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•  We developed an accurate and efficient method to compute  multivariate invariants on any graph, 
including voxel-wise brain-graphs. 

•  We created Web-services for the public to do so as well, found at:  
     http://openconnecto.me/graph-services/ 
•  Batch (multiple graphs) and programmatic interfaces are also supported. 

•  You can also download our Python 2.7 modules at:  
    https://github.com/openconnectome/MR-connectome/tree/stand-alone 

Invariant Time Complexity Mean time per 
vertex at 1 core 

Clustering Coefficient Vector O(n + k) 0.59 (± 2.4) µs 
Number of   Local 3-Cliques Vector O(n + k) 48.51 (± 0.9) µs 

Degree Vector O(n) 66.64 (± 1.8) µs 
Scan Statistic-1 Vector O(nm) 0.47 (± 0.2) ms 

Latent Position-100 Matrix O(100(m+n)) 45.41 (± 0.1) µs 

The invariants computed are chosen for their effectiveness in characterizing network connectivity [5].  
For all equations below let      be a graph with vertices             , the set of all vertices.	


	


•  Latent Position-k Matrix [6],       via Lanczos’ algorithm for spectral decomposition 
•  Degree Vector,                         is an n-dimensional vector of ones	


 
•  Number of Local 3-Cliques Vector [7],                    
 
where,           is the      entry of the       eigenvector of     , and            is the        eigenvalue,     is the 
number of eigen-pairs used in the approximation 
•   Local Clustering Coefficient [8],  
 
  
•  Local Scan Statistic-1 [5],     via edge counting. We count the number of edges in the 

induced sub-graph within the i-hop neighborhood i.e.  
 
  

There are currently no known integrated packages for computing such 
invariants on brain-graphs of this size.  
 
We provide downloadable open-source code for computing invariants on 
your own machine, in addition to publicly-accessible Web-services that run 
on our data-intensive cluster. 

Figure 5. Multivariate invariants computed on 120 subjects. Note that NL-3 uses an approximation algorithm only utilizing 
the top-k eigenvalue and eigenvector pairs. At 100 eigen-pairs we obtain ~91% accuracy on graphs with O(106) nodes and 

O(108) edges. All other unrelated invariants (i.e. LP-k, SS-1, Deg) are exact. 

Table 1. Asymptotic “Big O” analysis of algorithms used and experimental time measurements using a 
single 8 core, 2.4 GHz processor Linux server with 16 GB of RAM. 

Figure 1. Illustration of the last phase of a connectome estimation pipeline that produces graphs on 
which invariants are computed [4]. 

Figure 6. Performance of each invariant when computed serially and independently of any non-dependent invariants 
on an 8 core, 2.4 GHz processor Linux server with 16 GB of RAM. Total compute time for all invariants is ~3.7 h per 

graph, per core. 

This work was supported by the National Institutes of Health (NIBIB 1RO1EB016411-01) 
and the National Science Foundation (OCI-1244820). 

Figure 4. Screenshot of Web-services for graph building and invariant computation on graphs 
in accepted formats as described online. 

As extensions to this work, we hope to: 
•  Develop fully parallelized implementations of all invariants. 
•  Generate the entire graph from raw diffusion/function MRI data. 
•  Add additional invariants such as Graph Diameter and Scan Statistic-2. 
•  Support a wider range of graph data formats for Web-Services. 

disa@jhu.edu 

Computing Scalable Multivariate Glocal Invariants of Large Brain-Graphs 
(with a Web-service to boot) 

 Disa Mhembere, William Gray Roncal, Daniel Sussman, Rex Jung, Sephira Ryman, R. Jacob Vogelstein, Carey Priebe, Joshua T. Vogelstein, Randal Burns 

Figure 2. Mobile Code for invariant web-
services and packaged code download.  

Mobile scan it! 

a. LEFT: Desikan structural gyral labeling. 
RIGHT: Tractography diffusion. Combined to 
show brain coregistration. 

b. Fiber labeling example where a fiber streamline 
connects two regions. The notion of a graph edge is 
derived from such connections. 

c. Visualization of regional connectivity 
(connectome) superimposed on a subject’s brain. d. Connectome graph in adjacency 

matrix form.  
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Figure 3. Pipeline showing data transformation phases where we extract the LCC [6] prior to brain-graph binarization and 
invariant computation. 
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c. Binarized LCC of graph 

a. Complete connectome graph 
(Same as Figure 1d)   

In-memory invariant 
computations 

Extract Largest Connected 
Component (LCC) 

d. Perform all computations concurrently on the CPU    

b. LCC of brain excluding grey matter  
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Graphs have quickly emerged as a leading abstraction for the representation of data that can potentially 
encode multivariate relationships between data points. “Connectomics” models the brain as a graph [1]; 
vertices correspond to neurons (or collections thereof) and edges correspond to structural or functional 
connections between them. Computing their invariants may enable neuropsychiatric diagnosis by 
partially extracting  biologically-relevant characterizations of the human brain. Magnetic Resonance-
derived connectome graphs (connectomes) are of scale O(106) vertices and O(108) edges. Their scale 
makes computing invariants (graph statistics) extremely challenging as their size and order can far 
surpass the bounds of current software tools [2, 3] available for analysis.  
 
To address these computational deficiencies we present an open-source package and complementary 
Web-services to compute six high-accuracy “glocal” invariants. We define multivariate glocal graph 
invariants as features of  the graph that simultaneously capture various local and global topological 
properties. 
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