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Abstract--A fundamental problem of automating the detection and recognition of abnormalities in digital 
mammograms utilizing computational statistics is one of extracting the appropriate features for use in a 
classification system. Several feature sets have been proposed although none have been shown to be sufficient 
for the problem. Many of these features tend to be local in nature, which means their calculation requires a 
connected region of the image over which an average or other statistic is extracted. The implicit assumption is 
that the region is homogeneous, but this is rarely the case if a fixed window is used for the calculation. We 
consider a method of using boundaries to segment the window into more homogeneous regions for use in the 
feature extraction calculation. This approach is applied to the problem of discriminating between tumor and 
healthy tissue in digital mammography. A set of 21 images, each containing a biopsied mass, is described. The 
results of the boundary-gated feature extraction methodology on this image set shows a difference in distribution 
between tissue interior to the mass and tissue far away from the mass. Less difference is discernible when 
boundaries are not used in the feature extraction. Published by Elsevier Science Ltd. 
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1. INTRODUCTION 

The use of computational statistics for general image 
analysis and for application to digital mammography 
in particular has been described elsewhere in some 
detail. (1~) These papers address the fundamental pro- 
blem of the extraction of appropriate features for use in a 
classification system. Specifically, a set of features based 
on the fractal nature of an image has been used with some 
limited success based on a very small number of mam- 
mographic casesJ 5-7) Other local features have also been 
used (8'9) and again have had only marginal success. Our 

goal in this work is to describe a method of feature 
extraction which improves the local features by attempt- 
ing to ensure homogeneity of the region from which the 
feature is extracted. 

A local feature, for the purpose of this work, is a value 
calculated from a window centered on a given pixel. 
Thus, each pixel can be assigned a feature value, even 
though the feature requires a region of pixels for its 
calculation. 

We will give three examples of local features and 
briefly discuss two related methods for improving the 
feature extraction. The first feature is statistical in nature, 
the coefficient of variation. Although this is a simplistic 
feature we show that it does have some utility as a 
discriminator between healthy tissue and tumorous tis- 
sue. 

We then consider fractal dimension and investigate 
two features that result from the fractal calculation. Our 

* Author to whom correspondence should be addressed. 

work shows that the fractal dimension and a related 
feature obtained from digitized gray scale mammograms 
are appropriate features for extraction and might be used 
as one or two of several features for a classification 
system for detecting abnormalities. 

The problem with computing local features, which are 
defined in a region of the image, is that care must be 
taken to insure that the region is homogeneous. If the 
region used in the fractal calculation contains more than a 
single texture then the fractal dimension calculation 
yields a feature which is neither the fractal dimension 
for either texture nor the average of the fractal dimen- 
sions for the two textures. (m) Hence, this is a less useful 
feature for discrimination. This is particularly trouble- 
some near the boundary of a tumor, a region which may 
be critical for the final determination of malignancy. It is 
the purpose of this work to show that this is one of the 
reasons that the fractal dimension has received mixed 
reviews in the literature. To ameliorate this situation we 
explore the notion of boundary gating which leads to a 
purer calculation of local features. 

In order to evaluate the utility of the features for 
classification, we construct the probability density func- 
tions for the features associated with each class. These 
can be used for classification by the standard likelihood 
ratio test and so can give a good measure of the utility of 
each individual feature. Experience has shown that these 
densities are not well modeled by any of the more 
common families of densities, and so a nonparametric 
approach is taken. This is also the reason for using 
density estimation techniques rather than linear or quad- 
ratic classifiers, 
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Although we are considering each feature separately, 
we acknowledge that no single feature is going to per- 
form well enough on this problem to be clinically useful. 
In fact, the three features considered here, even if taken 
together, are not sufficient to adequately detect tumors in 
these images. Our purpose is not to solve the detection 
problem but rather to indicate methods of feature extrac- 
tion which produce better features and improve the 
overall detection. This will be critical in improving 
classification systems based on a large number of fea- 
tures. Our results show that with the improved extraction 
process incorporating boundary gating, even these simple 
features do have some utility in detecting tumors. 

2. EXPERIMENT 

2. I. Description of  the data 

Of a set of 50 mammograms (provided by the H, Lee 
Moffit Cancer Center and Research Institute and the 
Department of Radiology of the University of South 
Florida) with a biopsied proven malignancy, we chose 
a set of 21 for this study. Since one of our goals was to 
determine if the features could be useful in a detection 
system for tumorous masses, we did not consider other 
kinds of abnormalities. Hence, we eliminated any mam- 
mogram that contained any microcalcifications and/or 
architectural distortion outside of the mass so that we 
could be reasonably sure that the local feature calcula- 
tions were based solely on tumorous tissue characteristics 

or solely on healthy tissue characteristics. 
For the study, each mammogram was supplied with a 

radiologist-drawn boundary of the tumorous mass. This 
boundary was used by us to determine the location of the 
mass and to determine the interior pixels. The boundary 
was not used in the boundary-gated calculations de- 

scribed below. Figure 1 shows a typical mammogram 
with the radiologist-drawn boundary overlaid. 

In estimating the probability density function (pdf) for 

the healthy tissue, we avoid using any pixels that are 
close to the radiologist's boundary. We do this to avoid 
any changes in texture that may be associated with the 

edge of the tumor. To estimate the pdf of the tumor we use 
the radiologist's boundary to determine which pixels are 

interior to the tumor. 
The method of estimation of the pdf used in this study 

is the filtered kernel estimator. ~ t~ This is a nonparametric 
method which uses local variance information to deter- 
mine a small set of smoothing parameters. First, a 
mixture of normals is fit to the data to estimate the 
variances of the modes and tails of the distribution. This 
mixture of normals is used as a pilot estimator for a 
modified kernel estimator which allows different 
smoothing parameters in the different regions of the 

support of the density. 

2.2. Boundary gating 

To calculate a local feature within a given window it is 
necessary to determine which pixels within that window 
should be used in the calculation. Figure 2 gives an 

Fig. 1. Mammogram (histogram equalized for display pur- 
poses) with radiologist-drawn boundary overlaid. 

Fig. 2. Window (box) with center indicated by solid circle. 

example of what is meant here. This figure shows a 
window in which two distinct textures are evident. In this 
case the image is of bark rather than a mammogram, 
since in this case it better illustrates the issue. The center 
pixel clearly should not use pixels from the right texture 
in calculating its local feature since these are from a 
different texture. If we used a boundary map to separate 
the two regions we could determine which pixels are of 
the same type as the center pixel and extract a feature 
which better represents the texture surrounding the center 
pixel. This is the idea behind boundary gating. If the 
boundaries are always closed it is a simple problem to 
determine which pixels to use. However, there are few 
reliable methods of constructing closed boundaries 
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which are computationally tractable. We consider (be- 
low) two methods of boundary gating which will work 

reasonably well with any boundary map. 

2.3. Nonorthogonal wavelet edges 

The desire to include boundary information in the 
calculation of local features presents a problem when 
dealing with images such as mammograms, since bound- 
aries are not obvious. This is especially vexing when 
attempting to generate features for a classification system 
to differentiate breast tissue types (healthy and tumor- 
ous). However, it is possible to generate continuous 
valued boundaries using wavelets, d2 14) While these 

boundaries do not always define explicitly the tumorous 
tissue boundary, it has been shown that using such 
boundaries results in a pdf which is similar to a pdf 
generated using a radiologist 's determined tumor bound- 
ary.(10) For the purposes of this work we are interested in 
binary boundaries and so we threshold the gray scale 
boundaries. An example of the boundaries generated 
using wavelets is shown in Fig. 3. 

The wavelet transform is applied to the image and the 
maxima of the wavelet coefficients are extracted at each 
scale. These maxima provide an edge map for each scale. 
For this work we choose to extract edges at four scales 
and use the second scale edges which are thresholded to 
produce a binary edge map. This seems to do well on 
these images and as will be seen below is sufficient to 
produce improved features. 

2.4. Coefficient of  variation 

The simplest and most familiar local features are the 
gray scale mean and variance of a window on the image. 
The problem with the mean is that it needs to be normal- 
ized across images because images that are darker overall 
will have lower mean values. Similarly, in general, small 
differences in intensity are significant to the variance if 
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Fig. 3. Wavelet boundaries. 

the overall intensity is low, while these same differences 
are not significant if the overall intensity is high. To 

alleviate these problems, one sometimes uses the coeffi- 
cient of variation. The coefficient of variation (CoV) is 
defined to be the standard deviation divided by the mean: 

o- 
CoV = - .  ( 1 ) 

# 

This variable tries to treat the variance in high- and low- 
intensity regions equally and thus should be fairly robust 
to changes in overall image intensity. 

2.5. Simple bounda©' gating 

The simplest form of boundary gating uses what we 
call the light source algorithm. Imagine a light source at 
the center pixel and think of the boundaries as opaque 
walls. The pixels used in the calculation are those which 
are not shadowed by the boundaries. This is a very crude 
method which will omit pixels which are merely hidden 
from the center by a comer or singleton edge pixel. 
However, it will not select any pixels which require 
crossing an edge and it is extremely simple to implement. 
This is the algorithm which will be used in the coefficient 
of variation example. 

2.6. Fracml features 

The first fractal feature with which we are concerned is 
the fractal dimension of a gray scale image. To calculate 
the fractal dimension at a pixel we consider the gray scale 
to represent a third dimension in the image. We then use 
the covering method of Peli ds) to estimate the surface 
area in the region about the pixel. The idea is to bound the 
surface above and below by erosion and dilation opera- 
tors at a range of scales and use these to estimate the 
surface area for the different scales. A linear regression is 
then performed relating the log of the surface area with 
the log of the scale. The slope of the regression line is 
then the difference between the normal Euclidean dimen- 
sion (d) and the fractal dimension (D). Details of this can 
be found in references (15-18). This is shown for a 
general measured property (M) in Richardson's Power 
Law:(~9) 

M(e) = Ke d-D, (2) 

where M(c) is the measured property of a fractal at a scale 
and K is a proportionality constant. 
Using the technique described by Solka et al., ~4~ we 

extract the local fractal dimension for two classes of 
tissue, healthy and tumorous. We describe below our 
more complicated boundary-gating technique for taking 
account of boundaries between textures. After calculat- 
ing the fractal dimension associated with each pixel of 
each class (healthy and tumorous), we estimate the class 
pdf. Plots of the class pdfs indicate whether a fractal 
dimension based texture is a likely candidate for inclu- 
sion as an appropriate feature in a classification system. 

The second fractal feature which we use is the y- 
intercept of the regression line. The y-intercept is related 
to the image contrast. This feature has been used in 
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previous studies as one of a set of fractal features for 
image analysis and classificationJ 1) 

2.7. Boundary gating H 

For the application of boundary gating described here, 
a threshold was used on the wavelet generated bound- 
aries. That is, any boundary gray scale value above the 
threshold was set to 255. Any value below the threshold 
was set to zero. Thus, any variation in intensity of the 
boundary was removed. Even though the boundaries in a 
pixel's window were effectively solid boundaries they 
often were not continuous. In this technique, the feature 
calculations were weighted according to the location and 
distance of each pixel from the central pixel. For those 
pixels in a straight line from the central pixel, the weight 
is one. Boundaries that are continuous in the pixel 
window are not crossed. For discontinuous boundaries 
(i.e. for those pixels that can be reached by going around 
the end of a boundary), the weight is a function of the 
distance from the central pixel. This technique was 
adopted here to simplify our calculations. However, 
boundary gating with continuous valued boundaries is 
possible and is reported elsewhereJ m'j J 

3. P E R F O R M A N C E  M E A S U R E S  

Boundary gating can produce a visible difference in 
the densities, as indicated in Fig. 4. While this can be 
convincing in some cases, in others the difference is not 
so pronounced. Thus we need objective criteria for 
determining if an improvement has been obtained. We 
consider two such criteria in this section. 

3.1. Kullback-Leibler and divergence 

Although the pdfs obtained can be plotted for 
visual comparison, Kullback-Leibler and divergence 
integrals are performed to yield quantitative performance 
measures. ~2°) The Kullback-Leibler information is de- 

fined as 

KL(fT,3~i~) = / fT log ( f ~ ) ,  (3) 

where f r  and fH are pdfs (associated with tumorous and 
healthy tissue, respectively) and the divergence, or Jef- 
freys-Kullback-Leibler Information, ~2m is defined to be 

diV0CT,fn) = KL(fT,fH) + KL(Ji~,J';r). (4) 

The div statistic gives a measure of overall discrimina- 
tory power for distinguishing tumor from healthy tissue. 

3.2. Probability of detection 

The divergence does not tell us what the trade-off is 
between detecting the tumor and getting a false alarm. In 
order to assess this, we need to consider the method of 
classification taken. Since our classifier is based on the 
pdfs, we classify a pixel according to which pdfis larger, 
or more generally, we classify a pixel as tumor if the ratio 
of tumor to healthy tissue pdf evaluated at the pixel is 

larger than some threshold, 

fT(x) 
- -  > T .  ( 5 )  
ill(x) 

Varying the value of Tallows us to set the level of false 
alarms. Using the pdfs for the different classes we 
compute the threshold at which a given probability of 
false alarm (PFA) is obtained. This threshold is then used 
to compute the probability of detection (PD) at this fixed 
PFA. This allows us to report the probability of correct 
classification at four fixed values for the probability of 
false alarm. These give a quantitative measure of the 
improvement due to boundary gating. 

3.3. Hypothesis testing 

Two tests are performed for each statistic to assess 
whether the boundary gating has improved the perfor- 
mance. Thus, for each statistic we compute the difference 
between the statistic computed with and without bound- 
ary gating. The hypotheses are 

Hn: S(boundary gating)=S(no boundary) 
Hi: S(boundary gating) > S(no boundary) 

for a given statistic S. We consider both a parametric and 
nonparametric test. The parametric test is the familiar 
paired t-tes( 2 ~) which assumes, for each statistic, normal- 
ity of the differences, S(boundary gating) - S(no bound- 
ary). 

With only 21 data points it is unclear whether the 
normality assumption is warranted. Therefore, a non- 
parametric test, the Wilcoxon test (22) which only assumes 
symmetry of the differences, is also reported. The Wil- 
coxon test sorts the absolute value of the differences by 
rank and then sums the ranks of those differences which 
were positive. If this value is large we can reject the null 
hypothesis in favor of the alternative. 

As a rule, we feel that the Wilcoxon test is probably the 
safest of the two tests. However, we report both and allow 
the readers to draw conclusions for themselves. 

4. E X P E R I M E N T  O U T C O M E  

4.1. Results Jbr CoV 

We first consider the coefficient of variation, using the 
simple boundary gating described above. In all these 
examples we use the same boundary map as extracted by 
the wavelet edge detector described above. In Table 1 we 
show the results of considering the div statistic where we 
test to see if the divergence has improved (become larger) 
with the incorporation of boundary gating. Normally, a p 
value of 0.05 is considered sufficient to reject the null 
hypothesis. Therefore, Table 1 shows we can safely 

Table 1. Coefficient of variation 

Test div p value 

Wilcoxon 0.0008 
Paired t-test 0.0039 
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Fig. 4. Probability density functions for healthy tissue (solid curve) versus tumor (dotted curve) without 
boundary gating (top) and with boundary gating (bottom). 

reject Ho (no improvement). In this case, it is clear from 
both tests that a significant improvement has been ob- 
tained through the use of  even this simple boundary 
gating. Table 2 shows the results of  the tests for the 
probability of  detection (PD) at various probabilities of  
false alarms (PFA). We also include in Table 3 the 
average PD for each false alarm rate for the two ap- 
proaches for the purposes of  comparison. Once again we 
have strong evidence for the utility of  boundary gating. 

The PD values in Table 3 underscore our earlier 
statement that we do not intend to argue for the use of  
a single feature for the classification task. A PFA of  1% is 
completely unacceptable for this problem due to the large 
number of  pixels in an image. Recall that we are classi- 
fying at the pixel level. This means that in each image we 
can expect to have several thousand false alarms. To a 
degree this problem can be alleviated by combining the 
pixels in a region to give an overall classification for the 
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Table 2. Coefficient of variation: Probability of detection 

Test PFA--20% 10% 5% 1% 

Wilcoxon 0.0005 0.0009 (I.0238 0.174 
Paired t-test 0.0012 0.0014 0.0236 0.0755 

Table 3. Average PD for coefficient of variation 

PFA-20 PFA-20 PFA- 10 PFA- 1 (I PFA~5 PFA-5 PFA-- l PFA- 1 
No bnd Bnd No bnd Bnd No bnd Bnd No bnd Bnd 

46.2 51.8 29.5 34.5 10.9 22.1 8.3 9.6 

Table 4. Fractal dimension 

Test div p value 

Wilcoxon 0.0735 
Paired t-test (/.0622 

region rather than a pixel-by-pixel classification. This 

would be done in a clinical system. However, the false 
alarm rate is still far too high. Clearly we need to 

combine several features together to improve the classi- 
fication performance. As we stated earlier, it is our 

purpose here to give a method of obtaining better in- 
dividual features and the results in Tables 1-3 show that 
we have succeeded for this feature. 

4.2. Results for fractal dimension and y-intercept 

Proceeding with the fractal dimension and y-intercept 

as we did with the coefficient of variation, we obtain 
Tables 4~5 for the fractal dimension and Tables 7-9 for 
the y-intercept. Although the results are not as dramatic, 

we still see some improvement in the divergence. A 

purist might insist that since we fail to reject at the 
0.05 level in Table 4, we cannot state that we have a 
significant improvement. We do not agree with this 

assessment and would rather state that the improvement 
does not show up as well in the divergence statistic. 
However, Table 5 (column one) does show a significant 
improvement. 

Again we see that the probability of detection is far too 
low for these false alarm rates. Once again we stress that 

the classifier would not use a single feature in a clinical 
system. 

It should be noted that the improvement drops off as 

the false alarm rate decreases. This is due in part to the 
small probability of detection at these levels for these 
individual features. 

The y-intercept actually shows both better perfor- 
mance and better improvement than the fractal dimen- 
sion. Once again we see an improvement in the feature by 
using boundary gating to get a more homogeneous region 
in which to calculate the features. 

Although the differences are not nearly as dramatic as 

with the CoV, it is still evident that the boundary gating 
case offers an improvement in these features. One point 
that should be considered is that the boundaries are 

intensity based while the feature boundaries may not 

be. While it is reasonable that the boundary between the 
tumor and healthy tissue would be detectable both in 
intensity differences and in feature differences, the 
intensity boundaries within different types of tissues 
do not necessarily correspond to boundaries of 

homogeneous regions in feature space. It is possible in 
principle to improve on these features by using the 

extracted features to produce feature boundaries to be 

Table 7. y-Intercept 

Test div p value 

Wilcoxon 0.064 
Paired t-test 0.032 

Table 5. Fractional dimension: probability of detection 

Test PFA-20% 10% 5% 1% 

Wilcoxon 0.0303 0.0839 1.1695 0.4792 
Paired t-test 0.0269 0.0741 0.1939 0.4865 

Table 6. Average PD for fractal dimension 

PFA=20 PFA=20 PFA=10 PFA-10 PFA 5 PFA 5 PFA 1 PFA 1 
No bnd Bnd No bnd Bnd No bnd Bnd No bnd Bnd 

34.9 41.1 21.7 25.2 13.4 14.9 4.7 4.7 
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Test PFA=20% 10% 5% 1% 

Wilcoxon 0.0199 0.0609 0.2327 0.7566 
Paired t-test 0.008 0.05 l 6 0.145 0.3446 

Table 9. Average PD for y-intercept 

PFA--20 PFA--20 PFA- 10 PFA= 10 PFA--5 PFA--5 PFA-- 1 PFA-- 1 
No bnd Bnd No bnd Bnd No bnd Bnd No bnd Bnd 

39.6 44.0 23.9 26.6 14.4 16.2 4.9 5.4 

used in place of the intensity boundaries. This is an area 
of current research. An important point to reiterate is that 
this study is not concerned with detecting tumors using a 
single feature. We most emphatically do not suggest 
using a single feature such as fractal dimension or 
coefficient of variation to detect tumors. What we are 
concerned with is the reliable calculation of features 
which, when used in conjunction with other features, 
will allow the detection and classification of tumors. 
Thus, here we are more concerned with an improvement 
in the features rather than in attaining any fixed perfor- 
mance levels. 

5. CONCLUSIONS AND DISCUSSION 

It is clear that local features should not be computed 
without taking into consideration the boundaries between 
regions of different feature values. The two methods for 
boundary gating described here show improvement in the 
feature extraction from the perspective of better classi- 
fication performance. 

Fractal dimension, y-intercept and coefficient of var- 
iation are all appropriate features for consideration with 
other features in a classification system for tumor detec- 
tion in mammograms. Individually these features do 
show some ability to discriminate and this ability is 
enhanced through the use of boundary gating. 

In any practical system, multiple features would be 
utilized both for detection and classification. Addition- 
ally, a set of features which is good for detection may or 
may not be appropriate for classification (for example, 
between benign and malignant tumors). Finally, it is most 
probable that a working computer-assisted diagnosis 
system would use regions for detection and classification 
rather than dealing with images on a pixel-by-pixel basis. 
In this manner the system would classify a region based 
on the features extracted from the region, and thus 
boundary gating would be critical in the calculation of 
the features for the regions. 

The boundaries used in this study were imperfect for 
two reasons. First, since they were intensity based, they 
may not have been perfectly matched with the homo- 
geneous feature regions. Second, since they were not 
guaranteed to be closed, they allowed some contamina- 
tion from other regions. Further work is necessary to 
produce improved boundaries. 

There are several possible methods for improving 
these boundaries. One has already been mentioned. By 
using the features to recompute boundaries, then using 
these boundaries to repeat the boundary gated feature 
extraction, improved features could be obtained. This 
procedure could probably be improved through noise 
reduction and Markov random fields methods (23) and is 
an area of current research. Also, for features like the 
fractal calculations which perform calculations at several 
scales, it may be possible to utilize the multiscale nature 
of the wavelet boundaries. This too is an area of current 
interest. Finally, there are many different methods for 
extracting edges from images and some of these are 
guaranteed to produced closed regions. These need to 
be investigated, particularly in light of some of the ideas 
sketched above. 

In spite of the caveats in the previous paragraph, the 
boundaries used in this study were sufficient to produce a 
significant improvement in the features. It is our belief, as 
evidenced by this study, that any system which uses local 
features such as these will be improved using boundary 
gating. 

It should be noted that in some cases intensity-based 
boundaries are not desirable for use with boundary 
gating. For example, tumors showing spiculated edges 
may well be detectable through the texture of these 
edges. Thus, it is the edge region itself which is used 
to construct the feature. This points out the necessity of 
choosing boundaries which are appropriate to the classi- 
fication task. Given appropriate boundaries, however, it 
is clear that boundary gating will improve the features 
extracted. 
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