the data for the alliances between the United States and Central and
South American countries were inadvertently dropped from the data.

A more interesting change is the drop in size from 1866 to 1867. Figure 5
shows the changes in the alliances for this period. As can be seen, these are the
result of the formation of the of Austria-Hungary empire, making the alliances
with previous nation/states moot.

5 Results

The above analysis demonstrates that there are some interesting discoveries that
can be made by looking at global statistics of the time series of graphs (the size
of the graphs). Other graph invariants could no doubt result in other types of
detections of interest. We now consider the results of applying the scan statistic
methodology to detect unusual increases in the number of alliance among small
sets of countries. In all cases we use the windows of size 10 years: τ = ` = 10.
Figure 6 shows the detections (at a detection threshold of 5 standard deviations,
indicated by the horizontal lines) for scan 0 (degree, k = 0) and scans 1–3
(k = 1, 2, 3) for the induced subgraph size locality statistic.

We will now go through the detections in Figure 6 from k = 0, . . . , 3. Figure
7 shows the first detection for k = 0, degree. (In all plots unless otherwise noted
the entire graph, minus the isolated vertices, will be displayed.) This detects a
new nation (or city-state), Hanover, forming alliances with eight other nations.
This is an easy detection to make, based entirely on degrees, and is in fact the
only change in the graph from 1837 to 1838.

Figure 8 shows the detection at k = 0 and the higher scan values, a result of a
set of alliances between the United States and the Central and South American
countries. The red edges in the plot show the edges (alliances) that were put
in place in 1936, and the blue edges show those that were in place in 1935 but
no longer in place in 1936. The data don’t support answering questions about
these specific alliances; however 1936 is the start of the Spanish civil war, which
may be the genesis of these alliances.

Figure 9 shows the k = 1 detection for 1949. This is the result of the
European partners of the United States forming alliances after the second world
war, probably as a result of the North Atlantic Treaty, signed in April. This is
the first of the detections we have seen which is a detection at k = 1 but not
k = 0: it is not detected via the vertex degrees. Rather, it is the small clique of
alliaces between these that produce the detection. Note further that this clique
is smaller than the one represented by the US and Central and South American
countries, so the detection could not easily be made via computing cliques.

The graph for 1967, also not detected at k = 0, is displayed in Figure 10.
The graph is too large to easily display the country names. The change occurs
in the central circle, which is represented in Figure 11 (in a slightly different
layout). This is the result of new alliance between Barbados, Trinadad and
Tobago, and the US and South and Central America.
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Figure 1: Size of the graphs defined by the alliances.
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Figure 2: Density of the graphs defined by the alliances. The density is com-
puted on the subgraph formed after isolated vertices are removed. The arrows
show two dips that are probably the result of missing data, and a drop in the
density which is a result of the formation of the Austro-Hungarian empire.
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Figure 3: Graphs for the years 1848 through 1850. The top graph depicts the
changes in the alliances between 1848 and 1849, and the bottom the changes
between 1849 and 1850. In both cases, blue edges denote edges that were
removed from the first year to the second, red edges are edges that were added,
and grey edges are those which stayed the same.
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Figure 4: Graphs for the years 1945 through 1947. The top graph depicts the
changes in the alliances between 1945 and 1946, and the bottom the changes
between 1946 and 1947. In both cases, blue edges denote edges that were
removed from the first year to the second, red edges are edges that were added,
and grey edges are those which stayed the same.
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Figure 5: Graph for the years 1866 and 1867. Blue edges denote edges that
were removed from the first year to the second and grey edges are those which
stayed the same.

Figure 12 illustrates the maxim “the friends of my friend are my friends”.
Here, Italy made an alliance with Germany in 1866, thus resulting in a much
larger 2-neighborhood than in the previous year. Instead of just the United
Kingdom, France and Austria-Hungary in it’s 2-neighborhood in 1865, it now
adds the eight additional countries that the alliance with Germany brings with
it. This doesn’t necessarily mean that these alliances can now be relied upon by
Italy, but to some degree it affords Italy some of the benefits of these alliances.
This illustrates the fact that small changes in the graph can result in large
changes in the scan statistic. Similarly, Figure 13 shows the addition of an
alliance with Italy increasing France’s meager 2-neighborhood by four more
countries.

Similarly, Turkey made some new alliances in 1914, which, although it in-
creased its 2-neighborhood substantially, was not enough to meet our 5 standard
deviation threshold. It did, however result in a large enough 3-neighborhood,
as illustrated in Figure 14.

The graph for 1926 is shown in Figure 15, with the new 3-neighborhood
shown in red. In this case, both Spain and Albania have new alliances with
Italy, resulting in the same 3-neighborhood for each country.
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Figure 6: Scan statistics for scan 0 (degree) and scans 1–3 (k = 0, 1, 2, 3).
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Figure 7: Changes in the graphs for the years 1837 and 1838, showing the new
alliances (red edges) in 1838, a result of the alliances formed between Hanover
and other nations.
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Figure 8: Changes in the graphs for the years 1935 and 1936, showing the new
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edges are those alliances that are in force for both years.
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Figure 9: Changes in the graphs for the years 1948 and 1949, showing the new
alliances (red edges) and discarded alliances (blue edges) in 1949. The gray
edges are those alliances that are in force for both years.

6 Conclusions

Statistical inference on time series of graphs using scan statistics allows the
detection and identification of local structural changes — a small number of
vertices changing their interaction pattern over a small time scale.

The methodology applied to interstate alliance graphs provides detections of
numerous anomalous events — some with clear geopolitical/historical bases and
some more subtle The most interesting detection presented here, in our opinion,
is the NATO alliance depicted in Figure 9. This shows the power of the scan
statistic: it detects changes in the number of alliances among allies in this case,
even in the presence of a near-clique.

We have demonstrated the analysis of one type of locality statistic, the size
of the induced subgraph. There are many others that could be used on these
data. The size invariant is well suited for detecting “chatter” — increases in
the number of relationships among the actors. Other invariants could be used
to detect other types of structure.

There are several points to be considered for future work. Missing data
were essentially ignored in this study, and future work will consider appropri-
ate methods to deal with these. A second issue is the fact that the categorical
nature of the alliance relation was not used. Extensions of the scan statistic to
weighted edges is straightforward, but the proper extension to categorical data
needs further research. Finally, tailoring the locality statistic to detect specific
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Figure 10: The graph in 1967. Color coding of edges is as above.
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Figure 12: The graphs of 1865 and 1866. The color scheme for the edges is the
same as above, the red vertices are the new 2-neighbors of Italy, resulting from
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Figure 13: The graphs of 1901 and 1902. The color scheme for the edges is
the same as above, the red vertices are the new 2-neighbors of France, resulting
from the alliance with Italy.
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Figure 14: The graphs of 1913 and 1914. The color scheme for the edges is the
same as above, the red vertices are the new 3-neighbors of Turkey.
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Figure 15: The graphs of 1925 and 1926. The color scheme for the edges is
the same as above, the red vertices are the new 3-neighbors of both Spain and
Albania, the two vertices that produce the detection.
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types of changes is somewhat of an art, and must take into account computabil-
ity as well. Methods for crafting easily computable invariants (or reasonable
approximations) for the detection of specific structures is of considerable inter-
est.
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