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Motivation % — ‘Methodology — Performance

Graphs have quickly emerged as a leading abstraction for the representation of data that can potentially
encode multivariate relationships between data points. “Connectomics” models the brain as a graph [1];

vertices correspond to neurons (or collections thereof) and edges correspond to structural or functional
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which invariants are computed [4]. including voxel-wise brain-graphs.

* We created Web-services for the public to do so as well, found at:

Future Work

The Invarl ants *  Batch (multiple graphs) and programmatic interfaces are also supported.

* You can also download our Python 2.7 modules at:

As extensions to this work, we hope to:
The invariants computed are chosen for their effectiveness in characterizing network connectivity [5]. * Develop fully parallelized implementations of all invariants.

For all equations below let (G be a graph with vertices U € n, the set of all vertices. * Generate the entire graph from raw diffusion/function MRI data.

Experimental Results * Add additional invariants such as Graph Diameter and Scan Statistic-2.

* Support a wider range of graph data formats for Web-Services.
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Figure 5. Multivariate invariants computed on 120 subjects. Note that NL-3 uses an approximation algorithm only utilizing
) the top-k eigenvalue and eigenvector pairs. At 100 eigen-pairs we obtain accuracy on graphs with O(10%) nodes and
services and packaged code download. O(10%) edges. All other unrelated invariants (i.e. LP-k, SS-1, Deg) are exact.

Figure 2. Mobile Code for invariant web-
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