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Summary

◀ Motivation
◀ Setting and the Problem
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◀ Numerical results
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Preliminaries

Generative AI models
◀ Given a query, a generative AI model can generate a

random response (formally, a random map from an input
space/query space to out space/response space)

◀ Example: large language models (like ChatGPT) or
text-to-image models (like StableDiffusion)
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Motivation

◀ Given a set of generative AI models, we want to do statistical tasks
(analysis/inference) upon them

◀ Since their inherent mechanisms are unknown, study their responses to
user-given queries

◀ To facilitate use of conventional statistical tools, we obtain a vector
representation/embedding for every generative AI model in the given set
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Setting

◀ There are n generative models f1, f2, . . . fn

◀ There are m queries q1, q2, . . . qm

◀ Treat every response as a vector in Rs (given a query, a generative AI
model generates a random vector)

◀ When fi responds to qj, the corresponding response vector is denoted by
xij ∼ Fij
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Getting vector embeddings

◀ We want to represent every model fi with a vector ψi (ground-truth
version, whose sample-version is ψ̂i) such that

∥ψi − ψi′∥ ≈ dissimilarity(fi, fi′)

◀ How to measure dissimilarity(fi, fi′)?
◀ Hint: We measure the difference in their mean responses to the queries
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Measuring the dissimilarity between models

◀ Define

dissimilarity(fi, fi′) = ∆ii′ =
1
m

∥∥∥∥∥∥∥∥∥∥


E[xi1]− E[xi′1]
E[xi2]− E[xi′2]

. . .

. . .
E[xim]− E[xi′m]


∥∥∥∥∥∥∥∥∥∥

F

◀ Obtain

(ψ1, . . . , ψn) = arg min
zi∈Rd

n∑
i,i′=1

(
∥zi − zi′∥ −∆

(∞)

ii′

)2

where ∆
(∞)

ii′ = limm→∞ ∆ii′
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Obtaining sample counterparts

◀ We don’t have E[xij] in reality, so instead, we estimate it with
1
r
∑r

k=1 xijk where xij1, xij2, . . . , xijr are iid copies of xij (estimating
population mean with sample mean)

◀ Thus,

sample dissimilarity(fi, fi′) = Dii′ =
1
m

∥∥∥∥∥∥∥∥∥∥


1
r
∑r

k=1 xi1k − 1
r
∑r

k=1 xi′1k
1
r
∑r

k=1 xi2k − 1
r
∑r

k=1 xi′2k
. . .
. . .

1
r
∑r

k=1 ximk − 1
r
∑r

k=1 xi′mk


∥∥∥∥∥∥∥∥∥∥

F

◀ Finally, obtain sample embeddings

(ψ̂1, . . . , ψ̂n) = arg min
zi∈Rd

n∑
i,i′=1

(∥zi − zi′∥ − Dii′)
2
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Do we have consistency?

◀ Yes, we do have consistency (under certain regularity conditions)
◀ Essentially, if limm,r→∞ Dii′ = ∆

(∞)

ii′ for all i, i′, then(
∥ψi − ψi′∥ −

∥∥∥ψ̂i − ψ̂i′
∥∥∥) →P 0

for all i, i′ (from Theorem 3 in Trosset et al.,2024).
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An Important Convergence Result

This is a result from Trosset et al. (2024).

Theorem

Suppose n is fixed, but m, r grow together. Assume
∥∥∥D −∆(∞)

∥∥∥
F
→P 0 as

m, r → ∞, then there exists a subsequence of {ru}∞u=1 of {r}∞r=1 such that for
all i, i′ ∈ [n] (∥∥∥ψ̂(ru)

i − ψ̂
(ru)
i′

∥∥∥− ∥ψi −ψi′∥
)
→P 0

as u → ∞ (and hence ru → ∞) where (ψ1, . . . ,ψn) ∈ MDSd(∆
(∞)).
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How to ensure consistency?

◀ Consistency holds if limm,r→∞ Dii′ = ∆
(∞)

ii′ , but how to ensure that?
◀ More specifically, what relationship between m (queries) and r (iid

replicates of responses) guarantees limm,r→∞ Dii′ = ∆
(∞)

ii′ ?
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Key Result

Theorem
Recall that xij is the random response of fi to qj, for all i ∈ [n], j ∈ [m]. Denote
Σij = cov(xij) and γij = trace(Σij). Suppose for all i ∈ [n],

lim
m,r→∞

1
m
∑m

j=1 γij

r = 0.

Then, there exists a subsequence of sample sizes {ru}∞u=1 such that

lim
u→∞

(∥∥∥ψ̂(ru)
i − ψ̂

(ru)
i′

∥∥∥− ∥ψi − ψi′∥
)
→P 0.
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Takeway

◀ If for every generative model the average “variability” of its responses to
the queries is small compared to the number of replicates, we can
consistently estimate the population vector-embeddings
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Sketch of proof

◀ We can bound |Dii′ −∆ii′ | ≤ 1
m

∥∥X̄i − µi
∥∥+ 1

m

∥∥X̄i′ − µi′
∥∥

◀ 1
m

∥∥X̄i − µi
∥∥ →P 0 for all i ensures |Dii′ −∆ii′ | →P 0 for all i, i′.

◀ By Markov’s Inequality and Union Bound,

0 ≤ P
[

1
m

∥∥X̄i − µi
∥∥ > ϵ

]
≤ 1
ϵ2

1
m
∑m

j=1 γij

r
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Extension to growing set of generative models

◀ We can extend the consistency results to a setting where n → ∞, under
additional conditions

◀ We assume the existence of dissimilarity function ∆(∞) : M×M → R
(where M ⊂ Rq is closed and bounded) and {ϕi}∞i=1 ∈ M

◀ Define ∆(n) : M×M such that ∆(n)(ϕi,ϕi′) =
1
m ∥µi − µi′∥F for all

i, i′ ∈ [n].
◀ Note that ∆(n)

∆(∞) → 1 everywhere.
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Important Convergence result

This is a result from Trosset et al. (2024).

Theorem

Suppose ϕi ∼iid P and as n,m, r → ∞, assume Dii′
∆(∞)(ϕi,ϕi′ )

→ 1 for all i, i′.
Then there exists a subsequence {ru}∞u=1 of {r}∞r=1 such that for all i, i′,

sup
i,i′

∣∣∣∣ ∥∥∥ψ̂(ru)
i − ψ̂

(ru)
i′

∥∥∥− ∥mds(ϕi)− mds(ϕi′)∥
∣∣∣∣ → 0

as u → ∞.

Here, mds : M → Rd is a function such that

mds = arg min
g:M→Rd

∫
M

∫
M

(∥g(ϕi)− g(ϕi′)∥ − ∥ϕi − ϕi′∥)
2 dP(ϕi)dP(ϕi′)
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Sufficient condition for convergence

If for all i, limn,m,r→∞
1
m

∑m
j=1 γij
r = 0, then Dii′

∆(∞)(ϕi,ϕi′ )
→ 1 for all i, i′, which

ensures the sample embeddings converge to the population embeddings
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Use of Data Kernel Perspective Space Embedding
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Figure 1: 2-d embeddings for 50 LLMs, based on 150 queries. 25 of these
models (red) have seen sensitive data and the rest 25 models (black)
have not.
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Numerical Result
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Figure 2: Left panel: black dots are true ψ for n = 10 models. Red circles
have radius equal to average (over 100 MC-samples) Euclidean distance
between ψ̂i and ψi for selected (m, r) pairs. Right panel: Plot of
maximum estimation error of population embeddings. Goes to zero as
m, r grow.
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Thank You

Thank You !!
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