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Abstract

This paper studies a problem of identifying an inhomogeneous interaction structure amongst so-
cial agents. We construct a random graph based on the messaging activities which are modeled as
observations from a self-exciting point process. We design a methodology that divides the agents into
two disjoint groups so that members within each group are considered to be of similar attributes.
Our methodology and algorithm are useful for investigating and detecting abnormal activities within
a network. We provide numerical illustrations based on a large email dataset from Enron.
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1 Introduction

In this paper, we propose a model to estimate and analyze the structure of messaging activities in a
social network. This is motivated by the recent proliferation of mobile technology, along with spread
of blogs, social networking site, and media-sharing technology. For classification, detection, tracking
and other practical purposes, robust statistical analysis as well as a good understanding of the data
structure are essential. In this paper, we consider a collection of messaging data, made public by the
Federal Energy Regulatory Commission in 2003, that contains highly accurate information about the
time at which each message was exchanged. We introduce a meaningful way to reduce messaging data
to a random graph and explore its possible application to a community detection problem.

A simple and popular existing method to achieve this is to “pair-wise threshold”, where for each
pair of agents, an edge between vertex i and vertex j is formed if the number of messaging events
between them exceeds a certain threshold. Such graphs are often thought to reveal a structure of
an underlying social dynamic, motivating several successful models for a social network with sub-
communities. These models are based on parameterizing the distribution of a random graphs, and
there have been many tools for detecting a community with a particular graph theoretic and statistical
properties. For a survey of such methodologies, see [7] and [9].

On the other hand, some recent research, e.g. [4], has documented that changing the thresholds in
the reduction procedure can produce dramatically di↵erent graphs, resulting in dissimilar communities.
This issue has motivated the work such as [8, 12]. In both studies, as a remedy, the messaging events
are modeled by way of point processes. In [8], a piecewise-constant interaction rate is considered,
while in [12] a Cox multiplicative intensity model is used with covariates that depend on the history
of the process.

In the current paper, we analyze a multivariate self-exciting point process model for occurrence
of high risk messages. In addition, we propose a method to construct the associated graph, whose
distribution under correct estimation will be close to the distribution of an Erdos-Renyi random graph.
This feature distinguishes our methodology favorably from the “pair-wise thresholding” graph whose
distribution can be far more complex.

Based on our methodology, we can produce a random graph with a particular structure, and
identify a graph partitioning algorithm with good performance (e.g. with high success probability).
This is very useful for the purpose of community detection.
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The rest of this paper is organized as follows. In Section 2, we formulate a community discovery
problem named “vertex nomination” with a focus on a population consisting of at most two sub-
communities. In Section 3, we o↵er a simple approximation argument that yields the first-order
solution to the vertex nomination problem. Section 4 provides several numerical illustrations.

2 Vertex nomination based on self-exciting processes

We fix a probability space (⌦,F ,P) with filtration F = (Ft)0tT , satisfying the usual conditions of
completeness and right-continuity. We consider a network of n vertices, and denote V = {1, . . . , n}.

2.1 Messaging Events and Memberships

Assume that C1 and C2 form a partition of V, that is,

C1 \ C2 = ?, and C1 [ C2 = V.

As a convention without loss of generality, we will allow that C2 can be an empty set but not C1. Our
objective is to determine two disjoint groups of vertices so that the members within each group are
said to have common risk characteristics reflected by their messaging patterns.

Definition 1. A vertex v 2 V is said to have membership m 2 M, denoted by bvc = m, if v 2 Cm.

In this paper, we need not distinguish the pairs (bic, bjc) and (bjc, bic). To simplify notation, we
will write bi, jc for (bic, bjc). This allows us to keep track of only two distinct values among the four
possible combinations of (bic, bjc). For all possible membership combinations, we will use and assume
the following relation: (1, 2) = (2, 1) = (1, 1) 6= (2, 2).

For ` 2 N, we denote by ⌧`, {i`, j`} and k`, respectively, the occurrence time, the messaging pairs
and the risk level of the `-th message. Collectively, (⌧`, {i`, j`}, k`) represents the `-th messaging event.
Topic k can either be a low risk topic k = 0 or a high risk topic k = 1. In addition, we require that

⌧` < ⌧`+1 and 1  i` 6= j`  n.

Henceforth, we will focus our analysis only on the high risk messages (i.e. k = 1). For
each (undirected) pair ij of the vertices and t 2 [0, T ], we denote by N

ij

(t) the number of
(undirected) messaging events on the high risk topic, i.e., k = 1 between vertex i and vertex
j during [0, t]. For each t 2 [0, T ], let D(t) be the collection of all communication messaging
events by time t on the high risk topic, i.e.,

D(t) =

(
(⌧1,`, {i1,`, j1,`}, 1) : ` = 1, . . . ,

X

i<j

Nij(t)

)
.

Figure 1 provides an illustration of the messaging records.

2.2 Vertex nomination

We assume that the �-algebra F0 does not contain the full information about which vertices are
the members of C1. However, it is assumed that for at least one vertex v 2 V, the membership
information may be known.

In order to formulate our vertex nomination problem, we fix C1 ⇢ C1 and C2 ⇢ C2 as two
disjoint subsets. For each V ⇢ V, we denote

C1(V ) = C1 [ V, and C2(V ) = V \ C1(V ).

The purpose of vertex nomination is to determine which vertices are members of C1 and C2.

Definition 2. For any fixed c 2 {1, . . . , |V \ (C1 [ C2)|}, the candidate set is defined by

Vc := {V ✓ V \ (C1 [ C2) : |V |  c}. (1)

Each V 2 V
c

is called a vertex nomination, for which the vertex nomination solution is the

partition (C1(V ), C2(V )).

In other words, the subset V 2 V
c

is nominated to class C1, allowing us to partition the graph
into two. Our objective is to employ the messaging events D(T ) to form a basis for our vertex
nomination. In addition, a sensible nomination procedure should also use the information on
the vertices whose classes are already known in deciding where other vertices belong.
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Figure 1: The (pair-wise) messaging records amongst 34 vertices extracted from the Enron
Email corpus. Any vertically drawn line starting from the horizontal axis will either cross
nothing or cross two circles of the same color. When the vertical line crosses two circles of
the same color, for some `, the horizontal axis coordinate represents ⌧`, the pair of vertical
coordinates of two circles correspond to {i`, j`} and the color of the circles corresponds k`.
In this particular example, the red circles represents the high risk messages.

2.3 Multi-variate self-exciting point processes

2.3.1 Data generating process

We observe that people tend to communicate more often during the day than, say, midnight.
Hence, it is important to account for the periodic patterns in the intensity function, possibly at
di↵erent scales, such as daily, weekly, month, and yearly. On top of this, the intensity function
is also subject to random fluctuation.

In order to formulate a model that relates the memberships of the vertices to the observation
D(T ), we shall consider a reduced-form approach to describe the generation of messaging data.
To this end, we utilize the theory of point processes; see e.g. [13, 3].

Let A and B be 2⇥2 constant matrices. We also fix ! 2 R+, µ 2 R2, as well as ⇤1,⇤2 > 0.
We assume that N is a multi-channel self-exciting point process such that its intensity function
is given by

�
ij

(t,x) = ⇤bi,jc(1 + cos(!t+ xbi,jc)).

We assume that the intensity of N is modulated by “phase-shift” process X that satisfies the
system of stochastic di↵erential equation (SDE):

dX(t) = A(X(t)� µ)dt+ C(t)@�(t,X(t))diag�1(�(t,X(t)))dZ(t), (2)

where

dZ(t) = dN(t)� �(t,X(t))dt, (3)

dC(t) =
�
AC(t) +C(t)A0 +BB

0

�
dt� C(t)@{@�(t,X(t))diag�1[�(t,X(t))]dZ(t)}C(t). (4)

Note that we choose to suppress the dependence of � on t for simplicity in our notation, and
the partial derivatives are taken with respect to x. Also, note that Z is the compensated
martingale associated with N. We will write X(0) = x0 and C(0) = C0.

Remark. The preceding system (2)-(4), sometimes called the processor equations, is moti-
vated by the idea of filtering for doubly stochastic processes [13, Chapter 6]. In analyzing a
certain doubly stochastic point process whose intensity function is � and the underlying in-
formation process is a di↵usion process (with no jump terms), the processor equation can be
used as an tractable alternative to the original doubly stochastic process. A key appeal for us-
ing processor equations (of the original doubly stochastic process) is the fact that the value of
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X(t) is deducible exactly from the values D(T ) provided that the model parameter is known. ⇤

2.3.2 Auxiliary processes

Next, we introduce a family {XV } of processes that are computed with N, where V runs over
all possible vertex nominations. The family of these processes (conditioning on the known
model parameters) is to capture all the possible sample paths that could have yielded the
observed messaging data D(T ).

In particular, conditioning on all the true model parameters except the full identification
of the vertices’ classes, when vertex nomination V is incorrect, the trajectory of XV is likely
to be di↵erent from true path of X but when vertex nomination V is correct, the path of XV

coincides with the path of X.
For each i and j, bic and bjc denote the “true” membership of vertex i and vertex j. On

the other hand, when we talk about the membership of vertex i proposed by some vertex
nomination V , we will instead write bic

V

for the proposed membership of i. However, when
i 2 C1 [ C2, we will write bic

V

= bic regardless of the underlying vertex nomination V .

Definition 3. Let V be a vertex nomination. The auxiliary process X

V

is the solution to the

following system of SDEs:

dZV (t) = dN(t)� �V (t,XV (t))dt,

dXV (t) = A(XV (t)� µ)dt+C

V (t)@�V (t,XV (t))diag�1(�V (t,XV (t)))dZV (t),

dCV (t) =
⇣
AC

V (t) +C

V (t)A0 +BB

0

⌘
dt�C

V (t)@{@�V (t,XV (t))diag�1[�V (t,XV (t))]dZV (t)}CV (t),

where X

V (0) = x0, C
V (0) = C0 and

�V
ij(t,x) = ⇤

bi,jcV (1 + cos(!t+ x

bi,jcV )).

For simplicity, whenever it is convenient, we will also write �
ij,k

(t,x|V ) for �V

ij,k

(t,x), and
we apply a similar convention for other cases.

2.4 From pair-wise time scaling to random graphs

In this section, we outline how to associate a graph with each of the auxiliary processes. To
this end, we employ the random time-change described by the mapping:

t !
Z

t

0
�
ij

(s,X(s)|V )ds. (5)

For each vertex nomination V and ` = 1, . . . ,N
ij

(T ), we define

⇠
ij

(`|V ) =

Z
⌧ij(`)

⌧ij(`�1)
�
ij

(s,X(s)|V )ds. (6)

Then, the theory of point processes (see e.g. Theorem 7.4.V in [3]) yields that, given the vertex
nomination V is correct, the sequences

{⇠ij(`|V ) : i 6= j 2 V and 1  `  Nij(T )}

form a collection of independent exponential random variables with a common mean one. We
emphasize that the model uncertainty is only in the identification of the vertices’ classes.

Given a nomination V and the messaging events D(T ), we construct a graph as follows.
First, for each ij, we test if {⇠

ij

(`|V ) : ` = 1, . . . ,N
ij

(T )} is indeed a sequence of independent
unit rate exponential random variables by, say, the test statistic Q

ij

(T |V ) (cf. Algorithm 7.4.V
in [3]). For example, Q

ij

(T |V ) could be the sample mean of {⇠
ij

(`|V ) : ` = 1, . . . ,N
ij

(T )}.
Then, let G(T |V ) be the unweighted simple graph where for each pair of vertices i and j, there
is an edge between i and j if and only if the p-value for the test statistic Q

ij

(T |V ) is below
the level of significance. Henceforth, by the term “goodness-of-fit” graph, we shall mean the
graph obtained via the procedure we have just described.
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Figure 2: An idealized goodness-of-fit graph G0(T |V 0

0 ). The dark circles represent the C2

vertices that are incorrectly classified as C1 by vertex nomination V 0

0 . The white circles
represents C1 vertices. The edges between the dark and white circles are purely due to
randomness, and the same for the edges among white circles.

3 Approximation analysis

To illustrate our methodology, we proceed to describe a simple algorithm for obtaining a vertex
nomination solution.

3.1 Algorithm

Our algorithm is as follows. First, let V0 = ? and then construct “the goodness-of-fit graph”
G0(T |V0) based on the vertex nomination V0. Next, compute the subgraph G0

0(T |V0) induced
by V \ (C1 [ C2). Then, let V1(T ) be the community of G0(T |V ) identified by the underlying
graph partitioning algorithm as the subgraph “with the highest self connectivity.” Using
the vertex nomination V 0

0 = V \ (C1 [ C2) instead, we repeat the process to obtain another
“goodness-of-fit graph” G0(T |V 0

0) and subsequently the vertex nomination V 0
1(T ).

Hence, if either V0 or V 0
0 is a correct vertex nomination, then we expect to see evidence for

both graphs to being simple, i.e., Erdos-Renyi random graphs, one with small edge probability
and another with hight edge probability. On the other hand, the behavior of G(T |V ) when
V is incorrect can be more complex. This is analogous to the hypothesis testing situations in
which the alternative hypothesis is composite.

However, we can make some general comments about what to expect when T is su�ciently
large. First, ideally, the graph G0(T |V0) should have the following properties: (1) vertices
incorrectly placed in C2 are likely to be fully connected, (2) vertex pairs with one incorrectly
placed in C2 and the other correctly placed in C2 are likely to be connected, (3) any other
vertex pair is unlikely to be connected. In contrast, ideally, the graph of G0(T |V 0

0) should have
the following properties: (1) vertices classified incorrectly as C1 are likely to be fully connected,
(2) vertex pairs with one incorrectly placed in C1 and the other correctly placed in C1 are likely
to be connected, and (3) any other vertex pair is unlikely to be connected. Hence, ideally, it
would be that

C1 = C1 [ V1(T ) and C2 = C2 [ V 0
1(T ).

Definition 4. The performance of a graph partitioning algorithm is the likelihood that the

graph partitioning algorithm identifies V1(T ) as C1 \C1 and V 0
1(T ) as C2 \C2 respectively given

the idealized G0(T |V0) and G0(T |V 0
0) as its input.

Note that in theory, the performance of a graph partitioning algorithm may be either zero
or one provided that the algorithm is run completely. In practice, due to the running time
consideration, the algorithm may have to be terminated prematurely. Our definition above
considers this practical issue.
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3.2 First-order approximation

We now motivate our algorithm with a simple example from our general model by setting
! = 0. With this specification, the high risk bearing class has the intensity process that
is a vertical shift of the base-line class, and the multivariate counting process N is a time-
homogeneous multivariate counting process. To further simplify our derivation, we will focus
on the expected behavior of D(T ) as T ! 1.

For each pair ij, the stream of messages between vertex i and vertex j is assumed to be
generated by a homogeneous Poisson process, Also, the streams are assumed to be mutually
independent from each others.

By standard calculations (cf. [13]), the likelihood that D(T ) is generated by the model
specified by V is given by

log f(V |D(T )) = �
X

i<j

⇤
bi,jcV T +

X

i<j

log(⇤
bi,jcV )Nij(T ).

The next result states that when the only unknown in the model is the membership of the
vertices, maximizing the log-likelihood function asymptotically yields the true vertex nomina-
tion.

Theorem 1. For any arbitrary vertex nomination V , we have the following inequality:

lim
T!1

1

T

✓
log

f(V |D(T ))

f(V⇤|D(T ))

◆
 0,

where V⇤ denotes the correct vertex nomination.

The preceding theorem says that asymptotically the maximum likelihood estimate of V⇤
is consistent. However, as n gets large, the brute force search of the maximum likelihood
estimate quickly becomes intractable. To circumvent this di�culty, one can show that our
vertex nomination algorithm is capable of finding the correct vertex nomination provided that
the underlying graph partitioning algorithm performs well.

Theorem 2. Fix a graph partitioning algorithm. For each " > 0, there exists T0 > 0 such that

if T � T0, then

P(V 0
1(T ) = C1 \ C1) � (1� ")p0, (7)

where p0 2 [0, 1] is the performance of the underlying graph partitioning algorithm.

(a) The correct nomination (b) An incorrect nomination

Figure 3: Goodness-of-fit graphs based on a simulation record. The correct nomination
graph shows neither apparent concentration pattern nor connectedness. On the other
hand, the incorrect nomination graph shows both the apparent concentration around the
incorrectly classified vertices and the connectedness.

6



Figure 4: The goodness of fit graph with the vertex nomination that all vertices are in C1

when C1 = {1, . . . , 10}. The most apparent signals are from the bipartite relation between
two classes.

4 Numerical result

Our first numerical experiment in this section shows that our first-order algorithm work as ex-
pected in a situation for which the algorithm is designed. In our second numerical experiment,
we show that our first-order algorithm may not maintain its original performance across all
possible underlying subcommunity structures which are drastically di↵erent from the original
structure but may keep some of its original performance to a lesser degree.

4.1 Performance under a vertical shift with no phase shift

In Figure 3a, each gray edge represents an event that the test statistic for the pair has the
p-value lower than the pre-specified level of significance 0.0283. In Figure 3b, ten vertices with
the most edges are also the vertices whose model specification happens to be the most corrupt.

The particular choice of 0.0283 is motivated by the the connectivity threshold function for
an Erdos-Renyi random graph process. See [1] for reference. For a Erdos-Renyi random graph
G(n, p) of n vertices and edge probability p, the threshold function is given by log(n)/n. That
is, if log(n)/n < p, then almost surely as n ! 1, the random graph is connected, but if
log(n)/n � p, then almost surely, the graph is not connected.

Indeed, Figure 3a is not fully connected providing an evidence for the underlying vertex
nomination being correct. In comparison, Figure 3b is fully connected providing an evidence for
the underlying vertex nomination being incorrect. Moreover, one can observe that the factor
contributing to the connectedness in Figure 3b is the fact that at least one of the incorrectly
classified vertices is highly probable to be connected to all vertices in the graph.

4.2 Performance under a random phase shift with no vertical shift

For numerical experiments, we simulate D(T ), where N

ij

is assumed to be a self-exciting
process whose intensity process we now describe. For each x 2 R2, let

�
ij

(t,x) = ⇤bi,jc(1 + cos(2⇡t/24 + xbi,jc)),

where ⇤1 = 20 and ⇤2 = 8, and let (1, 1) = (1, 2) = (2, 1) = 1, and (2, 2) = 2.
Then, fix µ = (0, 3)T 2 R2 and for each membership group k = 1, 2, we set

dXk(t) = �(Xk(t)� µk)dt

+Ckk(t) sin(2⇡t/24 +Xk(t))
X

i<j

�k(bi, jc)⇤
bi,jcdt

+Ckk(t)
sin(2⇡t/24 +Xk(t))

1 + cos(2⇡t/24 +Xk(t))

X

i<j

�k(bi, jc)dNij(t),
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where �
x

denotes the Dirac delta function. Then, for simplicity, we use an approximation that

C(t) = C(0) for t � 0,

where C(0) is a constant diagonal matrix with positive diagonal entries. The motivation is
from a steady state approximation that can be found in [13]. Then, we have considered a
network with 20 vertices, where

C1 = {1, . . . , 10}, and C2 = {11, . . . , 20},

and we assume that C1 = C2 = ?.
The numerical experiment result is illustrated in Figure 4. In this case, the vertex nom-

ination solution considered states that all vertices are in C1. In particular, as expected, the
subgraph restricted to {1, . . . , 10} is “sparse.” On the other hand, the subgraph restricted to
{11, . . . , 20} is somewhat “dense” but not as “dense” as expected. Nevertheless, the bipartite
graph between C1 and C2 is noticeably “dense.”
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