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Mammographic Computer-Assisted
Diagnosis using Computational
Statistics Pattern Recognition

mammographic computer-assisted diagnosis. The research has utilized the discipline of
computational statistics. Feature extraction based on fractals and incorporating segmentation
boundaries led to probability density estimation and classification based on discriminant analysis. The
results of applying these techniques to mammography are very promising and are reported herein. The
results of these limited mammographic studies are discussed in their own light and in comparison with

Research begun for target identification utilizing pattern recognition has been applied to

other’s work.
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Introduction

The issue of locating and identifying potential targets
has historically posed problems in war-fighting scenar-
10s. Modern warfare, with its rapid deployment, quick
strike capability, and smart weapons usage has exacer-
bated this situation as evident in Desert Storm. Future
war-making capabilities with its need for faster, or even
on the fly, mission planning will exceed the limits of
today’s technology for target identification. It is in this
light that the research, sponsored by the Office of Naval
Research, was undertaken at the Naval Surface War-
fare Center, Dahlgren Division (NSWCDD).

The technology necessary to identify man-made
objects as distinct from natural objects is the same
technology that can be used to identify any class of
object. Thus, with the advent of Technology Transfer it
was natural for NSWCDD to apply its expertise to
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other areas. The Research Triangle Institute and the
Federal Laboratory Consortium Demonstration Pro-
ject on Critical Industry Needs opened the door for this
application. Specifically, the August 1992 National
Cancer Institute problem statement called for software
for computer-assisted diagnosis (CAD), image process-
ing, and pattern recognition for use in digital mammog-
raphy systems. It is in this light that our research has
been directed toward application of this technology to
mammographic CAD. Successful efforts in this
endeavor, potentially a more difficult pattern recogni-
tion problem, could well result in further advances in
the state-of-the-art,

Computational Statistics Pattern Recognition

Our method for solving the pattern recognition prob-
lem involves the use of Computational Statistics (1).
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This theory involves very large datasets and does not
incorporate assumptions about the parametric behav-
iour of the data. Seemingly intractable problems can
sometimes yicld to these techniques.

Here, we consider gray scale digital images. Each
class of object in the image is characterized by a pattern
or texture. We wish to analyse images and determine
where changes in the pattern or texture {class) occur.
Such detections enable us to distinguish targets from
non-targets, man-made from natural objects, or
tumours from healthy tissue.

Feattires

We are concerned with local texture features. We wish
to categorize the features belonging to a given pattern
in order to sort them into various classes. This is done
by deriving features using the theory of fractal dimen-
sion (2). The fractal dimension ‘D’ (as distinguished
from the normal Euclidean dimension ‘d’) can be
estimated using Richardson’s Power Law (2).

M(e) = K "2, [1]

where M(g) is the measured property of a fractal at a
scale ¢ and K is a proportionality constant. This
equation and the technique described in Solka er al. (3)
allows us to extract three features that describe the
texture. Thus, in a digitized image each pixel can be
characterized by a 3-D feature vector ¥= [x) %3]
based on a small neighbourhood of the principal pixel.
One feature is directly related to the fractal dimension,
one is a measure of how well the fractal model fits the
data, and one is related to the local degree of contrast
in an image. Further, from a single image, M, we have
available a large sample of observations
Xy = [#i,% ] Using these features we construct
probability density functions for different classes and
use these for discrimination.

Probability Density Estimation

The types of problems amenable to these techniques
are not those whose probability density function (pdf)
can be represented by usual statistical models (e.g.
normal distributions). A digitized image can easily
represent a dataset of up to 10 local observations and
our work indicates this data is not well represented by
a normal distribution. We estimate the pdf using a

technique such as adaptive mixtures (4-6). It is a hybrid
approach which maintains the best features of the
kernel estimation model (7} and the finite mixture
model (8) and does not make strict assumptions about
the data distribution. The general mixture density can
be given by,

a(x:0.7) = [9(x16) dF-(6), 2]

where afx)) is the estimate for the true pdf a(x)
underlying the sample X, ¢ is a fixed known function
and F is the mixing distribution.

Segmentation Boundaries

As described by Priebe er al. (9), we can incorporate
segmentation boundaries into the calculation of the
fractal dimension features and hence into the pdf.
Incorporation of segmentation boundaries provides for
significantly more discriminatory information in the
texture features and the associated pdfs. This reference
further describes the two texture patches from Brodatz
{10) shown in Figure 1. Although this may seem to be a
trivial case, it is illustrative of the technique. The three
regions shown in Figure 1 (numbered 1-3 from the left)
shows a pure texture (D17 from Brodatz) in 1 and a
pure texture (124 of Brodatz) in 3. Region 2 straddles
the boundary between the two textures. Figure 2 shows
the results of a pdf calculation (single feature) of the
regions of Figare 1. «; and o are the pdfs of regions 1
and 3, respectively. The two plots of o, (region 2) shows
the effect of incorporating or not incorporating the
boundary. Clearly, incorporating the boundary gives a
truer picture of the pdf of the region.

Computational Complexity Reduction

For each observation the extracted fractal features are
represented by X = [x;,x,,x3)". While it is true that more
information is often contained in higher dimensional
feature space, the computational complexity increases
dramatically with any increase in the dimension (11). To
reduce this complexity and simplify the computations,
we use the Fisher Linear Discriminant (FLD) (12). The
FI.D projects the three dimensions to the one dimen-
sion that is in some sense best for discrimination. The
method and results have been described in Priebe et al.
(13). As shown there, using all three features and the
FLD yields better correlation with class than any single
feature alone.
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Figure 1. Two adjacent texture patches and three regions numbered 1-3 from the left.
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Figure 2. Single feature probability density functions for the
three regions from Figure 1

Discriminant Analysis

The probability density function characteristics are
used to discriminate among the classes (14,15) by a
relatively straightforward application of Bayes’ rule
(12). Here we consider

XM= U XME! [3]

aeAar

where Ay is a set of one or more classes. That is,
observations from each image may be drawn from
more than one class. In the simplest case, Ay, = {1,2}.
Hence, with estimates &, and , for two classes based
on observations X,, and X, (from image M), the
likelihood ratio test statistic, LR(T) = a(C)/a(t), is used
to indicate the proper classification for the observation
€ drawn from another image. Generalization issues of
utilizing estimaies from observations from one image
for discriminating classes in another image need to be
addressed (16). At a minimum, to discriminate classes
in image k (classify the observations in Xjs) a large
number of training observations from images X
(i = L., p;i#k) will need to be used to build the
estimates &, and &, for the two classes.

Change Foint Analysis

Spatial Change Points

With the assumption that an image consists of observa-
tions from more than one class, another approach is to
investigate the homogeneity of the texture. Considering
whether or not the probabilistic structure of an image is
uniform throughout may be construed as a spatial
change point detection problem {17). The hypothesis is
that there is a region in an image whose probabilistic
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structure differs from the norm. The investigation of
this hypothesis begins by considering small sample
regions, ¥y, € Xy, 1 = 1, ..., M. These small sample
regions may or may not intersect, Each small sample
yields a pdf estimate &M‘,. From these, we can form a
distance function

f(&Mf‘ dMJ) = KL(aM; &M;) = j&M, . log(&Mi /&M‘), (4)

and the statistic
T = f(éwR &M,)- (5

The integral is the Kullback-Liebler (KL) information
between the two distributions and can be used to
indicate non-homogeneity (16). This is done by estimat-
ing the probability density of the KL statistic and using
T to distinguish between the homogenecus or non-
homogeneous class. T greater than some t indicates
non-homogeneity and estimating the distribution of the
T statistic allows a computation of an empirical p-value.
This procedure fits into the spatial change point
detection framework when each Yy, is considered to be
a spatially connected region. An appropriate value of T
is determined through training, that is, we wish to
determine the relationship between T values and the
likelihood that an observation deviation indicates non-
homogeneity.

Spatio-temporal Change Points
This technique is also useful for detecting changes over

time. We can consider images of the same scene or
object produced at different times. The characteristics
of the regions of the images are modelled by pdfs. Non-
homogeneity in a like region of sequential images
indicates a spatio-temporal change point.

Proposed CAD Svstem

Figure 3 shows a proposed system (18) incorporating
the items discussed above. This flowchart represents a
very high level schematic.

Experimental Results
Mammographic pdfs

We conducted this study using images provided by the
H. Lee Moffitt Cancer Center and Research Institute
and the Department of Radiology of the University of
South Florida (13). All tumourous regions were biopsy
proven. The mammograms were digitized at approx-
imately 220 pm per pixel and 8 bits per pixel. Figure 4
shows regions of healthy and tumorous {(approximately
10 mm malignant stellate mass) tissue from a mammo-
gram A. Ten thousand healthy tissue cbservations and
500 tumorous tissue observations were used for training
data, Mammogram B (not pictured) containing an
approximately 6 mm malignant stellate mass was used

Segmentation

Digital Pre-
tmage processor

Feature .
transfurmL‘T Classifier

Feature
generation

ranking

Figure 3. Proposed computer-assisted diagnosis system flowchart.
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Figure 4. Regions of interest in mammogram A. This image has been enhanced for presentation.
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Figure 5. Fisher Linear discrimimant (FLD) probability
density functions for mammogram A. (—-), Tumour; (—),
healthy.

for testing (10 000 healthy tissue observations and 300
tumorous tissue observations).

Figure 5 is a plot of the pdfs of the projected data
showing the separation of the healthy and tumorous
classes for mammogram A. The FLD and transforma-
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Figure 6. Fisher Linear discriminant (FLD) probability
density functions for mammogram B using the independent
projection. (—), Tumour; (—), healthy.

tion from A is applied to B and the results are shown in
Figure 6. The discriminant boundary is clearly evident
and appears to be invariant. When the 1oles of A and B
are reversed, the plots exhibit the same behaviour but
with a different discriminant boundary. Based on this
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Figure 7. Fisher linear discriminant probability density
functions for mammogram N1 (—) vs. mammogram DY
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Figure 8. Fisher linear discriminant{FLD} probability density
functions for mammogram N1 (—) vs. mammogram FP1
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limited study, the results indicate the possibility that
once a projection is chosen the discriminant boundary
is invariant from training to testing data. Thus a
discriminant boundary obtained from training images
can be successfully applied to new test images.

Wolfe's Patterns

Wolfe distinguished four tissue patterns (labelied as NI,
P1, P2 and DY) corresponding to increasing breast
tissue density and different morphology (19). To deter-
mine the applicability of this technique to the discrim-
ination of Wolfe patterns, we analysed an additional
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Figure 9. Fisher linear discriminant (FLD} probability density
functions for mammogram N1 (——) vs. mammogram P2
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eight mammograms from the set provided above. We
used two patterns for training data and two others for
testing data. Figures 7, 8 and 9 show the pdfs of the
patterns indicated. The combinations shown were
chosen simply for illustrative purposes. In ail cases, the
ability to discriminate exists and the discriminant
boundaries generalize from training to testing data. If
these results can be extended to non-malignant abnor-
mal tissue the technique might be useful in distinguish-
ing these types.

Mammograms and Change Point Analysis

The results to be discussed next involve six patients
followed for 3 years in which a biopsy proven anomaly
was detected in the 3rd year in three of the patients. We
used at least two views of each breast for each patient
for each year for a total of 81 images. The images were
digitized at 600 dpi (approximately 42.3 um} and 8 bit
grayscale. The images were provided by Kaiser-Perma-
nente Research, Portland, Oregon.

We show pictures from only one patient. As will be
discussed, we were able to detect an anomaly in the 2nd
vear. We were not able to do this for the other two
cases, However, it may be possible that this technique
can result in earlier detection in some cases. We did not
detect any false-positives in the other three cases.

Figure 10 shows an image in {a), a grid in (b) showing
the subregions, and in (¢) the KL surface, KL (&,eﬁ &,-J-) ,
for a reference healthy tissue tile against the other tiles
i, j. As mentioned, this image is from the 2nd year.



MaMMOoGRAPHIC COMPUTER-ASSISTED DIAGNOSIS 101
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Figure 10. Mammographic change point analysis. {a) A mammogram from vear 2. This patient had a tumour detected in the third
year of the study. (b) The mammogram from (a) with the grid overlayed. Observations are drawn from each grid tile. Tile A is
healthy tissue used as the reference tile. Tile B is another healthy tile. Tile C is in the anomalous region. {c) Kullback-Leibler
(KL) surface for the grid shown in {b). The region of large KL values corresponds to the area in which the tumour was detected
the following year.
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The KL surface appears to be quite homogeneous
except at the top where the tumour was detected in the
3rd year. The KL values are significantly greater here,
indicating a region of anomalous tissue.

The pdfs from tiles in the healthy region exhibit
similar pdfs while those in the anomalous region have a
shifted mean and a rather heavier tail.

if histograms of the KL values are constructed for
this patient over the 3 years, an estimate of a T value can
be made. Using the 1st vear as a baseline healthy set, a
T = 2.83 {maximum KL value) is obtained. For the 2nd
year, four detections are obtained, that is, T exceeded t
for four tiles (71, > 4.5). For year 3 the number of
detections was much greater (T,... = 13.67) which
clearly shows the non-homogeneity detected.

Performance Discussion
Related and Current Work

Breast parenchymal texture characteristics have been
studied for their relationship to breast cancer risk (19,
20). Furthermore, texture features have been utilized
for many medical imaging applications (21-26) includ-
ing mammography (27, 28) and power law features
have proven to be useful in discriminating texture
classes in X-ray mammography {13, 29-31) as well as in
other modalities for breast cancer detection (32, 33).
The present work begins from the conjecture that
suspicious regions in mammographic images will mani-
fest themselves as distinguishable texture classes and
that these classes will be distinguishable by the fractal
related power law features. While we do not intend this
work to be a detailed analysis of the utility of power law
features as compared to other texture measures, recent
work has indicated that fractal related measures are a
viable texture characterization approach (34).

The adaptive mixtures approach to estimating the
parameters © and 7 in & (see Eqn [2]) allows greater
flexibility than standard parametric assumptions and
therefore holds the promise of superior performance. It
also has advantages over conventional non-parametric
techniques such as kernel estimation (9) in reducing
computational complexity. The potential diagnostic
value of the subpopulation groupings provided by the
resultant mixture estimator may also be useful. As
stated above, the utilization of these probability density
estimates for the low-level texture-based information is

investigated using discriminant analysis and change
point analysis.

The performance of the combination of fractal
dimension features utilizing segmentation boundaries
and pdfs was analysed (9). The mammogram shown in
Figure 11 has a boxed region containing a tumorous
region (biopsy verified) with the radiologist’s boundary
drawn in. The tumorous region {region 1) is the region

Figure 11. Mammogram with radiologist’s boundary of
tumorous region overlaid.

20

-0.3 0

Figure 12. Probability density functions for fractal dimension
from Figure 11, calculated using the radiologist’s boundary.
(—) Tumorous tissue; (-----), healthy tissue.
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~0.3 0

Figure 13, Probability density functions for fractal dimension
from Figure 11, calculated with no boundary information.
(—), Tumorous tissue; (-----), healthy tissue.

Figure 14. Incomplete, grayscale wavelet segmentation map
with radiologist’s boundary overlaid. This continuous valued
map is used for Figure 15.

within the radiologist’s boundary and the healthy
region {region 2} is the area simultaneously within the
box and outside the tumorous region.

Figures 12 and 13 show, respectively, pdfs for the two
regions when the true boundary has been incorporated
into the calculation of the features (Figure 12) and
when no boundary is used (Figure 13). We clearly see
that the presence of the boundary in the feature
extraction is vital to the utility of the features for
distinguishing tumorous tissue from healthy tissue.

Unfortunately, obtaining a true boundary like that
shown in Figure 11 and used in Figure 12 is costly and
time-consuming. Furthermore, the ultimate utility of
this procedure for a real application depends on the
ability to generate a boundary automatically that will

-0.3 0

Figure 15. Probability density functions for fractal dimension
from Figure 11, calculated using the continuous valued
wavelet boundary from Figure 14. (-—), Tumorous tissue;
(-----), healthy tissue.

be useful in this context. Figure 14 shows the radi-
ologist’s boundary superimposed on a particular wave-
let segmentation map. This wavelet map is by no means
perfect. The boundary is not closed, it is not necessarily
exactly coincident with the radiologist’s boundary, it is
continuously valued rather than binary, and there is
noise. Nevertheless, it generally marks the edge of the
tumorous region. When this boundary is used in the
feature extraction the resultant pdfs are as depicted in
Figure 15, We see that the separation of the two classes
is maintained to a degree similar to that obtained when
the radiologist’s boundary was employed. Discriminant
analysis could be successfully pursued here, as in Figure
12, while Figure 13 (the no boundary case) leaves little
hope.

Future Efforts

The results presented here are preliminary in nature. In
fact, few studies if any, have been performed on
automated digital mammography processing which are
of a large enough scale to draw conclusions about the
underlying statistical procedures as opposed to the
performance of a system as a whole. The study most
closely related to the work presented here is by
Caldwell ef al (29) but the slant of the paper is
significantly different than ours. The studies and other
related papers by the University of Chicago group
(35,36) investigate radiologist performance using com-
puter-aided technology but no comparison can be made
on the statistical performance of the integral pieces for
such a system.
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In our opinion, a comprehensive study of the

individual processes described here, in the framework
of a computer-aided system is a necessary, albeit
complex, next step. The performance of the individual
processes cannot be evaluated in a vacuum as there are
currently few, if any, useful metrics applicable to the
individual processes as opposed to an omnibus com-
puter-aided system.
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