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Abstract We introduce a latent process model for time series of attributed random graphs
for characterizing multiple modes of association among a collection of actors over time. Two
mathematically tractable approximations are derived, and we examine the performance of a
class of test statistics for an illustrative change-point detection problem and demonstrate that
the analysis through approximation can provide valuable information regarding inference
properties.

Keywords Random graph · Latent position model · Latent process model · Inference ·
Change point

1 Introduction

1.1 Overview

Statistical analysis of scenarios comprising multiple modes of association among a collection
of actors over time is of ever-increasing importance in a wide-ranging array of applications;
e.g., communications analysis—who talks to whom, about what, and when. See the recent
monograph (Kolaczyk 2009) and the survey papers (Olding and Wolfe submitted; Goldenberg
et al. 2010; Porter et al. 2009), e.g., for a unified presentation of statistical models and methods
for network data from across various disciplines. Random graph models are commonly used
to model association among actors, and attributed random graphs, wherein edge attributes
(categorical weights) encode modes of association between vertices, are a natural extension.

In this article, we propose a generative model for association patterns over time which
allows for comparative inference analysis. Our model for time series of attributed random
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graphs on vertex set {1, . . . , n} is derived from n continuous-time finite-state stochastic pro-
cesses—one for each vertex—taking their values in some (finite) attribute space, which gives
rise to a (discrete-time) time series of attributed random graphs. The attribute on edge (i, j)
at time t ∈ {1, 2, . . .} is a function of the (unobserved) states of the processes associated with
vertices i and j prior to time t .

Of particular interest are two analytically tractable approximations to the exact model.
A first approximation involves a sequence of independent random graphs with indepen-
dent edges. A second approximation involves a sequence of independent latent position
graphs. Through these approximations, comparative analysis of inference procedures may
be performed.

We consider for illustration a change-point detection problem in which an unknown subset
of the vertex processes change their behavior at some unknown point in time. Observing only
the time series of attributed graphs, we consider the problem of testing for the change.

1.2 Outline

This article is organized as follows. Section 2 introduces our latent process model in the con-
text of a change-point detection problem, and two mathematically simpler approximations
are defined. Section 3 presents our main approximation results. In Sect. 4, as an illustrative
application of our approximation results, we examine the performance of a simple class of
test statistics for the change-point detection problem and demonstrate that analysis through
approximation can provide valuable information about test statistic behavior.

2 Model for a change-point detection problem

2.1 Change-point detection problem

Fix constants t1 ∈ {1, 2, 3, . . .} ∪ {∞} and K ∈ N. For n ∈ N, let [n] = {1, 2, . . . , n} and
consider a time series {G(t)}∞t=1 of random graphs, where each G(t) is an attributed random
graph ([n]; E(t)). That is, all random graphs are on the same vertex set [n] and the undirected
edge set at time t , denoted by E(t), specifies, for each pair of vertices for which an edge is
present, an attribute k ∈ K = {1, 2, . . . , K } associated with the pair.

The probabilistic properties of the edge sets {E(t)}∞t=1 are determined by a collection of n
vertex processes. The state of the collection of vertex processes is unobserved. Prior to time
t1 − 1, the latent state of each of the n vertex processes is described by identical probabilistic
dynamics (the null dynamics); after time t1 − 1, there is a (fixed but unknown) subset con-
sisting of n1 vertices whose latent state dynamics are different from the null dynamics (and
the remaining n − n1 vertex processes evolve as before).

The constant t1 is assumed to be unknown but non-random, and t1 will be said to be the
change-point. Note that, as a degenerate case, if t1 = ∞, then the all vertex processes evolve
according to their null dynamics for all time. Observing only the time-indexed attributed
graphs and without knowing directly any history of the vertex processes themselves, the task
of testing for the change-point is of general interest, and we will call the task the change-point
detection problem.
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2.2 Random dot product space and random dot process model

We begin by introducing preliminary terminology. Let

S =
{
ξ ∈ [0, 1]K : ∑K

k=1 ξk ≤ 1
}

(1)

be the unit simplex in RK . Motivated by Young and Scheinerman (2009), Scheinerman and
Tucker (2010), Kraetzl et al. submitted, and Bollobas et al. 2007, Sect. 16.4, we define a
random dot product space for attributed graphs.

Definition 1 A random dot product space with vertices [n] and attributes K is a pair (X, G)

of random elements such that

(i) X = {Xi }n
i=1 is a collection of S -valued random vectors,

(ii) G is a random graph with vertices [n] and attributes K such that, conditioning on the
event that (X1, . . . , Xn) = (x1, . . . , xn) with xi ∈ S for i = 1, . . . , n, there is an
edge between vertex i and vertex j in G with probability 〈xi , x j 〉 = ∑K

k=1 xi,k x j,k
and that edge has attribute k ∈ K with probability xi,k x j,k , independently of all other
edges.

Next, let

K+ = {1, . . . , K + 1}. (2)

We will say that an r.c.l.l. stochastic process W = {W (u) : u ∈ [0,∞)} with state space
K n

+ = K+ × · · ·×K+ induces the sequence V = {(X (t), G(t))}∞t=1 of random dot product
spaces if

(i) each (X (t), G(t)) is a random dot product space with vertices [n] and attributes K ,
where Xi,k(t) =

∫ t
t−1 1{Wi (u)=k}du almost surely for each vertex i ∈ [n], attribute

k ∈ K , and time t ∈ N,
(ii) for each t and graph g,

P [G(t) = g |W (s), s ≤ t ] = P [G(t) = g |X (t) ].

Definition 2 Let W be an r.c.l.l. stochastic process with state space K n
+ and let V be a

sequence of random dot product spaces. The pair (V , W ) is a random dot process model if
W induces V .

2.3 Change parameter of a random dot process model

A random dot process model is general enough to incorporate various change-point phe-
nomena. While there are various possibilities for extension, as hinted in Remark 1, we will
restrict our attention to the class of random dot process models further specified by fixing
certain parameters as described in Definition 3.

Definition 3 Let π0 and π1 be (K + 1)-dimensional probability vectors and let Q0 and Q1
be (K +1)× (K +1)-dimensional matrices such that πT

0 Q0 = 0 and πT
1 Q1 = 0. A random

dot process model (V , W ) has the change parameter (t1, n1,π0,π1, Q0, Q1) if

(i) for each time t and vertex i , there exists a matrix Q(i)(t) such that for each k and
k′ ∈ K+,

P [Wi (t + ε) = k |Wi (t) = k] = 1 − Q(i)
kk (t)ε + o(ε), (3)

P
[
Wi (t + ε) = k′ |Wi (t) = k] = Q(i)

kk′(t)ε + o(ε), (4)
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Fig. 1 Conceptual depiction of our change point model. The null hypothesis is that Q0 governs all n vertex
processes for all time. The alternative hypothesis (depicted) is that Q0 governs all n vertex processes from
time t = 1 through time t = t1 − 1, and at time t1 − 1 a small collection of n1 vertex processes become
governed by Q1. This induces a change-point in the observed time series of graphs, characterized by altered
probabilistic behavior for the n1 vertices, at time t1

(ii) for each t ≤ t1 − 1,

P[W1(t) = k] = · · · = P[Wn(t) = k] = π0,k, for each k ∈ K+, (5)

Q(1)(t) = · · · = Q(n)(t) = Q0, (6)

(iii) for each t > t1 − 1,

P[W1(t) = k] = · · · = P[Wn1(t) = k] = π1,k, for each k ∈ K+, (7)

P[Wn1+1(t) = k] = · · · = P[Wn(t) = k] = π0,k, for each k ∈ K+, (8)

Q(1)(t) = · · · = Q(n1)(t) = Q1, (9)

Q(n1+1)(t) = · · · = Q(n)(t) = Q0. (10)

(iv) W1, . . . , Wn are mutually independent.

Remark 1 Definition 3 specifies a narrow class of random dot process models. An
alternative description of a random dot process model (V , W ) with change parameter
(t1, n1,π0,π1, Q0, Q1) is that (V , W ) is a piecewise exponential, block-homogeneous, inde-
pendent and piecewise stationary random graph time series model with dot product kernel
(See Fig. 1). First, W is piecewise exponential because Part (i) of Definition 3 says that any
vertex process can stay contiguously in any particular state only for an exponential amount
of time unless interrupted by the change-point. Next, W = (W1, . . . , Wn) is block-homoge-
neous because Part (ii) and Part (iii) say that if t < t1 −1, then the block of random variables
W1(t), . . . , Wn(t) are identical in distribution, and also that if t ≥ t1 − 1, then while Wn1(t)
and Wn1+1(t) are different in distribution, the block of random variables W1(t), . . . , Wn1(t)
are identical in distribution and the block of random variables Wn1+1(t), . . . , Wn are identical
in distribution. Moreover, W is piecewise stationary because for each t ∈ N, Part (ii) and Part
(iii) say that W is a stationary process over the interval [t −1, t). The term independent is due
to Part (iv), and the term dot product kernel is because of the way edge formation probability
is specified in our definition of random dot product spaces (cf. Sect. 16.4 in Bollobas et al.
2007). While it is convenient to direct our attention only to this special class of random dot
process models, it would be of interest to investigate how the results in this article extend to
a larger class of random dot process models.
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2.4 Approximations

Fix a random dot process model (V , W ) with change parameter

(t1, n1,π0,π1, Q0, Q1).

In this section, we introduce two approximations of the random dot process model. To begin,
we introduce some new notation. First, let

ξ0 = (1πT
0 − Q0)

−1(diag(1) − 1πT
0 ), (11)

ξ1 = (1πT
1 − Q1)

−1(diag(1) − 1πT
1 ). (12)

For existence of the inverses in (11) and (12), we refer the reader to Corollary II.4.9 of
Asmussen (2003). Now, let

$0 = diag(π0)ξ0 + ξ T
0 diag(π0), (13)

$1 = diag(π1)ξ1 + ξ T
1 diag(π1). (14)

Next, let π0 (resp. π1) be the sub-probability vector obtained by removing the last coor-
dinate of π0 (resp. π1), and let $̂0 (resp. $̂1) be the square matrix obtained by removing both
the last row and the last column of$0 (resp.$1). To distinguish V from its approximations,
we will denote by V our first-order approximation of V , and denote by V̂ our second-order
approximation of V .

Definition 4 The first-order approximation V of V is the sequence {(X(t), G(t))}∞t=1 of
independent random dot product spaces such that

(i) for each t ≤ t1 − 1,

X1(t) = · · · = Xn(t) = π0, (15)

(ii) for each t ≥ t1,

X1(t) = · · · = Xn1(t) = π1, (16)

Xn1+1(t) = · · · = Xn(t) = π0. (17)

The first approximation, then, yields a sequence of independent random graphs with inde-
pendent edges. For t ≤ t1 − 1, G(t) is an attributed version of the so-called Erdös-Renyi
random graph (see, e.g., Bollobas 2001) where edges (ignoring the attribute value) are pres-
ent independently with probability 〈π0,π0〉. For t ≥ t1, G(t) is an attributed blockmodel
(see, e.g., Doreian et al. 2005) as illustrated in Fig. 2; again, edges are present indepen-
dently, with edge probabilities between two of the n − n1 “null process” vertices specified
deterministically by 〈π0,π0〉, edge probabilities between two of the n1 “alternative process”
vertices specified deterministically by 〈π1,π1〉, and edges between a “null process” vertex
and an “alternative process” vertex specified deterministically by 〈π0,π1〉. (A relevant recent
development for such models is Airoldi et al. (2008), where the so-called mixed membership
stochastic blockmodel is proposed and studied for parameter estimation.)

Definition 5 A second-order approximation V̂ of V is a sequence {(X̂(t), Ĝ(t))}∞t=1 of
independent random dot product spaces such that

(i) for each time t and vertex i, X̂i (t) is the random vector obtained by truncating a
multivariate normal random vector Zi (t) to S ,
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Fig. 2 An illustration of the
probabilistic blockmodel
structure for G(t), t ≥ t1. Edge
probabilities (and their attributes)
depend on the vertex processes.
This illustration depicts n − n1
“null process” vertices and a
small collection of n1
“alternative process” vertices

(ii) for each t ≤ t1 − 1,

E[Z1(t)] = · · · = E[Zn(t)] = π0, (18)

V ar(Z1(t)) = · · · = V ar(Zn(t)) = $̂0, (19)

(iii) for each t ≥ t1,

E[Z1(t)] = · · · = E[Zn1(t)] = π1, (20)

E[Zn1+1(t)] = · · · = E[Zn(t)] = π0, (21)

V ar(Z1(t)) = · · · = V ar(Zn1(t)) = $̂1, (22)

V ar(Zn1+1(t)) = · · · = V ar(Zn(t)) = $̂0. (23)

A second-order approximation yields a sequence of independent latent position graphs
(Hoff et al. 2002; Handcock et al. 2007; Bollobas et al. 2007; Scheinerman and Tucker
2010; Young and Scheinerman 2009; Marchette and Priebe 2008a), illustrated in Fig. 3. The
left panel of Fig. 3 depicts a realization of n = 100 random vectors Xi in the simplex at
time t1; n1 = 9 of the vectors are approximately normally distributed with mean π1 and
covariance $̂1, while n − n1 are approximately normally distributed with mean π0 and
covariance $̂0. Edge probabilities between vertices are governed (but not specified deter-
ministically) by the vertex processes.

3 Convergence results

3.1 Sequence of random dot process models

In this section, consider a sequence {(V r , W r ) : r > 0} of random dot process models with
vertices [n] and attributes K where, for each r > 0, (V r , W r ) has the change parameter
(t1, n1,π0,π1, r Q0, r Q1). The parameter r is identified as the vertex process rate parameter.
Throughout this section we make the assumption that t1 ∈ N, n1 ∈ {1, . . . , n}, and (K + 1)-
dimensional probability vectors π0 and π1 and irreducible aperiodic (K + 1) × (K + 1)-
dimensional matrices Q0 and Q1 are such that πT

0 Q0 = 0 and πT
1 Q1 = 0.

For each r > 0, we define our second-order approximation V̂ r of V r to be the second-
order approximation of V r with$r

0 = $0/r and$r
1 = $1/r . Also, note that for each r > 0,
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Fig. 3 Left: example of the vectors Xi in the simplex at time t1 for the random dot process model, with
n = 100, n1 = 9, K = 2,π0 = (0.10, 0.30, 0.60)T and π1 = (0.25, 0.40, 0.35)T. (The matrices Q0 and Q1
are given in Sect. 4.2.2.) For this case (with r = 1024—see Sect. 3.1) the second approximation (truncated
multivariate normals) provides a good model. Right: autocorrelation as a function of lag for the edge attributes,
showing that (for this case) the graphs are approximately uncorrelated in time

we have the first-order approximation V
r

of V r , and in fact, for any r1, r2 > 0, we have
V

r1 = V
r2 . Hence, we will simply write V for any V

r
whenever it is convenient.

3.2 Asymptotic independence

We first derive the asymptotic distribution of Dr
i (t), where for each vertex i , time t and r > 0,

Dr
i (t) = √

r(Xr
i (t) − E[Xi (t)]). (24)

Lemma 1 For each time t and vertex i , as r → ∞, the sequence {Dr
i (t) : r > 0} converges

in distribution to a multivariate normal with mean zero and covariance matrix $̂, where

$̂ =
{
$̂1, if i ≤ n1 and t ≥ t1,
$̂0, otherwise.

(25)

Proof To simplify our exposition, we will give a detailed proof only for the case where
n1 = 0 and t1 = ∞, leaving the other cases to the reader; the techniques used here can be
easily adapted.

First, we make some preliminary observations. Let Z be a continuous-time Markov pro-
cess with state space K+ and its infinitesimal generator Q0, and assume that Z has the
initial distribution π0. In particular, Z is ergodic, so by Functional Central Limit Theorem
(FCLT) we have that as r → ∞, the random vector Ẑ r = (Ẑ r

1, . . . , Ẑ r
K ), where each

Ẑ r
k ≡ √

r
( 1

r

∫ r
0 1{k}(Z(s))ds − π0,k

)
, converges in distribution to a multivariate normal

vector with mean zero and covariance matrix given by the following formula (cf. Example
4.4 in Glynn and Whitt 1992):

∞∫

0

E[(Z(0) − π0)(Z(s) − π0)
T ]ds +

∞∫

0

E[(Z(s) − π0)(Z(0) − π0)
T ]ds. (26)
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Also, recall that the transition matrix of Z can be represented by a matrix-exponential as
follows; for each k and k′ ∈ K+, and t ∈ [0,∞),

P
[
Z(t) = k′|Z(0) = k

]
= [exp(Q0t)]kk′ , (27)

where exp(Q0t) = ∑∞
n=0

(Q0t)n

n! . Now, we will also show that

$0 =
∞∫

0

E[(Z(0) − π0)
T (Z(s) − π0)]ds +

∞∫

0

E[(Z(s) − π0)
T (Z(0) − π0)]ds.

To do this, observe that for each t ∈ [0,∞), and k, k′ ∈ K+,

E[Zk(0)Zk′(t)] = E [Zk(0)E [Zk′(t) |Z(0) ]] (28)

= E
[
Zk(0)[exp(Q0t)]kk′

]
(29)

= π0,k[exp(Q0t)]kk′ , (30)

where for convenience we denote 1k(Z(·)) by Zk(·). Moreover, appealing to (II.4.5) in
Asmussen (2003), we have that for each t ∈ [0,∞), and k and k′ ∈ K+,

ξ0,kk′ =
∞∫

0

[exp(Q0s) − 1πT
0 ]kk′ds =

∞∫

0

[exp(Q0s)]kk′ − π0,k′ds. (31)

Hence, for each k and k′ ∈ K+, it follows that

∞∫

0

E[(Zk(0) − π0,k)(Zk′(s) − π0,k′)]ds (32)

=
∞∫

0

E[Zk(0)Zk′(s)] − π0,kπ0,k′ds (33)

=
∞∫

0

π0,k[exp(Q0s)]kk′ − π0,kπ0,k′ds (34)

= π0,k

∞∫

0

[exp(Q0s)]kk′ − π0,k′ds (35)

= π0,kξ0,kk′ , (36)

and therefore, we have that the k-th row and k′-th column of the covariance matrix is

π0,kξ0,kk′ + π0,k′ξ0,k′k = [diag(π0)ξ0 + ξ T
0 diag(π0)]kk′ = $0,kk′ . (37)
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Now, for each k ∈ K+, we see that

Dr
i,k(t) = √

r
(
Xr

ik(t) − π0,k
)

(38)

= √
r




t∫

t−1

1{k}(W r
i (s))ds − π0,k



 (39)

d= √
r




t∫

t−1

1{k}(Z(rs))ds − π0,k



 (40)

= √
r



1
r

r∫

0

1{k}(Z(t − 1 + s))ds − π0,k



 (41)

d= √
r



1
r

r∫

0

1{k}(Z(s))ds − π0,k



 . (42)

The Lemma follows from this equivalence in distribution together with our preliminary
observations. ./

Next, we establish an asymptotic independence property.

Theorem 1 Fix t and h ≥ 1. For each vertex i , and k, k′ ∈ K+, as r → ∞ the sequence
{(Dr

i,k(t), Dr
i,k′(t + h)) : r > 0} converges in distribution to a bivariate normal random

vector whose covariance matrix is the identity matrix.

Proof To simplify our exposition, we will give a detailed proof only for the case where n1 = 0
and t1 = ∞. First, fix vertex i and times t and t +h ∈ N. Let (Di,k(t), Di,k(t +h)) be a weak
limit point of {(Dr

i,k(t), Dr
i,k(t + h)) : r > 0}, and note that by Lemma 1 such a weak limit

exists, and moreover Di,k(t) and Di,k(t + h) are normal random variables. In fact, appealing
to the FCLT used in our proof of Lemma 1, it can be shown that (Di,k(t), Di,k(t + h)) is
indeed a bivariate normal vector. Hence, to show independence, it is enough to show that two
random variables are uncorrelated.

Let Z be as in the proof of Lemma 1. Note that for each k, k′ ∈ K+ and r > 0,

E[Dr
ik(t)Dr

ik′(t + h)] = rE[(Xr
i,k(t) − π0,k)(Xr

i,k′(t + h) − π0,k′)] (43)

= rCov(Xr
i,k(t), Xr

i,k′(t + h)), (44)

and by (3.12) in Parzen (1999) together with Theorem B in Keilson (1998), for some c0 ≥ 0
and λ0 > 0, we have

r
∣∣Cov(Xr

i,k(t), Xr
k′(t + h))

∣∣ (45)

= r−1

∣∣∣∣∣∣∣
Cov




r t∫

r(t−1)

Zk(s)ds,

r(t+h)∫

r(t+h−1)

Zk′(u)du





∣∣∣∣∣∣∣
(46)

= r−1

∣∣∣∣∣∣∣

r t∫

r(t−1)

r(t+h)∫

r(t+h−1)

Cov (Zk(u), Zk′(s)) dsdu

∣∣∣∣∣∣∣
(47)
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≤ r−1

r t∫

r(t−1)

r(t+h)∫

r(t+h−1)

∣∣π0,k[exp(Q0(s − u))]kk′ − π0,kπ0,k′
∣∣ dsdu (48)

= r−1π0,k

rt∫

r(t−1)

r(t+h)∫

r(t+h−1)

∣∣[exp(Q0(s − u))]kk′ − π0,k′
∣∣ dsdu (49)

≤ r−1π0,kc0

r t∫

r(t−1)

r(t+h)∫

r(t+h−1)

exp(−λ0(s − u))dsdu (50)

= r−1π0,kc0

r t∫

r(t−1)

exp(λ0u)du

r(t+h)∫

r(t+h−1)

exp(−λ0s)ds (51)

= r−1π0,kc0
−1

λ2
0

(eλ0r t − eλ0(r t−r))(e−λ0(r t+rh) − e−λ0(r t+rh−r)) (52)

= r−1π0,kc0
−1

λ2
0

(1 − e−λ0r )(e−λ0rh − e−λ0(rh−r)), (53)

which converges to zero as r → ∞. Hence, by Fatou’s lemma (through a Skorohod repre-
sentation), we have

|E[Dik(t)Dik′(t + h)]| ≤ lim
r→∞

∣∣E[Dr
ik(t)Dr

ik′(t + h)]
∣∣ = 0. (54)

Since Di (t) and Di (t + h) are mean-zero random variables, it follows that

Cov(Di (t), Di (t + h)) = 0. (55)

./

3.3 Total variation distance

In this section, we will show that when r is sufficiently large there is very little statistical
difference amongst V , V̂ r and V r , and this will be the basis for our approximate inference
procedures.

Theorem 2 For each t ∈ [0,∞), when r is sufficiently large,

dT V (Gr (t), G(t)) = O(1/r), (56)

dT V (Gr (t), Ĝr (t)) = o(1/r), (57)

where dT V (·, ·) is the total-variation distance between two random elements.

Proof Fix r > 0, t ∈ [0,∞) and graph g. First, we observe that there exists a finite collection
{ fi&} of monomials with K -variables such that the following holds:

P[Gr (t) = g] = E[P[Gr (t) = g
∣∣Xr (t) ]] (58)

= E

[
∑

&

n∏

i=1

fi&(Xr
i (t))

]

(59)

=
∑

&

n∏

i=1

E[ fi&(Xr
i (t))]. (60)

123



Stat Inference Stoch Process (2011) 14:231–253 241

For each i , let

Ẋr
i (t) = Xr

i (t) − E[Xr
i (t)]. (61)

Now, consider any monomial fi&. Let ∇ fi& be the gradient of fi&, and let' fi& be the Hessian
of fi&, where the gradient and the Hessian are computed at E[Xr

i (t)]. Recall that any symmet-
ric matrix, by the spectral theorem, may be regarded as a real diagonal matrix that has been
re-expressed in some new coordinate system. In other words, when ( = diag(λ1, . . . , λK )

is the matrix whose diagonal entries are eigenvalues of ' fi&, we have ' fi& = MT(M for
some unitary matrix M whose rows are orthonormal eigenvectors of(, forming a basis. Note
that M may depend on the monomial. Now, for each x ,

xT' fi&x = xT (MT(M)x =
K∑

k=1

λk([Mx]k)
2. (62)

We claim that

E[ fi&(Xr
i (t))] = fi&(E[Xr

i (t)]) + 1
2r

(
K∑

k=1

K∑

a=1

K∑

b=1

λk Mka Mkb$ab

)

+ o(1/r), (63)

E[ fi&(X̂r
i (t))] = fi&(E[X̂r

i (t)]) + 1
2r

(
K∑

k=1

K∑

a=1

K∑

b=1

λk Mka Mkb$ab

)

+ o(1/r). (64)

To prove (63), using the Taylor expansion of fi& at E[Xr
i (t)] together with the fact that

E[∇ fi& · (Ẋr
i (t))] = ∇ fi& · E[Ẋr

i (t)] = 0,

we observe that

E[ fi&(Xr
i (t))] = fi&(E[Xr

i (t)]) + E[∇ fi& · (Ẋr
i (t))] + E

[
(Ẋr

i (t))
T' fi& Ẋr

i (t)

2

]

+ o(1/r)

= fi&(E[Xr
i (t)]) + E

[
(Ẋr

i (t))
T' fi& Ẋr

i (t)

2

]

+ o(1/r).

Now, note that

1
2

E[(Ẋr
i (t))

T' fi& Ẋr
i (t)] + o(1/r)

= 1
2

K∑

k=1

λkE




(

K∑

a=1

Mka Ẋr
ia(t)

)2

 + o(1/r)

= 1
2

K∑

k=1

λkE

[
K∑

a=1

K∑

b=1

Mka Mkb Ẋr
ia(t)Ẋr

ib(t)

]

+ o(1/r)

= 1
2

K∑

k=1

K∑

a=1

K∑

b=1

λk Mka MkbE[Ẋr
ia(t)Ẋr

ib(t)] + o(1/r)

= 1
2r

K∑

k=1

K∑

a=1

K∑

b=1

λk Mka MkbCov(Dr
ia(t), Dr

ib(t)) + o(1/r)
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= 1
2r

K∑

k=1

K∑

a=1

K∑

b=1

λk Mka Mkb($ab + o(1)) + o(1/r)

= 1
2r

( K∑

k=1

K∑

a=1

K∑

b=1

λk Mka Mkb$ab

)

+ o(1/r).

This completes our proof of the claim in (63); the claim in (64) can also be proven similarly.
Since E[X̂r

i (t)] = E[Xr
i (t)], it follows from (64) and (63) that

E[ fi&(Xr
i (t))] = E[ fi&(X̂r

i (t))] + o(1/r), (65)

and thus

P[Gr (t) = g] =
∑

&

n∏

i=1

E[ fi&(Xr
i (t))] (66)

=
∑

&

n∏

i=1

(
E[ fi&(E[X̂r

i (t)])] + o(1/r)
)

(67)

=
(

∑

&

n∏

i=1

E[ fi&(E[X̂r
i (t)])]

)

+ o(1/r) (68)

= P[Ĝr (t) = g] + o(1/r). (69)

It follows that for each t ∈ [0,∞) we have

dT V (Gr (t), Ĝr (t)) =
∑

g

∣∣P[Gr (t) = g] − P[Ĝr (t) = g]
∣∣ = o(1/r). (70)

Also, using (63), one can prove, in a similar manner, that

dT V (Gr (t), G(t)) =
∑

g

∣∣P[Gr (t) = g] − P[G(t) = g]
∣∣ = O(1/r). (71)

./

4 Application to a change-point detection problem

Our change-point detection problem is investigated via a comparative power analysis for the
following test of hypotheses, given time t ∈ N and level of significance α ∈ (0, 1). For a
random dot process model (V , W ) with change parameter (t1, n1,π0,π1, Q0, Q1),

H0 : t1 > t,

H1 : t1 = t.

In this section, we demonstrate how the first-order and second-order approximations of V can
help us compare the power of certain test statistics for our change-point detection problem.
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4.1 Fusion statistics

Definition 6 For each x ∈ RK , the linear size fusion of G(t) with fusion parameter x is the
random variable J x (t) defined by

J x (t) =
K∑

k=1

xk |G(t)|k, (72)

where |G(t)|k denotes the number of edges in G(t) with attribute k.

The class of statistics J x allows us to investigate power for different attribute weighting
schemes. For instance, if x = (1, 1, . . . , 1) ∈ RK , then J x (t) is the number of edges in G(t),
while if x is the unit vector ek with its k-th coordinate being 1, then J x (t) is the number of
edges in G(t) with attribute k.

For our next definition, for each x ∈ RK , m ≥ 1, and t ≥ m + 1, let

J
x
m(t) = 1

m

m∑

s=1

J x (t − s), (73)

providing for normalization based on recent past (assumed to be evolving according to the
null dynamics), and note that for x and y ∈ RK and c ∈ R,

J cx (t) = cJ x (t), (74)

J x+y(t) = J x (t) + J y(t). (75)

Definition 7 For each x ∈ RK , m ≥ 1, and t ≥ m + 1, the normalized fusion statistic with
parameter x is the random variable T x

m (t) defined by

T x
m (t) =






J x (t) − J
x
m(t), if m = 1,

J x (t)−J
x
m (t)√

1
m−1

∑m
s=1

(
J x (t−s)−J

x
m (t)

)2
, if m ≥ 2. (76)

where we take 0/0 = 0 and x/0 = ∞ for each x 1= 0.

For each x ∈ RK , m ≥ 1 and t ∈ {m + 1, . . . , t1}, we define a function ux
m,t : R → (0, 1)

by letting, for each c ∈ R,

ux
m,t (c) = P[T x

m (t) > c]. (77)

(We consider a one-sided test, for increased activity, for concreteness; the following devel-
opment can be replicated, mutatis mutandis, for a two-sided test.)

Note that the function ux
m,t is only right-continuous with finite left-limits and is non-

increasing with strictly decreasing only at finitely many points. Nevertheless, we will assume
that each ux

m,t is indeed continuous and strictly decreasing; our rationale for this is provided
in Remark 2.

Definition 8 Let x ∈ RK and m ≥ 1. The power function of T x
m is the functionβx

m : (0, 1) →
[0, 1] defined by letting, for each α ∈ (0, 1),

βx = βx
m(α) = ux

m,t1(u
x,−1
m,t1−1(α)), (78)

where ux,−1
m,t1−1 denotes the inverse function of ux

m,t1−1.
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Remark 2 Smoothing and linear interpolation can be done for each pair of two consecutive
discontinuity points of the function ux,−1

m,t . So, we have identified the function ux,−1
m,t with its

smoothed version for the purpose of this section. More specifically, for each m ∈ N, t ≥ m+1
and x ∈ RK , we identify ux,−1

m,t with a smoothed version of the function vx,−1
m,t : (0, 1) → R

given by letting, for each pair of consecutive discontinuity points α1 and α2 with α1 < α2,

vx,−1
m,t (α) = α − α1

α2 − α1
ux,−1

m,t (α2) + α2 − α

α2 − α1
ux,−1

m,t (α1). (79)

Remark 3 Let m ∈ N and α ∈ (0, 1). Then, there exists x ∈ RK with ‖x‖ = 1 such that for
each y ∈ RK such that ‖y‖ = 1,

βx ≥ β y . (80)

We will briefly outline a proof. For this, fix m ∈ N and α ∈ (0, 1), and let D = {x ∈ RK :
‖x‖ = 1}. Then, define a function Hm,α : D → [0, 1] by letting, for each x ∈ D,

Hm,α(x) = βx . (81)

βx can be constructed so that Hm,α is a continuous function. Then, since D is compact, it
follows that there exists y0 ∈ D such that for each y ∈ D,

β y0 = Hm,α(y0) ≥ Hm,α(y) = β y . (82)

Then it follows (see Lemma 2 below) that for each y ∈ RK with y 1= 0,

β y0 ≥ β y/|y| = β y . (83)

On the other hand, if y = 0, then β0 = α, where the equality is due to the fact that the test
is conducted simply by “tossing a biased coin”.

Our observation made in Remark 3 can be in fact extended to the following; there exists
x ∈ RK with ‖x‖ = 1 such that for each y ∈ RK the inequality (80) is satisfied. For this, it
is sufficient to note the following “scaling” property which is a consequence of (74).

Lemma 2 Let c ∈ R \ {0} and m ≥ 2. For each x ∈ RK and t ≥ m + 1,

T cx
m (t) = c

|c| T x
m (t). (84)

Proof By the scaling property in (74),

T cx
m (t) = J cx (t) − J

cx
m (t)

√
1

m−1
∑m

k=1

(
J cx (t − k) − J

cx
m (t)

)2

= cJ x (t) − cJ
x
m(t)

√
1

m−1
∑m

k=1

(
cJ x (t − k) − cJ

x
m(t)

)2

= c(J x (t) − J
x
m(t))

√
c2

m−1
∑m

k=1

(
J x (t − k) − J

x
m(t)

)2

= c
|c| T x

m (t).

./
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4.2 Power estimates

4.2.1 Asymptotic

In this section, by taking the number of vertices n large and assuming that the first-order
approximation is appropriate, we will derive an approximation of the power function of our
fusion statistics. To be specific, we fix t1, n1,π0,π1, x, m and the level of significance α,
and consider a sequence {V n : n ≥ n1 +1} of the first-order approximation. For large values
of n, we will derive an approximation of βx .

First, let π00,π01 and π11 be the K -dimensional sub-probability vectors defined by letting
for each k ∈ K ,

π00,k = π0,kπ0,k, (85)

π01,k = π0,kπ1,k, (86)

π11,k = π1,kπ1,k, (87)

and then let η00, η01 and η11 be the K × K -dimensional matrices defined by letting for k and
k′ ∈ K ,

[η00]k,k′ =
{
π00,k(1 − π00,k), if k = k′,
−π00,kπ00,k′ , otherwise,

(88)

[η01]k,k′ =
{
π01,k(1 − π01,k), if k = k′,
−π01,kπ01,k′ , otherwise,

(89)

[η11]k,k′ =
{
π11,k(1 − π11,k), if k = k′,
−π11,kπ11,k′ , otherwise.

(90)

We assume that the following conditions hold for the remainder of our analysis.
Assumption 1 The symmetric matrices η00, η01 and η11 are positive definite, and

(
n1
2

)
(π11 − π00) + (n − n1)n1(π01 − π00) 1= 0. (91)

Lemma 3 Let t ∈ {m + 1, . . . , t1} and x ∈ RK . For sufficiently large n, the random var-
iable ψ x

m(t) has approximately Student t-distribution with degrees of freedom m − 1 and
non-centrality parameter µx , where

µx =






(
n1
2

)
〈x,π11−π00〉+(n−n1)n1〈x,π01−π00〉

√
(1+1/m)

(n
2
)
〈x,η00x〉+

(
n1
2

)
〈x,η11x−η00x〉+(n−n1)n1〈x,η01x−η00x〉

, if t = t1,

0, if t < t1,

(92)

ψ x
m(t) =






1√√√√(1+1/m)+
(n1
2

)

(n
2

)
( 〈x,η11x〉

〈x,η00x〉 −1
)
+ (n−n1)n1(n

2
)

( 〈x,η01x〉
〈x,η00x〉 −1

)
T x

m (t), if t = t1,

1√
1+1/m

T x
m (t), if t < t1.

(93)

Proof Fix t ∈ {m + 1, . . . , t1} and x ∈ RK . For each t − & ∈ N, we have that the random
variable J x (t − &) has mean

E[J x (t − &)] =
((

n
2

)
−

(
n1(t − &)

2

)
− (n − n1(t − &)) · n1(t − &)

)
〈x,π00〉

+
(

n1(t − &)

2

)
〈x,π11〉 + (n − n1(t − &)) · n1(t − &)〈x,π01〉,
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and variance

V ar [J x (t − &)] =
((

n
2

)
−

(
n1(t − &)

2

)
− (n − n1(t − &)) · n1(t − &)

)
〈x, η00x〉

+
(

n1(t − &)

2

)
〈x, η11x〉 + (n − n1(t − &)) · n1(t − &)〈x, η01x〉,

where n1(s) denotes the number of abnormal vertices at time s. So, if t < t1,

ψ x
m(t) =

(J x
m(t) − J

x
m(t))/

√
(1 + 1/m)

(n
2
)
〈x, η00x〉

√
1

m−1
∑m

k=1

(
J x

m(t − k) − J
x
m(t)

)2
/
√(n

2
)
〈x, η00x〉

and if t = t1,

ψ x
m(t) =

J x
m (t)−J

x
m (t)√

(1+1/m)
(n
2
)
〈x,η00x〉+

(
n1
2

)
(〈x,η11x〉−〈x,η00x〉)+(n−n1)n1(〈x,η01x〉−〈x,η00x〉)

√
1

m−1
∑m

k=1

(
J x

m(t − k) − J
x
m(t)

)2
/
√(n

2
)
〈x, η00x〉

.

Therefore, when
(n

2
)

=n(n − 1)/2 is sufficiently large, ψ x
m(t) follows the non-central Student

t-distribution with degrees of freedom m − 1 and non-centrality parameter µx as defined in
(92). ./

Let c0(α) be such that P[ψ x
m(t1 − 1) > c0(α)] = α, and let

c(α) = c0(α)
√

1 + 1/m, (94)

c1(α) = c0(α)
√√√√1 + m

m+1

((
n1
2

)

(n
2
)

(
〈x,η11x〉
〈x,η00x〉 − 1

)
+ (n−n1)n1(n

2
)

(
〈x,η01x〉
〈x,η00x〉 − 1

)) . (95)

As a consequence of Lemma 3, after some brief calculations, we have the following approx-
imations:

P[T x
m (t1 − 1) > c(α)] ≈ P[ψ x

m(t1 − 1) > c0(α)] = α, (96)

β̃x = β̃x
m(α) = P[T x

m (t1) > c(α)] ≈ P[ψ x
m(t1) > c1(α)]. (97)

Therefore, β̃x is a function of x (explicitly) and α, m, n, n1,π0, and π1 (implicitly).
We are interested in the maximizer of β̃x as x ranges over RK \ {0} while all the other

parameters being fixed. By the scaling property (cf. (102)), maximizing β̃x over RK \ {0} is
equivalent to maximizing β̃x over the unit circle

D = {x ∈ RK : ‖x‖ = 1}, (98)

where ‖ · ‖ denotes Euclidean norm. Thus, we wish to identify the set arg maxx∈D β̃
x . The

power approximation β̃x of the test as a function of x may be determined by various factors,
but the dominating factor is likely to be µx . Thus, it is of interest to find the optimizer of µx

as x ranges over D.
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We make some preliminary observations about µx as a function of x ∈ RK \ {0} and to
facilitate our discussion, for each x ∈ RK \ {0}, let

p(x) =
(

n1
2

)
〈x,π11 − π00〉 + (n − n1)n1〈x,π01 − π00〉,

q(x) = (1+1/m)

(
n
2

)
〈x, η00x〉+

(
n1
2

)
〈x, η11x−η00x〉+(n − n1)n1〈x, η01x−η00x〉.

By Assumption 1, q(x) > 0 for each x ∈ RK \ {0} and for some x ∈ RK \ {0},

p(x) =
〈
x,

(
n1
2

)
(π11 − π00) + (n − n1)n1(π01 − π00)

〉
> 0. (99)

Hence, µx is not identically zero on RK . Next, for each x ∈ RK \ {0},

µx = p(x)√
q(x)

, (100)

µ−x = p(−x)√
q(−x)

= −p(x)√
q(x)

= −µx , (101)

and analogous to Lemma 2, it can be shown that for each x ∈ RK \ {0} and c > 0, µx has
the scaling property

µcx = µx . (102)

One can check that the optimizer of µx as x ranges over D must satisfy the following set
of equations:

2∂k p(x)q(x) − p(x)∂kq(x) = 0, for k = 1, . . . , K . (103)

To further illustrate this idea, for K = 2, we will derive an optimizer of µx as x ranges over D.
(In Sect. 4.2.2 we investigate the optimizer(s) via simulation and numerical procedures.)

Let

a =
(

1 + 1
m

) (
n
2

)
−

(
n1
2

)
− (n − n1)n1, (104)

b =
(

n1
2

)
, (105)

c = (n − n1)n1, (106)

and

A = aπ00,1(1 − π00,1) + bπ11,1(1 − π11,1) + cπ01,1(1 − π01,1), (107)

B = aπ00,1π00,2 + bπ11,1π11,2 + cπ01,1π01,2, (108)

C = aπ00,2(1 − π00,2) + bπ11,2(1 − π11,2) + cπ01,2(1 − π01,2), (109)

E = b(π11,2 − π00,2) + c(π10,2 − π00,2), (110)

F = b(π11,1 − π00,1) + c(π10,1 − π00,1). (111)

Theorem 3 There exists x∗ ∈ D such that µx∗ 1= 0, arg maxx∈D µx ∈ {x∗,−x∗} and
arg minx∈D µx ∈ {x∗,−x∗}. Moreover, if x∗ is neither (1, 0) nor (−1, 0), then

x∗ = (u∗, 1)

‖(u∗, 1)‖ , (112)
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where

u∗ = B E + FC
F B + AE

.

Proof To begin, define f : R → R by letting, for each u ∈ R,

f (u) = p1(u)√
q1(u)

,

where x(u) = (u, 1), p1(u) = p(x(u)) and q1(u) = q(x(u)). Note that f (u) = µx(u)

and µx is continuous on R2 \ {0}. Therefore, it follows that f is continuous on R, and more-
over, if f does not achieve its optimum on R, then by continuity of f and the odd symmetry
of the function µx ,

sup
u∈R

| f (u)| = lim
|u|→∞

| f (u)| = |µ(1,0)| = |µ(−1,0)|. (113)

We will first show that if a local optimizer (i.e., maximizer or minimizer) of f exists, then
the local optimizer is u∗ and hence, unique. Note that both p1(·) and q1(·) are polynomials
of one variable and hence are continuously differentiable. Moreover, since the unit circle D
is compact and q(x) > 0 for each x ∈ D, it follows that infu∈R q1(u) ≥ infx∈D q(x) > 0.
For each u ∈ R, taking the first derivative of f at u, we see that

f ′(u) = p′
1(u)

√
q1(u) − (1/2)p1(u)q ′

1(u)/
√

q1(u)

q1(u)
(114)

= 1/2√
q1(u)

2p′
1(u)q1(u) − p1(u)q ′

1(u)

q1(u)
. (115)

In particular, f is differentiable for each u ∈ R, and f ′ is continuous on R. Now, suppose
that f has a local optimizer on R. To find the local optimizer of f , we find the roots of f ′.
This is equivalent to solving for u ∈ R such that

0 = 2p′
1(u)q1(u) − p1(u)q ′

1(u). (116)

Now, let e1 = (1, 0) and note that for each u ∈ R,

p′
1(u) = 〈e1, b(π11 − π00) + c(π01 − π00)〉, (117)

q ′
1(u) = 2〈x(u), eT

1 (aη00 + bη11 + cη01)〉. (118)

Then, we see that (116) is a quadratic equation, but a routine simplification of (116) will
show that (116) is indeed linear in u. In particular, the only root of (116) is u∗. This proves
our preliminary claim.

To prove our main claim, we consider two cases. For our first case, suppose that | f | does
not achieve its maximum on R. Then, by continuity of µx as a function of x , we must have
that

|µ(1,0)| = |µ(−1,0)| = sup
u∈R

| f (u)|. (119)

Recall that µx is not identically zero as x ranges over D, and µ−x = −µx for each x ∈ D.
Hence, neither µ(−1,0) nor µ(1,0) can be 0. Therefore, this implies that one of (−1, 0) and
(1, 0) must be the maximizer of µx over D and the other must be the minimizer of µx

over D. Uniqueness follows naturally from our observations so far. For our second case,
suppose that f does achieve its optimum on R. Then, by our preliminary claim, we see
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that f can have exactly one (local) optimizer over R, and it is u∗. Therefore, we must have
0 ≤ | f (u)| < | f (u∗)| for each u ∈ R \ {u∗}, and by the odd symmetry of µx together with
the fact that f has exactly one local optimizer, it follows that |µ(1,0)| = |µ(−1,0)| < | f (u∗)|.
Our main claim follows from these observations, and this completes our proof. ./

4.2.2 Simulation

We present here an illustrative Monte Carlo experiment using the following parameters:

K = 2, n = 100, n1 = 9, m = 10, t1 = 12, r = 1024, (120)

π0 = (0.10, 0.30, 0.60)T , (121)

π1 = (0.25, 0.40, 0.35)T , (122)

and

Q0 =




−1 0 1
0 −1 1
1/6 1/2 −2/3



 , (123)

Q1 =




−1 0 1
0 −1 1
5/7 8/7 −13/7



 . (124)

One Monte Carlo replicate of this model yields, at the time of the change t = t1 = 12, the
latent position vectors presented earlier in Fig. 3.

Power estimates at level α = 0.05 for linear size fusion statistics T x
m for this example are

presented in Fig. 4 and Table 1. We consider first approximation asymptotics, developed in
Sect. 4.2.1, and first approximation, second approximation, and exact model power estimates
obtained via Monte Carlo simulation (with 10,000 Monte Carlo replicates). Fig. 4 shows
power as a function of angle θ , where x = (cos(θ), sin(θ)). We consider for illustration four
special cases for x , corresponding to θ ∈ {0,π/2,π/4, θ∗ ≈ 0.263}, which correspond to
attribute weighting schemes of: consider only attribute 1, consider only attribute 2, consider
both attributes equally, the attribute weight ratio of 3.719 : 1. (The asymptotic first-order
approximation power analysis yields the analytic maximizer θ∗ ≈ 0.263; this corresponds
to an attribute weight ratio for optimal power of 3.719 : 1.) Power estimates for these four
cases are given in Table 1. (The four vertical lines in Fig. 4 correspond to these four cases.)

Because we are considering a one-sided test, and because π1,k > π0,k for both k = 1, 2,
the power is maximized in the first quadrant, and βx < α for θ in the third quadrant.

We observe that the power analysis obtained using the approximate models gives a useful
indication of comparative power in the exact model. In particular, we see that the first-order

Table 1 Numerical power estimates β̃x and β̂x for x = (cos(θ), sin(θ))

Method θ = 0 θ = π/2 θ = π/4 θ = θ∗

First approx. (asymptotic) 0.550 0.327 0.530 0.687

First approx. (Monte Carlo) 0.536 0.315 0.520 0.681

Second approx. (Monte Carlo) 0.537 0.303 0.511 0.682

Exact (Monte Carlo) 0.534 0.322 0.535 0.684

10,000 Monte Carlo replicates yields σβ̂x ≤ 0.005
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Fig. 4 Power as a function of angle θ for x = (cos(θ), sin(θ)). The plot shows asymptotic estimate β̃x

(black), and first approximation (red), second approximation (blue), and exact model (green) estimates β̂x via
Monte Carlo. (10,000 Monte Carlo replicates yields σβ̂x ≤ 0.005.) Analytic maximizer from Sect. 4.2.1 yields
θ∗ ≈ 0.263. Numerical power estimates corresponding to the four vertical lines (θ ∈ {0,π/2,π/4, θ∗}) are
given in Table 1. (Horizontal line is α = 0.05)

asymptotically optimal linear size fusion statistic provides statistically significantly greater
power than simpler attribute weighting schemes, even for the exact model. Thus, we see that
inferential analysis under the approximate models can, at least in some cases, provide useful
insight into the behavior of the exact model. (An additional advantage of the two approximate
models over the exact model is greatly reduced computational burden for estimating the power
of test statistics via Monte Carlo.)

5 Conclusion

We have presented a model in which a collection of (latent) continuous-time finite-state
stochastic processes induces a (discrete-time) time series of attributed random graphs. The
model is designed for applicability to scenarios comprising multiple modes of association
among a collection of actors over time. Our model is illustrated via application to change-
point detection. Two mathematically simpler approximations to the model are available, and
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Fig. 5 Power as a function of angle θ for x = (cos(θ), sin(θ)), analogous to Fig. 4. In addition to asymptotic
estimate (black) and first approximation (red), this plot shows second approximation (blue) and exact model
(green) estimates as a function of the vertex process rate parameter r ∈ {2&; & = 1, 2, . . . , 10}. See text for
discussion

Monte Carlo and asymptotic analysis indicates that the approximations provide valuable
information for a comparative power analysis of various test statistics.

Various generalizations of the setting considered herein are of interest. First, it is note-
worthy that the results presented herein can be immediately generalized to inhomogeneity,
in which the “null process” is different for each vertex. The change model involves altering
some subset of these vertex processes, and under certain assumptions (e.g., π1,k > π0,k for
all vertices), the linear size fusion statistics considered in Sect. 4 behave much as presented
here. Generalization to statistics other than the linear size fusion statistics is obviously of
interest. Scan statistics have been considered for anomaly detection in time series of graphs
(Priebe et al. 2005; Marchette and Priebe 2008b) and for time series of attributed graphs
(Priebe et al. 2010), and comparative power investigations for various statistics under our
first approximation demonstrates that the choice of statistic is non-trivial (Pao et al. 2011;
Rukhin and Priebe 2011, 2010; Grothendieck et al. 2010). Another generalization involves
relaxing the finite attribute space assumption. For example, for communications analysis in
which the attributes model complex properties of the communication such as topic, it may be
useful to consider the attribute space K = Rd , which requires generalization of our vertex
processes.

Analysis for the second approximation, analogous to that performed herein for the first
approximation, suggests that a large value of the vertex process rate parameter r results in
the second approximation being nearly identical to the first approximation and accurate for
the exact model, as proven in Sect. 3 and depicted in Fig. 4. As r decreases, (1) the second
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approximation deviates from the first approximation, (2) the second approximation remains
accurate for the exact model for moderate r , and (3) eventually the temporal dependence
induced by small r results in the second approximation deviating from the exact model. See
Fig. 5. This analysis is ongoing.

Estimating null model parameters from data for the first- and second-order approxima-
tions, under a (short-time) stationarity assumption, is straightforward. For the exact model,
we suggest that Sarkar and Moore (2005); Fu et al. (2009) may provide methods for address-
ing the temporal dependence induced by small r , and an approach similar to that employed in
Liu et al. (2009), wherein estimation of autocorrelation structure of a sequence of truncated
multivariate normal vectors is studied, may prove appropriate.

In conclusion, our latent process model for time series of attributed random graphs pro-
vides a useful framework for understanding the behavior of inference procedures applied to
complex data sets consisting of multiple modes of association over time among a collection
of actors.
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