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ABSTRACT

Given a set of observations in Rn along with provided class labels, C,
one is often interested in building a classifier that is a mapping from
Rn ! C. One way to do this is using a simple nearest neighbor clas-
sifier. Inherent in the use of this classifier is a metric or pseudo-metric

that measures the distance between the observations. One typically
uses the L2 metric. We examine the classification benefits of the use
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of alternative Minkowski p-metrics. We also study the relationship
between the selection of the p-metric and the selection of optimal

classification features. We compare a simple greedy approach of
Minkowski p-metric optimization followed by feature selection, the
greedy method, with a simultaneous optimization of the p-metric

and feature selection process. We utilize a stochastic optimization
methodology to perform the simultaneous optimization.

Key Words: Minkowski p-metric; Simultaneous optimization;
Cross-validated classifier; Greedy algorithm.

Mathematics Subject Classification: Primary 62H30; Secondary

62-07.

1. INTRODUCTION

Suppose that one is presented with ‘‘high-dimensional’’ training data
from which one would like to build a nearest neighbor classifier. Though
there are several possible ways in which to proceed, one (not unreason-
able) course is to begin by selecting a metric that gives optimal nearest
neighbor classifier performance. Then, one could select some ‘‘optimal’’
subset of the features using this previously selected metric. We will refer
to this method as a ‘‘greedy’’ algorithm, in the sense that one first opti-
mizes the metric and then one chooses an ‘‘optimal’’ feature set using this
metric. The work that we describe here is the use of stochastic optimiza-
tion techniques to perform simultaneous feature and metric selection.

This paper details our investigation of nearest neighbor cross-
validated classifier performance (a surrogate for the Bayes error) as a
function of feature selection and Minkowski metric. More specifically,
we describe a methodology for simultaneous optimization of metric
and feature selection. We also compare the performance of the classifier
resulting from this simultaneous optimization with earlier work in which
the metric and feature set optimizations are done separately (as seems to
be the usual case, in practice).

We conducted this study of the optimization using two data sets: the
Tufts University ‘‘artificial nose’’ data set (both ‘‘raw’’ and smoothed),
and the Golub gene data set (both the entire data set, as well as normal-
ized data). We remark that we have done no theoretical work at this point
regarding existence of global minimums, convergence properties of the
algorithms, etc. The motivation for this method of simultaneous optimi-
zation is simply the heuristic that greedy solutions are seldom global
solutions.
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Our approach is to pose the question of simultaneous metric and
feature selection as an optimization problem. In this setting, the cross-
validated classifier performance (being a mapping of the combined
feature and metric space to the interval ½0; 1�) is the objective function.
We then seek a point in the combined feature and metric space that yields
optimal performance of the classifier. Though we have not had the
opportunity to perform a detailed theoretical analysis, it is obvious that
no such optimal point need exist. This fact is immediate because the
domain is not compact (in principle, the parameter for the metric lies
in the half-open interval ½0;1Þ). However, in practice (due to finite range
of floating point numbers) we do not allow the parameter for the metric
to become arbitrarily large, restricting the parameter to the closed inter-
val ½1; k�, for some integer k. Then, by the Extreme Value Theorem, we
may speak of an optimal point.

With high-dimensional data, it is not possible to do classical gradient
descent optimization (our original thought). This is because, for high-
dimensional data, finite difference gradient estimates are too costly. To
proceed, we adopted Spall’s methodology for stochastic optimization
(see Spall, 2003 or Spall, 1998a). Finally, we found that to perform
feature selection=dimensionality reduction, it is not sufficient to optimize
classifier performance, but rather an augmented function which includes
a penalty term to force dimensionality reduction.

This simultaneous feature and metric selection outperformed the
sequential methodology of metric selection followed by feature selection.
We will describe the process of metric selection followed by feature selec-
tion by scatter in Sec. 3. We then compare the classifier performance
using this (traditional) ‘‘greedy’’ approach with the cross-validated clas-
sifier performance using simultaneous selection of features and metric.

We mention that we have also considered additional methods of clas-
sifier optimization. We refer the reader to Solka and Johannsen (2003)
where we studied the use of minimal spanning trees as an alternative
measure of classifier performance. The number of inter-class edges in
the minimal spanning tree for the training data was treated as a measure
of classifier complexity. We examined nearest neighbor classifier perfor-
mance as a function of Minkowski p-parameter, where the value of p

was chosen that minimized this measure of the classifier complexity.

2. DATA SETS

As we stated in the introduction, the purpose of the work described
here was initial assessment of the feasibility and performance of
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simultaneous optimization of metric and feature selection. To conduct
this study, we implemented the algorithms and tested using two high-
dimensional data sets: the ‘‘artificial nose’’ and Golub gene data sets.
In this section, we briefly describe these two data sets.

2.1. ‘‘Artificial Nose’’ Data Set

The ‘‘artificial nose’’ data set was taken from an optical system
constructed at Tufts University (White et al., 1996). The system consists
of a bundle of 19 fibers. The end of each fiber is doped with a solvato-
chromic dye which fluoresces in the presence of an analyte. An observa-
tion is obtained as the intensity of florescence of the dye molecules for
each fiber at two wavelengths at 60 times during a 20 sec exposure. Thus,
the response of the system to a ‘‘sniff’’ is a point in 2280-dimensional
space:

19 fibers� 2 wavelengths� 60 samples ¼ 2280 dimensional data.

The task at hand is to identify trichloroethylene (TCE) as a component of
the analyte in the presence of various confusers. (TCE, a carcinogenic
industrial solvent, is of interest as a ground water contaminant.)

If one considers a single fiber=wavelength combination, a sample
then consists of a time series of 60 observations of florescence intensity
equally spaced over a 20 sec interval. The smoothed ‘‘artificial nose’’ data
set was obtained by smoothing each of these time series (see Ramsay and
Silverman, 1997). In particular, we employed polynomial smoothing
splines to smooth the raw nose data. The reader is referred to Priebe
et al. (2000) for more details.

2.2. Golub Gene Data Set

The second data set is the Golub gene data set (Golub and Slonin,
1999). This Affymetrix data set consists of expression levels of 7129 genes
on a group of 72 patients all of whom are ill with leukemia. The patient
population was divided between those with the acute lymphoblastic
(ALL) variant, and those with the acute myeloblastic (AML) variant
(47 and 25 patients, respectively). The discrimination problem is to distin-
guish between the ALL and AML variants of leukemia from the gene
expression levels.

A variation of the full Golub data set was obtained by normalizing
the data. In this procedure, the dimensionality of the data set was reduced
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by retaining only the genes whose expression level is greater than 20
across all patients. This reduces the dimensionality from 7129 to 1753.
Then, we normalized this reduced data. This normalization was per-
formed by considering the data set as an ng genes by an ns patients data
matrix. We then divided each column by its mean, and then subjected
each row to a standard normalizing transformation.

3. THE GREEDY APPROACH

In this section, we describe what we refer to as the the ‘‘greedy’’
approach to metric and feature selection. In this setting, we began by
selecting a metric which gives the optimal nearest neighbor cross-
validated classifier performance using the full feature set. Then, we
selected a subset of the features that gave ‘‘optimal’’ performance of
the cross-validated nearest neighbor classifier, where interpoint distances
were computed using the previously determined metric. We did not
perform an exhaustive search for the optimal combination of features
(clearly this is infeasible with high-dimensional data sets). Instead, we
ranked the features by a surrogate measure (scatter, described below),
and then added the features one at a time and computed the full cross-
validated performance. After reaching the full feature set, we determined
which collection of features gave the best classifier performance. This
sequential optimization (first selecting optimal metric and then the opti-
mal features) is why we refer to this method as a ‘‘greedy’’ algorithm.

3.1. Metric Selection

In the metric selection, we only consider Euclidean metrics. More
specifically, we select the metric from the one-parameter family of
Minkowski metrics. That is if u and v are vectors in Rn, then we define
the Minkowski p metric, rpð�; �Þ by

rpðu; vÞ ¼
 Xn

i¼1

jui � vijp
!1=p

:

We note that for the ‘‘artificial nose’’ data set we must define the
Minkowski metric differently. Recall, that we consider an observation
to be a 38-dimensional vector each of whose entries is a 60-dimensional
vector (the time-series of florescence intensities for a particular fiber
at a particular wavelength). We will denote such an observation by
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v � vf;l;t, where f indicates the fiber, l the wavelength, and t the time.
Now, suppose that u and v are observations. We define the Minkowski
p metric by the equation

~rrpðu; vÞ ¼
 X19

f¼1

X2
l¼1

h
rp
�
uf;l;� � vf;l;�

�ip!1=p

¼
 X19

f¼1

X2
l¼1

 X60
i¼1

��uf;l;i � vf;l;i
��p!!1=p

:

3.2. Feature Selection by ‘‘Scatter’’

Our method for performing feature selection was based on ‘‘scatter’’
(derived from the Fisher linear discriminant, see Fukunaga, 1990). The
basic idea is to select those dimensions in which the two classes are well
separated. By this, we mean that the class means are well separated, and
that each class has small intraclass variance.

We begin a more detailed discussion of the scatter. Suppose (for
simplicity) that we have two classes, C1 and C2, consisting of n1 and n2
members, respectively. One first computes the class means,

mi ¼ 1

ni

X
x2Ci

x; i ¼ 1; 2:

Next, one computes the class scatter matrices

Si ¼
X
x2Ci

ðx�miÞðx�miÞT :

Then, the within-class scatter matrix is expressed by

SW ¼ S1 þ S2;

and the between-class scatter matrix as

SB ¼ ðm1 �m2Þðm1 �m2ÞT :

In the univariate case, SW and SB are scalars. This is the case when
considering individual dimensions (i.e., genes) in the Golub gene data.
Then, the well separated dimensions are those with large value of SB=SW .
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In the multivariate case (say, n-dimensional), SW and SB are n� n

matrices. This is the case when considering the ‘‘artificial nose’’ data
set, where it was natural to consider the data as a 38-dimensional vector
(i.e., the 19 fibers each of two wavelengths) each of whose entries is a 60-
dimensional vector (i.e., the 60 equally spaced measurements of the inten-
sity during the ‘‘sniff’’). In this case, SB=SW for a particular dimension
(i.e., fiber=wavelength pair) is no longer meaningful. Instead, the quality
of interest is large values of trðSBÞ=trðSWÞ, where trð�Þ denotes the trace
operator.

Finally, we note a minor point regarding the ‘‘artificial nose’’ data.
One of the fibers at one of the two wavelengths had an identically zero
response to all analytes. Thus, for this dimension, the within-class var-
iance is zero. Thus, for this dimension, trðSBÞ=trðSWÞ is not defined. Thus,
this dimension was pruned from the data, resulting in 37-dimensional
data.

3.3. Results Using the ‘‘Greedy’’ Optimization

In Sec. 3.1, we described the family of metrics considered. Recall, that
these metrics are parametrized by the (in this case integer) value p. We
first selected an optimal value of p by performing an exhaustive search.
That is, we specified an allowable range for p (we considered the follow-
ing range of values: p 2 f1; 2; . . . ; 50g). Then at each value of p in this
range, we computed the full cross-validated nearest neighbor classifier
performance (where interpoint distances were computed using the current
value of p). We then selected the value of p that gave the best classifier
performance, say �pp.

We next determined the optimal subset of features. An exhaustive
search of the feature space is clearly impossible with high-dimensional
data (there is a combinatorial explosion if one wants to check all possible
subsets – recall that there are 2n subsets of a set of cardinality n). So, we
adopted the surrogate measure of scatter, as described in Sec. 3.2. More
specifically, we computed the scatter along each dimension. Then, we
ranked the dimensions in order of decreasing scatter (i.e., from highest
scatter value to lowest). Then we computed the full cross-validated near-
est neighbor classifier performance (using the previously determined �pp)
using the single dimension of greatest scatter. Next, the dimension with
the next greatest scatter was used to augment the feature set, and the
cross-validated classifier performance was again computed. This process
(of augmenting the feature set with the dimension of greatest scatter that
had not previously been included) was repeated until the cross-validated
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performance was computed using the full feature set. Finally, the feature
set was selected that gave the best cross-validated nearest neighbor
classifier performance using the �pp metric.

In the following figures we present plots of classifier performance as
a function of the successive addition of scatter selected genes. We noticed
a similarity across the two data sets. That is, with the raw data (the
nonsmoothed ‘‘artificial nose’’ and the non-normalized Golub gene data
sets), classifier performance initially increases, reaches some peak
performance and then decreases with the addition of more features.
We noted that with the smoothed data sets, classifier performance
increases more or less monotonically until the full feature set is included.

Figure 1 shows the performance of the classifier on the (non-
smoothed) ‘‘artificial nose’’ data set, and Fig. 2 shows the performance
of the classifier on the full Golub gene data set. Note that with both of
these data sets, the classifier performance initially increases with the
inclusion of additional features, followed by a decrease in classifier

Figure 1. Performance of the cross-validated nearest neighbor classifier for the

(nonsmoothed) ‘‘artificial nose’’ data set at the optimal p ¼ 5.
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performance as additional features are added. For the ‘‘artificial nose’’
data set, the peak classifier performance (� 0.78) occurs when using 21
of the 37 available wavelength=frequency combinations. The optimal
Minkowski metric was p ¼ 5. For the Golub gene data set, the peak clas-
sifier performance (� 0.85) occurs when using 372 of the 7129 available
genes. The optimal Minkowski metric was p ¼ 4.

Figure 3 shows the classifier performance for the smoothed artificial
nose data set, and Fig. 4 shows the classifier performance for the normal-
ized Golub gene data set. These two figures illustrate the approximately
monotonic improvement in the classifier performance on the smoothed
data with the addition of more features. For the smoothed artificial nose
data set the peak classifier performance (� 0.86) occurs using all 37 avail-
able fiber=wavelength combinations and a Minkowski metric p ¼ 29. For
the normalized Golub gene data set, the peak classifier performance
(� 0.86) occurs using 1698 of the 1753 available genes and a Minkowski
metric p ¼ 4.

Figure 2. Performance of the cross-validated nearest neighbor classifier for the
full Golub data set at the optimal p ¼ 4.
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4. SIMULTANEOUS OPTIMIZATION

It is a general rule that, because greedy solutions consider only a small
subset of all possible combinations, they are seldom globally optimal.
Thus, to build truly optimal nearest neighbor classifiers, we want to per-
form a simultaneous optimization of the metric and feature set. Describing
the method of simultaneous optimization and the results obtained using
this method constitutes the material in this section. In the following section
(Sec. 5), we compare the classifier performance obtained with the simulta-
neous metric and feature selection with that of the greedy approach.

Roughly, the idea is to treat the simultaneous optimization as a
classical constrained optimization problem on ½0; 1�n � ½1;1Þ (actually,
½0; 1�n � ½1; k�, some ‘‘large’’ k). One treats the cross-validated classifier
performance as the objective function, where the performance is a function
of the weights (the ½0; 1�n term) and the metric (the ½1;1Þ term). The
weights (by being in ½0; 1�) perform the feature selection. The optimization
proceeds by gradient descent to an optimal set of features and metric.

Figure 3. Performance of the cross-validated nearest neighbor classifier for the

smoothed ‘‘artificial nose’’ data set at the optimal p ¼ 29.
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4.1. The General Setting

We now describe the general setting for the simultaneous selection of
metric and features. The idea is to treat the simultaneous ðw;pÞ determi-
nation as a classical optimization problem. Denote by bLLðw;pÞ the esti-
mated probability of misclassification (i.e., minimization of bLL yields the
optimal classifier), where this notation makes explicit the dependence
of the classifier on the two parameters w, and p.

The optimization problem is to determine the argmin
ðw;pÞ bLLðw;pÞ. Function

evaluations are computed by performing cross-validated nearest neighbor
classification. We note that we are now using a weighted metric, slightly
different than the one given above (Sec. 3.1). We incorporate a vector of
weights w 2 ½0; 1�n, that serve to perform the feature selection. Thus, the
metric used for the cross-validation is now given by

rpðu; vÞ ¼
 Xn

i¼1

ðwijui � vijÞp
!1=p

Figure 4. Performance of the cross-validated nearest neighbor classifier for the
normalized Golub data set at the optimal p ¼ 4.
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for the case of the Golub gene data, and by

~rrpðu; vÞ ¼
 X19

f¼1

X2
l¼1

h
wf;l � rp

�
uf;l;� � vf;l;�

�ip!1=p

¼
"X19

f¼1

X2
l¼1

 
wf;l

 X60
i¼1

��uf;l;i � vf;l;i
��p!1=p!p#1=p

:

in the case of the ‘‘artificial nose’’ data. Thus, bLLðw;pÞ is explicitly a
function of w 2 ½0; 1�n and p 2 ½0;1Þ.

For true feature selection, we would like w 2 f0; 1g � � � � � f0; 1g
(n-fold); i.e., wi 2 f0; 1g for i ¼ 1; . . . ; n. In order to encourage this, we
augment the objective function with the penalty term

tðwÞ ¼ m
Xn
k¼1

w2
kðwk � 1Þ2;

where m ¼ 16=n is chosen so that the penalty term has approximately the
same order of magnitude as the objective function (note that if
w ¼ ð1=2; . . . ; 1=2Þ then tðwÞ ¼ 1). Figure 5 gives a plot of the penalty
function in two dimensions.

Thus, the function that we sought to minimize is

cðw;pÞ ¼ bLLðw;pÞ þ tðwÞ;

subject to the constraints w 2 ½0; 1�n and p 2 ½1;1Þ, where n is the
dimensionality of the data.

Now, the obvious method for finding the minimum of cðw;pÞ is to
do a traditional gradient descent algorithm using finite difference approx-
imation to the gradient at each iteration. Perhaps we should note thatbLL 62 C1, but of course we may take a C1 approximation arbitrarily close
(in the compact-open topology); anyway, bLL is itself an estimator of the
Bayes error, so we will not concern ourselves unduly with technical min-
utia here. There are several factors which make this traditional gradient
descent approach infeasible. The principle of which is that function
evaluations are computationally expensive, in that they consist of cross-
validation nearest neighbor classifier performance on the training data.
With high-dimensional data, finite difference gradient approximations
may require as many as twice the number of function evaluations as
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the dimensionality of the data (in the case of centered difference approx-
imations to each of the partial derivatives). Thus, centered difference
approximations to Hcðw;pÞ for the Golub gene data would require
14,258 iterations of cross-validated classifier performance. Clearly, this
is not computationally feasible.

We employed two strategies to determine the approximate minimum.
The first strategy was to make the function evaluations less expensive.
Instead of performing the full cross-validation of the classifier perfor-
mance at each iteration, we performed the cross-validation only on a
uniformly sampled (without replacement) subset of the training data
(preserving in the subset the relative frequencies of representatives of each
class present in the training data). The second modification of the naive
approach was to reduce the number of function evaluations. Instead of
computing a finite difference approximation to the gradient, we estimated
the gradient using Spall’s simultaneous perturbation stochastic approxi-
mation (SPSA) method (see Spall, 1998a or the recent Spall, 2003 for a
detailed overview of the SPSA method; we present a brief description
in Sec. 4.2). The chief benefit of the SPSA method is that gradient

Figure 5. A plot of the penalty function in two dimensions.
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approximations require only two function evaluations, regardless of the
dimensionality of the optimization problem.

4.2. Spall’s ‘‘Simultaneous Perturbation Method’’

Recall that we want to minimize cðw;pÞ, where we assume that the
real-valued function is at least C1. Thus, we seek ð~ww; ~ppÞ such that
Hcð~ww; ~ppÞ ¼ 0. Of course, we should also note that, due to subsampling
of the training data for the cross-validation, cðw;pÞ is not a deterministic
function. However, this indeterminacy is modeled as noise in function
evaluations, a phenomenon to which the SPSA method is robust.

Like a traditional gradient descent algorithm, the SPSA method
produces a sequence of iterates

ðwkþ1;pkþ1Þ ¼ ðwk;pkÞ � akĝgkðwk;pkÞ; ð1Þ
where ĝgkðwk;pkÞ is an estimate of the gradient Hcðwk;pkÞ, and fakg is a
nonnegative gain sequence. Under appropriate conditions, this sequence
converges almost surely to a local extrema.

Unlike traditional implementations of gradient descent, instead of
estimating the gradient by finite difference approximations to each of
the partial derivatives (which can be thought of as perturbing each
dimension individually), SPSA proceeds by generating a simultaneous
perturbation vector. More specifically, let Dk ¼ ðDk1; . . . ;Dkðnþ1ÞÞT be a
vector, each component of which is sampled from a Bernoulli �1
distribution with probability 1=2 for each �1 outcome.

The SPSA gradient estimation is computed by performing two
evaluations of the objective function based on simultaneous perturbation
around the current iterate, ðwk;pkÞ. That is one computes cððwk;pkÞþ
ck � DkÞ and cððwk;pkÞ � ck � DkÞ, where fckg is a nonnegative gain
sequence. Then the gradient is approximated as

ĝgkðwk;pkÞ ¼cððwk;pkÞþ ck �DkÞ�cððwk;pkÞ� ck �DkÞ
2ck

ðD1
kÞ�1

..

.�
Dðnþ1Þ
k

��1

0BB@
1CCA:

ð2Þ
Given the gradient estimate in Eq. (2), the iteration scheme of

Eq. (1) was applied until convergence. Thus, the algorithm is a simple
gradient descent approach, except that it uses a novel (nondeterministic)
estimate of the gradient (as opposed to the usual, say, centered difference
approximation).
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4.3. Implementation of the SPSA Method

There there several issues which must be addressed in any implemen-
tation of the SPSA method (the reader is referred to the paper Spall,
1998b for discussion of the details necessary for implementing the SPSA
method). In this section, we will discuss specification of the gain
sequences, the initialization and stopping criteria, and several other
miscellaneous implementation details.

In the preceding section (Sec. 4.2), we introduced two gain sequences,
fakg and fckg. The satisfactory performance of the SPSA method
depends critically on these sequences. Spall specifies these sequences by

ak ¼ a

ðAþ kÞa and ck ¼ c

kg
; ð3Þ

where a; c; a; g > 0 and A � 0. Spall (1998b) recommends choosing
a ¼ 0:602 and g ¼ 0:101. The constant c was set to be the standard devia-
tion of the noise in the objective function, c. Through a rather ad hoc
trial and error process, we determined that a value of a ¼ 0:75 seemed
to yield a sequence of reasonable step sizes. Finally, we simply set the
‘‘stability constant’’ A to be zero.

We next discuss the initialization, ðw0;p0Þ. We chose initial vector of
weights to be the vector each of whose elements is 1=2, i.e., w0 ¼
ð0:5; . . . ; 0:5ÞT . We experimented with uniform random initialization,
but felt that initialization too far from the ‘‘central hump’’ of the penalty
term resulted in a sequence of iterates that where unable to climb from
the initialization. The initial choice of the metric, p0, was determined
for each data set. In particular, the optimal value of the metric deter-
mined from the ‘‘greedy’’ approach was used as the initialization of the
metric.

Our stopping criteria for the optimization were the standard criteria
used in classical optimization. That is, we specified ‘‘small’’ step size
(where one uses the current value of pk for the norm) and ‘‘small’’
relative change in the objective function. More specifically,

kðwkþ1;pkþ1Þ � ðwk;pkÞkpkþ1
< E1

and ����cðwkþ1;pkþ1Þ � cðwk;pkÞ
cðwkþ1;pkþ1Þ

���� < E2;

where E1 and E2 are constants.
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Of course, given that one must specify the gain sequence for the step
size, fakg, the first criterion is essentially equivalent to specifying the
number of iterations. We found the selection of the appropriate stopping
criteria quite difficult and it is clear from our repeated trials that several
times too few or too many iterations were performed.

We also mention several other miscellaneous implementation issues.
The first issue is that the components ðw;pÞ are not well scaled. From the
initialization, one can only have small changes in the components of w;
i.e., jwi

k � wi
0j < 1=2. However, p has no such constraint. In order to

get appreciable movement from the metric during the optimization, the
vector of unknowns over which the optimization was performed was
actually, ðw; logpÞ; i.e., interpoint distances were computed using the
exponential of the last component of the vector. Also, we note that fea-
sibility was enforced at each update. By this we mean that after perform-
ing the update given by Eq. (1) any infeasible component was forced to be
in ½0; 1�; i.e.,

If wi
k < 0; then wi

k ¼ 0

or

If wi
k > 1; then wi

k ¼ 1:

Finally, due to the uncertainty in evaluations of c (due to the subsam-
pling for the cross-validation), it is only with small probability that one
would ever achieve wi

k 2 f0; 1g. Thus, in order to perform feature selec-
tion=dimensionality reduction, rounding was employed. We rounded at
four different levels (the most aggressive of which was to round every
weight to either 0 or 1), and computed final classifier performance for
the full-cross validation with each of these vectors of (differently
rounded) weights.

4.4. Results Using the SPSA Method

We note, first, that we performed the simultaneous optimization on
only two of the data sets. These were the smoothed ‘‘artificial nose’’
and the normalized Golub gene data sets. This decision was made exclu-
sively on the basis of time. Even using the SPSA method (so that only two
function evaluations are required per iteration) function evaluations are
still extremely computationally intensive (cross-validated nearest neigh-
bor classifier on high dimensional data), so several days were required
for each run (with termination either by meeting the stopping criteria
or after a specified number of iterations).
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Due to the stochastic nature of the algorithm, and the fact that one
has no guarantees that one is not finding a local minimum, the optimiza-
tion was repeated multiple times on each of these data sets. Also, due to
the nature of numerical algorithms, no weights actually ever become 1 or
0 (unless the step results in an infeasible component which is then forced
to the boundary of the feasible region). Thus, we applied various degrees
of rounding to the final weight vectors.

Figure 6 shows two typical trials of the SPSA algorithm for the
(smoothed) ‘‘artificial nose’’ data set. On the left of the figure are plots of
Minkowski p vs. iteration, and on the right are plots of the full cross-
validated classifier performance vs. iteration (the full cross-validation
was performed every 100 iterations for the purpose of generating this plot).
Figure 7 provides analogous plots for the normalized Golub gene data.

Several comments are in order. The first is that the classifier perfor-
mance achieved by the simultaneous optimization generally exceeds that
of the greedy approach. The second observation is that the dimensionality

Figure 6. Two trials of the SPSA method for the smooth ‘‘artificial nose’’ data.
Minkowski p vs. iteration (left) and full cross-validated classifier performance
(right).
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reduction achieved by the SPSA method seems to be to select approxi-
mately half of the features (after the weights are rounded). Finally, we
note that the feasible region seems to contain numerous local minima,
as repeated trials resulted in selecting several different values of the
Minkowski p-parameter and greatly differing feature sets.

5. FINDINGS

We have described above that the simultaneous ðw;pÞ optimization
performed better than greedy approach. However, what is not clear is
whether the simultaneous optimization is not just over fitting the data
in order to produce a classifier which is effective. We reluctantly posit this
theory, because intersections of selected features between subsequent
trials of the optimization, seemed to be no more significant than one
would expect at random.

Figure 7. Two trials of the SPSA method for the normalized Golub gene data.
Minkowski p vs. iteration (left) and full cross-validated classifier performance

(right).
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We recall some facts about the hypergeometric distribution. We let N
be the cardinality of the training data set. We denote by M the total num-
ber of features selected in experiment one, and by n the total number of
features selected in experiment two. Finally, we denote by X the number
of features selected in both experiments. Then, under the null hypothesis
that the features are selected at random with uniform probability, we
have the following formulae for the probability of the intersection
consisting of precisely k features

PðX ¼ kÞ ¼
M
k

� �
N�M
n�k

� �
N
n

� �
and the expected cardinality of the intersection

EðXÞ ¼ Mn

N
:

Tables 1 and 2 contain the cardinality of the intersections of the
feature sets and the expected value for the size of the intersection given

Table 1. Cardinality of intersections of selected features between trials and the
predicted value (in parentheses).

Trial

Trial 2 3 4 5 6 7 8 9

2 19 4 11 5 11 8 9 11
(NA) (6.5) (10) (7.5) (9.5) (11) (10.5) (9)

3 4 13 7 13 6 10 8 4
(6.5) (NA) (6.8) (5.1) (6.5) (7.5) (4.4) (6.2)

4 11 7 20 8 9 12 13 10

(10) (6.8) (NA) (7.9) (10) (11.6) (11.1) (9.5)
5 5 13 8 15 7 11 9 5

(7.5) (5.1) (7.9) (NA) (7.5) (8.7) (8.3) (7.1)

6 11 6 9 7 19 12 13 8
(9.5) (6.5) (10) (7.5) (NA) (11) (10.5) (9)

7 8 10 12 11 12 22 13 9

(11) (7.5) (11.6) (8.7) (11) (NA) (12.2) (10.4)
8 9 8 13 9 13 13 21 10

(10.5) (4.4) (11.1) (8.3) (10.5) (12.2) (NA) (9.9)
9 11 4 10 5 8 9 10 18

(9) (6.2) (9.5) (7.1) (9) (10.4) (9.9) (NA)
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the null hypothesis. More specifically, the entry in the ði; jÞ position in the
table consists of two integers (except along the diagonal). The upper
number indicates the actual cardinality of the set of features that were
selected in both trials i and j. The number in parentheses, is the expected
cardinality of the intersection under the null hypothesis (i.e., that the
SPSA method is simply selecting features by drawing sample uniformly
from the feature set). Even cursory inspection of these tables, makes
the null hypothesis very attractive.

A question that warrants further investigation is if there is possibly
some small subset of features that occur with higher than expected prob-
ability. And if in this small number of features that are frequently selected
lies most of the discriminant power. Especially with the Golub gene data,
it would be very hard to detect if there were some small subset occurring
more frequently than is probable than would occur under the null
hypothesis.

Table 2. Cardinality of intersections of selected features between trials and the
predicted value (in parentheses).

Trial

Trial 1 2 3 4 5 6 7 8 9 10

1 872 451 407 450 449 405 420 414 426 419

(NA) (443) (430) (450) (436) (425) (429) (423) (437) (438)
2 451 895 440 449 441 447 449 438 449 461

(443) (NA) (441) (462) (448) (437) (440) (435) (449) (450)
3 407 440 869 454 431 412 427 409 434 424

(430) (441) (NA) (449) (435) (424) (427) (422) (436) (437)
4 450 449 454 910 428 469 457 461 456 458

(450) (462) (449) (NA) (455) (444) (448) (442) (456) (457)

5 449 441 431 428 882 420 452 428 443 428
(436) (448) (435) (455) (NA) (431) (434) (428) (442) (443)

6 405 447 412 469 420 861 426 429 454 430

(425) (437) (424) (444) (431) (NA) (423) (418) (432) (433)
7 420 449 427 457 452 426 867 424 436 448

(429) (440) (427) (448) (434) (423) (NA) (421) (435) (436)
8 414 438 409 461 428 429 424 856 418 444

(423) (435) (422) (442) (428) (418) (421) (NA) (429) (430)
9 426 449 434 456 443 454 436 418 884 441

(437) (449) (436) (456) (442) (432) (435) (429) (NA) (444)

10 419 461 424 458 428 430 448 444 441 886
(438) (450) (437) (457) (443) (433) (436) (430) (444) (NA)
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