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Abstract

A popular method for unsupervised classification of high-dimensional data via decision trees is characterized as minimizing the
empirical estimate of a concave information functional. It is shown that minimization of such functionals under the true distributions
leads to perfect classification.
c© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Classification has been a very active area of research across numerous fields. It has been studied under various
names: clustering, intrinsic classification, mixture modeling, etc. In a nutshell, the problem is posed as follows. Given
a number of objects x1, . . . , xM , each having a number of observable features or attributes, we would like to group
them into classes that correspond, somehow, to some meaningful underlying categories. In other words, we would like
to assign a class-label to each of these objects, so that objects which are similar in some sense are assigned the same
label. We are particularly interested in the unsupervised classification case, where no statistics of the objects jointly
with their class-labels are known, and the goal is to group the objects into clusters based only on their observable
features, such that each cluster contains objects that share some salient properties. In some cases, there may be a
notion of a “true” class-label of each object, which has simply not been provided; it may then be appropriate to view
the set of class-labels as given and the class-label of each particular object as a latent variable, and to evaluate the
performance of a clustering scheme by a post hoc assignment of the true class-labels to (a subset of) objects in each
resulting cluster. In other cases, there may be no natural notion of “true” class-labels; the efficacy of the clustering
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scheme is often measured in such cases by the economy in description length attained by a two-step description of
the objects by first describing the attributes common to the clusters and then describing the differential attributes of
each object within the cluster. k-Means Clustering and Mixture Modeling using the Expectation Maximization (EM)
Algorithm (Dempster et al., 1977; Jelinek, 1997) are examples of techniques used for unsupervised classification.

In the following, we investigate the problem of unsupervised classification using Rényi’s α-divergence (Csiszár,
1995) as the “distance” – or measure of dissimilarity – between objects. We interpret the empirical distribution of
the observable features of each object as a probability distribution over possible feature values. The choice of α-
divergence is guided by the observation that it arises naturally in many applications, e.g. in bounds on the probability
of error in hypothesis testing (Cover and Thomas, 1991), in channel coding problems (Csiszár, 1995), and in problems
that involve the Hellinger distance between distributions (cf e.g. Beran (1977)). Moreover, α-divergences give rise to
a family of concave information functionals (Csiszár, 1995), whose minimization (as we prove in Theorem 1) can
lead to pairs of distributions with disjoint supports – a useful property that guarantees an accurate classification in a
suitable limiting case.

We begin by formalizing our notation and providing some background on α-divergences in Section 2. We show
in Section 3 how α-divergences may be used as the criterion for unsupervised classification via Iterative Denoising
Trees (Priebe et al., 2004; Karakos et al., 2005), and we present experimental results from document categorization
and hyperspectral imaging in Section 4. Finally, in Section 5, we present the main theoretical result of this paper,
namely, that the convex combination of concave functions, used in the tree construction, is minimized only by a pair
of distributions with disjoint supports.

A key insight we provide is that (unsupervised) clustering driven by the minimization of concave functionals of
class-conditional distributions naturally leads to homogeneous clusters.

2. Mathematical preliminaries

Random variables (r.v.) will be denoted by capital letters, while their realizations will be denoted by the
corresponding lowercase letters. Random vectors will be denoted by boldface letters, e.g., X = [X1, . . . , Xn], while
lowercase boldface will denote their realizations. Unless otherwise noted, the dimension of X will be n. All random
variables and vectors will be assumed to lie in discrete finite spaces, and we will use the corresponding calligraphic
letters to denote their alphabets. For example, X ∈ X , while X ∈ X n .

The probability mass function (pmf) of a r.v. will be denoted by the appropriate subscript, e.g., PX for r.v. X . The
conditional pmf of X given Y will be denoted by WX |Y (·|·), a Y × X matrix whose rows sum to one. The subscripts
X and X |Y on pmfs will often be omitted when obvious from context. The support set of a r.v. X is denoted by S(X)

or S(PX ), and is the subset of X such that PX (x) > 0 if and only if (iff) x ∈ S(X).
Rényi (1961) introduced the order-α information divergence, abbreviated α-divergence, of a pmf PX from another

pmf Q X as

Dα(PX ‖ Q X ) =
1

α − 1
log

∑
x∈X

Pα
X (x)Q1−α

X (x), (1)

where α > 0, α 6= 1. The limit of (1), as α → 1, is the well-known Kullback–Leibler information divergence, or
KL-divergence:

D(P ‖ Q) =

∑
x∈X

P(x) log
P(x)

Q(x)
,

where, by convention, 0 log 0 = 0 log 0
0 = 0 and t log t

0 = +∞ for t > 0. Finally, when α = 1/2,

D 1
2
(P ‖ Q) = log

(∑
P

1
2 (x)Q

1
2 (x)

)−2
= log

(
1 −

1
2

∥∥∥P
1
2 − Q

1
2

∥∥∥2
)−2

.

The reader may recognize that the quantity subtracted from unity is the Hellinger distance (Beran, 1977) between
P and Q.
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Given a pmf PY on Y and a conditional pmf WX |Y , the order-α mutual information is defined (cf. Csiszár (1995))
as

Iα(PY ; WX |Y ) = min
Q X

∑
y∈Y

PY (y)Dα(WX |Y (·|y) ‖ Q X (·)), (2)

where, again by convention, 0 Dα(· ‖ ·) = 0 regardless of whether the α-divergence is finite. Note that Iα(P; W ) is
always finite (Csiszár, 1995), even if α-divergence is not.

If one views rows of WX |Y as points in RX , then the minimizer in the definition of Iα may be interpreted as
the centroid of these points, with PY playing the role of their mass and α-divergence playing the role of distance.
Furthermore, if PY is uniform, Iα may be interpreted as the radius of the smallest ball covering the conditional pmfs
that constitute the rows of WX |Y .

One can easily see that this definition of order-α mutual information reduces to the usual (Shannon’s) definition of
mutual information when α → 1:

I (PY ; WX |Y ) =

∑
y∈Y

PY (y)D(WX |Y (·|y) ‖ (PY ◦ W )(·)),

where (PY ◦ W )(·) is the induced marginal pmf on X through PY and W :

(PY ◦ W )(x) =

∑
y∈Y

PY (y)WX |Y (x |y).

Some useful properties of Dα and Iα (which continue to hold for the limiting case α → 1) are summarized below
(from Csiszár (1995)):

(1) 0 ≤ Dα(P ‖ Q) ≤ +∞: the first equality holds iff P = Q, and the second iff either S(P) ∩ S(Q) = ∅, or α > 1
and S(P) 6⊆ S(Q).

(2) Iα(P; W ) is a continuous, concave function of P .
(3) Dα(P ‖ Q) is convex in Q. For α < 1, it is convex in the pair (P, Q).

3. Iterative denoising via α-divergence minimization

Let C denote a collection of data points. Each data point is assumed to belong to a latent class. There are no prior
assumptions about the properties of the classes; that is, it is unknown what their memberships are, and what they
represent. Our goal is to partition C into disjoint sets A1, . . . , Am , such that all data points which belong to the same
set share some common features, distinct from the features shared by points of other sets. The number of sets m may be
specified before the partition is determined, or computed automatically from the data (e.g., the smallest partition-size
that satisfies some conditions). Formally, we have the following:

(1) A “vocabulary” X , and a class-label space Y .
(2) A collection C of data points (sequences) X(1), . . . , X(N ), each in X n .
(3) A “hidden” class-label Y ( j) associated with each sequence X( j).
(4) We assume that the Y ( j)’s are i.i.d with common pmf PY , and the X( j)’s are (conditionally) mutually independent

given the class-labels Y ( j). Moreover, the conditional distribution of each sequence X( j) given Y ( j) is stationary
and ergodic, and its X -marginal is denoted W (x |y).

(5) Our goal is to find a partition A1, . . . , Am of C, such that for all i 6= j ,

X(i), X( j) ∈ Ak for some k ∈ {1, . . . , m} ⇔ Y (i) = Y ( j),

with high probability. This is true, e.g., for a partition in which each Ak contains sequences with the same label,
and m = |Y|.

Let S be any subset of C.

Definition 1. The α-divergence Dα(S) of a set S of data points is defined by

Dα(S)
1
= min

Q

∑
X∈S

Dα(P̂X ‖ Q), (3)

where P̂X is the empirical marginal pmf derived from X, and Q a pmf on X .
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Fig. 1. The classification tree, partitions the data set corresponding to each node into two sets, such that the sum of the divergences of the children
is the minimum possible. As the length of the data sequences goes to infinity, this procedure produces pure sets (i.e., belonging only to one class)
at the leaves.

Dα(S) provides an indication of the “homogeneity” of the set S. For example, if Dα(S) = 0, then all elements of
S must have the same empirical distribution—a good indication that they were generated by the same process (i.e.,
they have the same class-label). This suggests that our classification problem is equivalent to that of finding a partition
A1, . . . , Am , with the smallest possible m, such that

m∑
j=1

Dα(A j ) < ε, (4)

for some suitable ε > 0.
We propose to use sensing and processing trees (Priebe et al., 2004) to find a partition that satisfies (4). At the root

of the tree, we start with the whole corpus C. Then, we proceed iteratively, performing the following steps at each
tree-node:

• Stopping criterion: At a node S ⊆ C, if Dα(S) < ε, then declare the set S as “pure”, that is, declare that all data
points in S have the same class-label, whatever that label may be, and S is one of the sets in the eventual partition
of C (i.e., S is a “leaf”).

• Splitting criterion: Otherwise, partition the data points S into two subsets A1, A2, such that the sum Dα(A1) +

Dα(A2) is as small as possible, and create two children of S in the tree, each one corresponding to the sets A1 and
A2.

The iteration continues until all leaf-nodes meet the stopping criterion, or, when a desirable number m of nodes
has been reached. Fig. 1 depicts the procedure of growing the tree. As mentioned in Priebe et al. (2004) and Karakos
et al. (2005), the data at each node are projected into a low-dimensional space which is, in general, different from
the projection used at other nodes. Furthermore, in order to split each node in a computationally tractable way (for
nodes with more than 40–50 data points, it is obviously infeasible to perform an exponential number of 2-way splits
in order to find the one that minimizes the sum of divergences) some heuristic has to be used; for example, Chou’s
algorithm (Chou, 1991), which is a variant of K -means, provably converges to a local optimum.

4. Empirical results

To demonstrate the usefulness of the iterative procedure described above, we perform clustering experiments in
two areas: text categorization and hyperspectral imaging. We use minimization of KL-divergences (α → 1) as
the optimization criterion at each node, and each ISPDT is grown until a specific number of leaves is reached.
Furthermore, we compare the performance of ISPDTs with that of K -means clustering (with a random initialization of
cluster centroids), and Gaussian mixture modeling (Fraley and Raftery, 1999). Before clustering, the data are projected
into a low-dimensional space using principal components analysis, where the number of dimensions is based on the
location of the “knee” on the scree plot.

4.1. Text categorization

We are using documents from the Science News corpus, which consists of extended abstracts on various topics
within Anthropology, Astronomy, Technology, and Medicine. The number of documents per subject are: 54 in
Anthropology, 121 in Astronomy, 60 in Technology, and 280 in Medicine.
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Table 1
Error rates in text classification of the Science News corpus

Method Error (%)

K -means 16.2
Gaussian mixtures 24.2
ISPDT 13.9

Table 2
Error rates in the classification of hyperspectral image pixels

Method Error (%)

K -means 19.7
Gaussian mixtures 9.6
ISPDT 9.8

This collection C of documents represents the root of the ISPDT. After performing automatic stemming on the
words in each document, i.e., transforming each word into its base form, e.g., singular, present tense, etc., and
removing stop-words (such as a, the, is, etc.), we collect statistics of word occurrences for each document. Thus the
observed feature of each document is a fixed-length vector of length equal to the vocabulary size (|X | = 10 000). Then,
we smooth (Jelinek, 1997) the probability distribution of each document; that is, we assign non-zero probabilities to
unseen words, based on their overall frequency in C. This way, we overcome the problem of sparseness, which is
commonplace in statistical text processing.

The error rates of K -means, Gaussian mixture modeling, and KL-divergence based ISPDT are shown in Table 1.
Based on the scree plot, the number of PCA dimensions for the K -means and the Gaussian mixture modeling is
chosen to be equal to 5. The K -means algorithm was executed 10 times with different random initializations (cluster
centroids); the error rates shown are averages over these 10 experiments. For the ISPDT, the data at each node are
projected into a two-dimensional simplex, using a pair of principal components chosen among the first 5; the projection
finally chosen is the one which yields the split with the lowest sum D(A1) + D(A2).

As we can see from Table 1, ISPDTs have performance which is superior to that of K -means and Gaussian mixture
modeling; this is noteworthy, especially since K -means and Gaussian mixture modeling are usually considered as two
of the most effective approaches to unsupervised classification.

4.2. Hyperspectral imaging

We performed experiments with hyperspectral satellite images, where each data point corresponds to a multi-
dimensional pixel — each dimension represents a particular frequency band. Furthermore, the spectrum of each pixel
is actually a distribution of energy over frequencies. Hence, with the appropriate normalization, the spectrum of a data
point plays the role of its “empirical distribution”. This allows us to skip the step of computing a high-dimensional
distribution for each data point; its distribution is already supplied.

The class-labels of the pixels correspond to different types of vegetation: runway (144 pixels), pine (177 pixels),
scrub (200 pixels) and swamp (79 pixels). Table 2 shows the classification error rates for K -means, Gaussian mixture
modeling, and ISPDT; the first 3 principal components were chosen for dimensionality reduction, based on the scree
plot. As we can see, the performance of ISPDTs exceeds that of K -means, and is almost identical to the performance
of the Gaussian mixture modeling. The resulting ISPDT is shown in Fig. 2.

5. Theoretical justification of the splitting criterion

In this section, we give a theoretical justification of the appropriateness of the splitting criterion, by considering the
case n → ∞. Assuming that each data sequence Xn is generated by a stationary and ergodic process, it follows that
P̂X → W (·|y), the X -marginal of the process distribution, where y is the true label of X. Hence, in this limiting case,
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Fig. 2. The ISPDT in the hyperspectral data case. Depiction of labels is as follows: circles correspond to runway, triangles to pine, crosses to scrub
and x’s to swamp. The total misclassification rate is 9.8%.

the minimization of Dα(A1) + Dα(A2), with respect to a partition (A1, A2) of S, is equivalent to the minimization of

1
|S|

(Dα(A1) + Dα(A2)) = λ min
U1

∑
y∈Y

P1(y)Dα(W (·|y) ‖ U1(·))

+ (1 − λ) min
U2

∑
y∈Y

P2(y)Dα(W (·|y) ‖ U2(·)), (5)

where

P1(y) =
1

|A1|

∑
j :X( j)∈A1

1[Y ( j) = y], P2(y) =
1

|A2|

∑
j :X( j)∈A2

1[Y ( j) = y],

PY (y) =
1

|S|

∑
j :X( j)∈A1∪A2

1[Y ( j) = y] = λP1(y) + (1 − λ)P2(y), and λ =
|A1|

|S|
.

But by the definition of the order-α mutual information, the right-hand side of (5) is equal to

λIα(P1; W ) + (1 − λ)Iα(P2; W ). (6)
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As is proved in Theorem 1, (6) is minimized, over the choices of P1, P2 (or, equivalently, of the subsets A1, A2) only
if P1, P2 have disjoint supports (equivalently, A1, A2 do not contain any overlapping class-labels). This establishes
the appropriateness of the splitting criterion.

We now state and prove the main technical result of this paper.

Theorem 1. Let PY be a pmf on Y with |S(PY )| ≥ 2, and W (x |y) a Y ×X conditional probability matrix, such that
J (Q; W ) is a strictly concave function of Q. Let

L(PY ) = {(Q1, Q2) : Q1 6= Q2 and θ Q1 + (1 − θ)Q2 = PY for some θ ∈ (0, 1)}

denote the set of pairs of probability measures whose linear interpolation equals PY . Finally, let

M(PY , W ) = arg min
(Q1,Q2)∈L(PY )

{θ∗ J (Q1; W ) + (1 − θ∗)J (Q2; W )}, (7)

denote pairs of probability measures that minimize the weighted sum in (7), where θ∗
= θ∗(PY , Q1, Q2) uniquely

satisfies θ∗Q1 + (1 − θ∗)Q2 = PY . Then,

S(P1) ∩ S(P2) = ∅ ∀(P1, P2) ∈ M(PY , W ).

More informally, the minimum of the weighted sum of concave functions J (·; ·) in (7), over pairs of pmfs in L, is
attained by a pair of pmfs with disjoint supports.

Remark 1. The theorem holds for the family of strictly concave functions of pairs of distributions, of which the
order-α mutual information is a member.

Remark 2. The minimization of mutual information is usually encountered in rate-distortion problems (cf Cover
and Thomas (1991), page 342), where the minimization is over WX |Y . In the usual channel coding scenario on the
other hand (Cover and Thomas (1991), page 184), WX |Y is given, and one needs to maximize mutual information by
choosing a suitable PY . Our result, in contrast, addresses the constrained minimization of mutual information, given
WX |Y .

Remark 3. We assume without loss of generality that S(PY ) = Y; i.e. PY (y) > 0 ∀ y ∈ Y . Indeed, if PY (y0) = 0
for some y0 ∈ Y , then one may exclude y0 from the definition of Y . This does not affect any members of L, since
PY (y0) = 0 implies that Q1(y0) = Q2(y0) = 0 as well. Furthermore, excluding y0 from Y does not affect the value
of θ∗ or the J ’s in (7). Finally, since y0 6∈ S(P1) and y0 6∈ S(P2) for every (P1, P2) ∈ M ⊂ L, the removal of y0
from Y does not affect the claimed result.

Consider the objective function I (Q1, Q2) : L(PY ) → R+ whose minimizers constitute the set M of (7):

I (Q1, Q2) = θ∗ J (Q1; W ) + (1 − θ∗)J (Q2; W ),

where the dependence of θ∗ on Q1, Q2 and PY is suppressed for brevity of notation. Note that L(PY ) does contain
pairs of pmfs with disjoint supports. This is guaranteed by |S(PY )| ≥ 2, and construction of such a pair of distributions
will be demonstrated shortly. On the other hand, it should be obvious that L(PY ) also contains pairs of pmfs without
disjoint supports.

Proof. Consider the set of pairs of distributions

L(PY , λ) = {(Q1, Q2) : λQ1 + (1 − λ)Q2 = PY },

where λ ∈ (0, 1). It can be easily established that L(PY , λ) is a closed, convex set. For any λ ∈ (0, 1), I (Q1, Q2) is
strictly concave on L(PY , λ), since it is the sum of two strictly concave functions. Hence, the minimum of I (Q1, Q2)

over L(PY , λ) is attained at an extremal point of L(PY , λ). (Note that an extremal point of a closed, convex set S is
any point which cannot be written as a convex combination of points in S.) On the other hand, the set

L(PY ) =

⋃
λ∈(0,1)

L(PY , λ)
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is not necessarily convex,1 hence, we cannot immediately say that the minimum of I (Q1, Q2) over L(PY ) is achieved
at an extremal point of L(PY ). We now prove the following lemma:

Lemma 1. For any λ ∈ (0, 1), if (P, Q) is an extremal point of L(PY , λ), then P, Q have disjoint supports except
for possibly one coordinate, i.e., they are of the form (modulo a permutation of the indices)

P =
[

p u1 0
]

Q =
[
q 0 v2

]
for some scalars p, q ≥ 0 and subvectors u1 and v2, where 0 is the zero vector of appropriate length.

Proof. Assume to the contrary that S(P) ∩ S(Q) contains more than one point. Without loss of generality, let

P =
[

p, x, v1
]
, Q =

[
q, y, v2

]
,

where x, y > 0 and v1, v2 are vectors of equal length (i.e., of length |Y| − 2). Then, for a sufficiently small ε > 0, we
have

(P, Q) =
1
2
(P1, Q1) +

1
2
(P2, Q2),

where (P1, Q1), (P2, Q2) ∈ L(PY , λ) and

P1 =

[
p −

ε

λ
, x +

ε

λ
, v1

]
, Q1 =

[
q +

ε

1 − λ
, y −

ε

1 − λ
, v2

]
,

P2 =

[
p +

ε

λ
, x −

ε

λ
, v1

]
, Q2 =

[
q −

ε

1 − λ
, y +

ε

1 − λ
, v2

]
.

Hence, (P, Q) cannot be an extremal point of L(PY , λ) (contradiction). �

We will prove the theorem by contradiction. Without loss of generality, PY can be written as

PY =
[

p, u, v
]
,

where p > 0 is a scalar, and u = [u1, . . . , u|u|], v = [v1, . . . , v|v|] are appropriate vectors whose lengths are upper
bounded by |Y|. Obviously,

∑
j u j +

∑
k vk = 1 − p.

Let (Q∗, R∗) be a member of M(PY , W ) (i.e., it is a minimizer of I (·, ·)), such that Q∗, R∗ do not have disjoint
supports. Then, (Q∗, R∗) ∈ L(PY , θ∗) has to be an extremal point of L(PY , θ∗) (otherwise, it would not be a
minimizer). Then, by virtue of Lemma 1, we know that Q∗, R∗ have one common non-zero coordinate. Without
loss of generality, we have

Q∗
=

[
q,

1 − q∑
j

u j
u, 0

]
,

R∗
=

[
r, 0,

1 − r∑
k

vk
v
]

,

for some scalars q, r > 0, where

θ∗
=

∑
j

u j

1 − q
, and 1 − θ∗

=

∑
k

vk

1 − r
, (8)

where θ∗
∈ (0, 1) by the assumption that (Q∗, R∗) ∈ M(PY , W ). We now consider the following pairs of

distributions with disjoint supports:

Q0 =

[
0,

1∑
j

u j
u, 0

]
,

1 Consider, for example, the case where |Y| = 2, with PY = (1/3, 2/3). Then, (P1, Q1) = ((1/2, 1/2), (0, 1)) ∈ L(PY ) and (P2, Q2) =

((1/4, 3/4), (1, 0)) ∈ L(PY ). But 1/2(P1, Q1) + 1/2(P2, Q2) 6∈ L(PY ).
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R0 =

 p

1 −
∑

j
u j

, 0

1 −
p

1−
∑

j
u j∑

k
vk

v,

 ,

and

Q1 =

 p

1 −
∑
k

vk
,

1 −
p

1−
∑
k

vk∑
j

u j
u, 0

 ,

R1 =

[
0, 0,

1∑
k

vk
v
]

.

It can be easily established that

(Q0, R0) ∈ L(PY , θ0), θ0 =

∑
j

u j , (9)

(Q1, R1) ∈ L(PY , θ1), θ1 = 1 −

∑
k

vk . (10)

Furthermore,

Q∗
= βQ0 + (1 − β)Q1, β = 1 −

q

(
1 −

∑
k

vk

)
p

R∗
= γ R0 + (1 − γ )R1, γ =

r

(
1 −

∑
j

u j

)
p

.

Now, because of the strict concavity of J (Q; W ), we have

I (Q∗, R∗) = θ∗ J (Q∗
; W ) + (1 − θ∗)J (R∗

; W )

> θ∗(β J (Q0; W ) + (1 − β)J (Q1; W )) + (1 − θ∗)(γ J (R0; W ) + (1 − γ )J (R1; W )). (11)

Now, using the fact that p +
∑

j u j +
∑

k vk = 1, it can be easily shown that

θ∗β = λθ0, (1 − θ∗)γ = λ(1 − θ0)

θ∗(1 − β) = (1 − λ)θ1, (1 − θ∗)(1 − γ ) = (1 − λ)(1 − θ1),

where

λ =

p − q + q
∑

j
v j

p(1 − q)
=

r
∑

j
v j

(1 − r)p
. (12)

Hence, the right-hand side of (11) is equal to

λ(θ0 J (Q0; W ) + (1 − θ0)J (R0; W )) + (1 − λ)(θ1 J (Q1; W ) + (1 − θ1)J (R1; W ))

= λI (Q0, R0) + (1 − λ)I (Q1, R1). (13)

But (9)–(11) and (13) imply that there are pairs (Q0, R0), (Q1, R1) ∈ L(PY ) with disjoint supports, for
which I (Q∗, R∗) > λI (Q0, R0) + (1 − λ)I (Q1, R1), for some λ ∈ (0, 1). Therefore, I (Q∗, R∗) >

min{I (Q0, R0), I (Q1, R1)} (contradiction, because I (Q∗, R∗) is minimum in L(PY )).
Hence, M(PY , W ) contains only pairs of distributions with disjoint supports. �
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