
Comput Stat (2008) 23:497–517
DOI 10.1007/s00180-007-0090-8

ORIGINAL PAPER

Iterative Denoising

Kendall E. Giles · Michael W. Trosset ·
David J. Marchette · Carey E. Priebe

Received: 6 July 2007 / Accepted: 4 September 2007 / Published online: 12 October 2007
© Springer-Verlag 2007

Abstract One problem in many fields is knowledge discovery in heterogeneous,
high-dimensional data. As an example, in text mining an analyst often wishes to
identify meaningful, implicit, and previously unknown information in an unstructured
corpus. Lack of metadata and the complexities of document space make this task
difficult. We describe Iterative Denoising, a methodology for knowledge discovery in
large heterogeneous datasets that allows a user to visualize and to discover potentially
meaningful relationships and structures. In addition, we demonstrate the features of
this methodology in the analysis of a heterogeneous Science News corpus.

Keywords Knowledge discovery · Text mining · Classification · Clustering

1 Introduction

A user who wants to understand a large, heterogeneous, and high-dimensional set of
data and find interesting information and relationships in that data needs a sufficiently

K. E. Giles (B)
Department of Statistical Sciences and Operations Research,
Virginia Commonwealth University, Richmond, VA 23284, USA
e-mail: kendallgiles@gmail.com

M. W. Trosset
Department of Statistics, Indiana University, Bloomington, IN 47405, USA

D. J. Marchette
Dahlgren Division, Naval Surface Warfare Center, Dahlgren, VA 22448, USA

C. E. Priebe
Department of Applied Mathematics and Statistics, Johns Hopkins University,
Baltimore, MD 21218, USA

123

498 K. E. Giles et al.

flexible and powerful computational framework in hand to facilitate data processing
and knowledge discovery. For example, imagine that a user has been presented a large
collection of text documents and wants to examine and understand those documents
from an analytical perspective. The user might have an information retrieval task in
mind, where it is desired to find a set of documents relevant to a specific query. Or the
user might wish to understand relationships between multiple documents. The user
might also wish to identify the topic of discussion in a collection of emails, or to cluster
them according to relevant criteria. However, increasingly, the user must analyze large,
complex, unstructured datasets, meaning that the dataset may not include class labels
for the documents, the number of documents to be analyzed is large, and there may
be local (as opposed to global) structures that characterize some of the data. So the
user’s task is to explore the data, extract meaningful, implicit, and previously unknown
information from a large unstructured corpus.

From this scenario we can identify several relevant issues and needs. First, if we
consider a word or phrase in one document as one dimension, then the dimensionality
of the search space, from a performance perspective, would be prohibitively expensive
and difficult for operations on a corpus even on the order of tens-of-thousands of docu-
ments and tens-of-thousands of words per document. The computational performance
of processing such high dimensional data can be limiting. Moreover, visualizing and
comprehending high dimensional spaces can be difficult for the user, who typically
understands data best in two or three dimensions. Second, in large, complicated data-
sets, an important finding for the user might be relationships found in local structures,
where features of the data may have differing relationships in different parts of the
data. Third, the lack of existing class labels limits the ability of a user to analyze the
corpus without first applying some structure to the data.

This paper presents a general methodological instantiation of a general machine
learning decomposition framework, described in, e.g., Schalkoff (1991). In particular,
our methodology, called Iterative Denoising, is designed for knowledge discovery in
large heterogeneous datasets to tease out local structures and relationships of possible
interest, display useful information to the user, and address scaleability and high-
dimensionality concerns, as in Giles (2006).

2 Methodology

Based on the principle of integrated sensing and processing (Priebe et al. 2004a), the
basic philosophy of our methodology is that, starting with a heterogeneous dataset C,
based on the selection of appropriate features we denoise C into {C1, . . . , CJ }, where
each C j is meant to be more homogeneous than C (Priebe et al. 2004b). We note that
in order to highlight certain types of multivariate structure in the data, the features
in C are transformed and/or represented in a lower-dimensional space before they are
partitioned, and so we mean “denoising” to be a bit more than just the “clustering”
of typical machine learning approaches. We also note that this lower-dimensional
representation is important for user visualization and interaction. The denoising of
each C j continues recursively until the collection is homogeneous enough for inference
to proceed. The resulting clusters are organized into a hierarchical, divisive tree.

123

Iterative Denoising 499

Fig. 1 Iterative Denoising
flowchart

(a) Complete Flowchart (b) Denoising Detail

We present a high-level version of our methodology in Fig. 1a. The first component
in the figure is Extract Summary Metrics. We are initially given a dataset
C = {C1, . . . , Cn} consisting of n elements, where n is large. These elements, which
may come from a database or stream, are the observations of interest—they can be text
documents, images, web pages, computer network flows, etc. In this step we extract
out useful (essential) summary metrics � for each document that we can refer to
throughout future processing:

� = {�1, . . . , �n} = essentials(C).

The exact form of the metrics is data-dependent, but one example of summary metrics
is word counts for words in a document.

Next, once we have summarized the node’s data, we want toExtract Features
from the data—we use these features to measure the similarity or dissimilarity of ob-
jects in the node. Note that the features are dependent on the data in a particular node.
For this reason, we call this function cdfe, for corpus-dependent feature extraction.

Let f� be the set of features in the current collection of metrics �, then compute:

X� = cdfe(�),

where X� is a |�| × | f�| matrix. Note that both the features and the number of
features depend on the collection of documents in the current node represented by �.
For example, for text documents the features might be a mutual information measure
based on associations of occurrences of Ngrams among documents in the corpus, as
in Lin and Pantel (2002), or they may be simple word-frequency counts.

Next, we want toDenoise the current node. Using the desired features we partition
the X� after it has been represented in a lower-dimensional space, to highlight certain
types of multivariate structure. As mentioned above, we end up with a number of child

123

500 K. E. Giles et al.

partitions or cells (γ of them) that are more homogeneous than the parent node. This
denoising process is expanded in detail in the next section.

An important attribute of our methodology is that users may want to Interact
with the resulting visualized representations. We are not only providing to the users
lower-dimensional-space representations to highlight (possibly) desired structures in
the data, but we are also allowing the user to interact with the data. For example, the
user may wish to change the displayed geometry relationships between objects, say
to reflect some metadata intelligence the user has received that is not reflected in the
original data (see Priebe et al. 2004b). But through interaction, the user dynamically
affects the growth of the tree.

For each resulting child node, which represents data from the previously discussed
denoising and user interaction steps, we recursively start over from the Extract
Features component. It is necessary to extract new features for each node because
the objects in the child node are a subset of the objects that were in the parent node, and
thus the feature metrics need to be recomputed to reflect the changed node membership.
The flow continues, recursively denoising and growing the tree, until some stopping
criteria has been met for a particular node (such as reaching the node’s minimum
number of objects) or for the tree itself (such as reaching the maximum desired level
of the denoising tree). Because our methods are intended for interactive use with
large data sets, and because our methods proceed by recursively denoising previously
identified subsets of data, we call our methodology Iterative Denoising.

2.1 Denoising

Given a node and its corresponding feature matrix, X�, we seek to partition the
objects in the node into two or more subsets of objects of greater homogeneity than
the entire node. This is essentially the problem of clustering, i.e., of identifying subsets
of objects that exhibit “internal cohesion” and “external isolation” (Cormack 1971).
The fundamental challenge of Denoising is to identify and/or develop clustering
methodologies that scale well to large data sets and that facilitate user interaction, a
limitation of most clustering algorithms.

Note that one cannot claim that subsets of a node are more homogeneous than the
node itself unless one has some way of measuring which pairs of objects are nearby
and which pairs of objects are far apart. Every clustering methodology necessarily
relies on some measure of pairwise proximity; hence, the first step of Denoising is
to Compute Proximities.

Assuming that our proximities are symmetric, then the introduction of proximities
allows us to represent the objects in the current node as an edge-weighted undirected
graph G. Each vertex in the graph corresponds to an object; the edge weights are the
pairwise proximities. This representation of the data transforms the clustering problem
into a graph partitioning problem.

Given a threshold on the proximities we construct G ′ to be the unweighted graph
with edges corresponding to those of G with weight less than the threshold. Then,
a natural way to partition G ′ into a specified number of subgraphs is to choose the
partition so as to balance the number of vertices in each subgraph and to minimize

123

Iterative Denoising 501

the number of edges between subgraphs. Unfortunately, this problem is NP-complete
(Garey et al. 1974).

A number of heuristic and approximate approaches to graph partitioning have been
suggested. For example, Kernighan and Lin (1970) proposed an exchange algorithm
that swaps pairs of nodes between clusters. Similar approaches are summarized in
Alpert and Kahng (1995), but none of these algorithms scale well to large datasets. One
way of addressing scalability is through recursive partitioning, in precisely the same
spirit as Iterative Denoising. In multilevel approaches to graph partitioning, the original
graph is approximated by a sequence of increasingly smaller graphs. The smallest
graph is then partitioned and that partition is propagated back to the original graph
(Hendrickson and Leland 1995), as implemented by, for example, METIS (Karypis
and Kumar 1998).

A fundamental difficulty with traditional graph partitioning methods, however, is
that they do not represent the data in ways that facilitate visualization and user interac-
tion. To accommodate the abilities of most users, we attempt to represent the objects
as points in a low-dimensional Euclidean space, in such a way that proximate pairs
have small Euclidean distances. The construction of such representations is called
embedding, or (in psychometrics and statistics) multidimensional scaling. Thus, after
we Compute Proximities, we Embed.

Our desire to embed the data in a low-dimensional space means that we are not
simply embedding the data, but also reducing the dimensionality of the data. In fact,
the conceptually distinct steps of Compute Proximities and Embed can be
discerned in various methods for nonlinear dimension reduction, or manifold learning,
such as in the popular Isomap (Tenenbaum et al. 2000) approach to manifold learning.
Though we formalize and generalize these common approaches by noting distinct
steps in the process, as discussed in further detail in the next section, the steps of
Denoising are summarized in Fig. 1b.

2.2 Compute proximities

The proximity of two objects is generally measured by computing similarities or
dissimilarities. Because most embedding algorithms approximate dissimilarities with
Euclidean distances, similarities are often transformed to dissimilarities prior to
embedding. The conventional transformation exploits a well-known connection bet-
ween squared Euclidean distances and Euclidean inner products (see, e.g., Critchley
1988).

Note that an appropriate measure of (dis)similarity is application-specific. Recall
that summary features, e.g., mutual information measures of association between
documents for specific Ngrams, have already been extracted. We compute proximities
as follows:

1. We conceive the | f�| features of object i as a vector, yi ∈ R
| f�|.

2. For each pair of objects i and j , we compute

ri j = 〈yi , y j 〉
‖yi‖ ‖y j‖ .

123

502 K. E. Giles et al.

Notice that, were we to center the feature vectors before performing this operation,
ri j would be Pearson’s product-moment correlation coefficient.

3. We construct a weighted undirected graph G with edge weights ri j . For each vertex,
we desire the k nearest vertices, as measured by shortest path length, where k is
specified by the user. However, to reduce the computational complexity of finding
nearest vertices, we do not insist on finding the exact set of k nearest vertices;
instead, we settle for an approximation thereof.

4. We construct an unweighted undirected graph G ′ in which vertices i and j are
connected by an edge if either vertex i belongs to the set of (approximate) k nearest
neighbors of vertex j , or vertex j belongs to the set of (approximate) k nearest
neighbors of vertex i .

5. We construct the adjacency matrix, A = [ai j], of the unweighted graph G ′, i.e.,
ai j = 1 if an edge connects vertices i and j , otherwise ai j = 0. The adjacencies
are crude—but efficiently computed—pairwise similarities.

2.3 Embed

Roughly speaking, there are two general approaches to embedding: approaches that fit
distances and approaches that fit inner products. The distance approach encompasses
both extremely fast heuristic methods like FastMap (Faloutsos and Lin 1995) and more
principled methods that require numerical optimization of an error criterion, e.g., the
majorization algorithm of de Leeuw (1988) for minimizing the raw stress criterion. The
latter tend to be prohibitively expensive for large data sets, but see Trosset and Groenen
(2005) for an algorithm that decreases the raw stress criterion with a computational
complexity of O(n).

The inner product approach encompasses classical multidimensional scaling
(CMDS) (Torgerson 1952; Gower 1966), as used in Isomap, as well as various other
techniques for constructing “eigenmaps,” e.g., Belkin and Niyogi (2003), Roweis and
Saul (2000), and Donoho and Grimes (2003). What these methods have in common
is the extraction of d eigenvectors from a symmetric, centered, matrix B of Eucli-
dean inner products. The eigenvalues and eigenvectors of this matrix are then used to
construct a configuration of points in R

d .
To apply CMDS to our adjacency matrix, A, we must first convert similarities (adja-

cencies) to dissimilarities. As explained in Saerens et al. (2004), this is accomplished
implicitly by constructing a Laplacian eigenmap. The (implicit) dissimilarities are
average commute times between pairs of vertices, based on a Markov-chain model of
a random walk through the graph.

Define the diagonal matrix D = [di j], di j = 0 for i �= j , by

dii =
∑

k

aik,

the number of vertices to which vertex i is adjacent. The symmetric, positive semide-
finite matrix L = D − A is the Laplacian matrix of the unweighted graph G ′. Some
years ago, Fiedler (1973) argued that the eigenvector corresponding to the smallest

123

Iterative Denoising 503

positive eigenvalue of L facilitates clustering the vertices of G ′. This insight is the
inspiration for spectral clustering.

To construct the d-dimensional representation that we will call Fiedler space, let
0 < λ1 ≤ · · · ≤ λd denote the smallest nonzero eigenvalues and let v1, . . . , vd denote
the corresponding eigenvectors. The Cartesian coordinates of the points in Fiedler
space are then obtained as rows of the matrix

F =
[

v1√
λ1

∣∣∣∣ · · ·
∣∣∣∣

vd√
λd

]
.

Other scalings of the eigenvectors are also used, but dividing each eigenvector by the
square root of its eigenvalue corresponds to embedding by CMDS after the transforma-
tion to dissimilarity implicit in Saerens et al. (2004). The feature matrix, F , provides
Cartesian coordinates used to visualize and partition the objects in the current node of
the Iterative Denoising tree.

2.4 Partition

Finally, we measure dissimilarity in Fiedler space by Euclidean distance, then use stan-
dard clustering methods to further partition the current node of the Iterative Denoising
tree. Our approach allows us to choose any of the myriad algorithms available for
clustering points in Euclidean space; see, for example, Everitt (1993), Gordon (1999),
and Mirkin (2005) for surveys of various approaches.

To date, our development of Iterative Denoising has relied on k-means clustering.
In this approach to clustering, the user specifies γ = k, the number of subsets in a
partition of x1, . . . , xN ∈ R

d . Algorithms for k-means clustering then attempt to find
a partition, {C1, . . . , Ck}, that minimizes the squared error criterion

W (C1, . . . , Ck) =
k∑

i=1

∑

x j ∈Ci

∥∥x j − x̄i
∥∥2

,

where x̄i = x̄(Ci) is the mean of the x j ∈ Ci . There exist a number of algorithms that
monotonically decrease W and converge to a locally optimal partition, but algorithms
that guarantee global solutions are usually overwhelmed by several hundred xi . For
this reason, we are content to find good (not necessarily optimal) partitions.

3 Implementation description

While the previous sections describe the Iterative Denoising methodology, we note
that there are numerous possible algorithmic implementations. For example, for the
Compute Proximities step, we could choose to implement dissimilarities or
approximate nearest neighbor adjacencies; for the Embed step we could perform mul-
tidimensional scaling or Laplacian eigenmapping—all such implementations would
be within our methodology, and analysis of these implementation differences will fuel

123

504 K. E. Giles et al.

Table 1 Text corpus metrics
Symbol Description

m·· The total number of words in C
mo· The total number of all words in that document

mow The number of times word w appears in o

m·w The total number of times the word appears in C

future research. We describe our initial implementation of Iterative Denoising in this
section; the following section describes our use of this implementation to analyze a
text corpus.

3.1 Extract summary metrics

Because the first component, Extract Summary Metrics, is only performed
once per dataset and is not part of the main Iterative Denoising recursive structure, we
designed the Extract Summary Metrics component as a stand-alone function
that can be run as a separate program or called from the main program. We also made
this a stand-alone function because this is the only step that is dataset-dependent—it is
here that the raw data is abstracted into a collection of summary metrics. As mentioned
previously, in our initial implementation we focused on text documents, and so this
step’s description of the implementation is specific to abstracting text.

In order to extract summary metrics from the raw dataset, we decomposed the
problem into three substeps. First, we clean each document using an implementation of
the Porter stemming algorithm (Porter 1980). This algorithm removes common suffixes
from English words and non-word text, and returns a set of word stems or tokens.
For example, the stem for the words connect, connected, connecting, connection,
and connections is connect. Second, we convert the word stems into Ngrams (where
Ngrams can be defined as sequences of word stems) using the count script of the
Ngram Statistics Package (Banerjee and Pedersen 2003). This script inputs raw text
files, creates a list of the Ngrams in those files, and outputs the Ngrams with their
frequencies, in descending order by frequency.

Next, using a large hash structure, documents × unique Ngrams (words), we output
for each document o: the word w, the number of times word w appears in o (mow), the
total number of times the word appears in C (m·w), and the Ngram number. This gives
us a set of metrics �. From these summary metrics we can also determine m··, the
total number of words in corpus C, and for each document o ∈ C the total number of
all words in that document mo·. The extracted metrics for processing text documents
are summarized in Table 1.

3.2 Extract features

In this step we use the summary metrics � computed in Extract Summary
Metrics to extract the features of the documents. For our implementation, we
extracted mutual information values for each document and unique word in the corpus.

123

Iterative Denoising 505

Using our previously noted essentials, this mutual information value is computed as:

MIow = log
mow

mo·

/m·w
m··

.

The number of features is the number of distinct words in the corpus; for each document
we compute that number of mutual information values.

3.3 Compute proximities

From our summary features we wish to create a structure that reflects object simi-
larities. As described in Sect. 2.2, we do so by constructing an unweighted undi-
rected graph for which vertices correspond to objects and edges connect pairs of
objects whose proximity attains a specified threshold. One natural way to implement
proximity-thresholding is to use a nearest-neighbor search algorithm. In R

d , traditional
(exact) nearest neighbor algorithms use either nO(d) space or O(dn) time. However,
due to the curse of dimensionality, exact searches perform little better than sequen-
tial searches as n gets large. Recent work on approximate nearest neighbor algorithms
(Houle 2003, Houle and Sakuma 2005, Arya et al. 1998, Kushilevitz et al. 1998, Indyk
and Motwani 1998, Gionis et al. 1999, Clarkson 1999) has attempted to circumvent
the curse of dimensionality by essentially relaxing the exact nearest neighbor search
restriction in return for faster search performance. It is precisely this relaxation that
we exploit to realize our proximity-thresholded graph G ′.

In our implementation we use the SASH data structure (Houle 2003; Houle and
Sakuma 2005) to perform nearest neighbor searches to find the K nearest neighbors
to a particular object. Using SASH, we realize G = sash(X�). However, G may not
be symmetric due to the geometry of the object similarities, and so we add missing
edges to G as G ′ = symmetrize(G). From G ′ we create the adjacency matrix A
as noted in Sect. 2.2. Since A is large and sparse, we actually do not store A but use a
sparse representation both for storage and matrix computations, which we will further
detail in the next section.

For n objects, the discussion in Sect. 2.2 conveys the impression that it is necessary
to pre-compute all n(n − 1)/2 proximities. In fact, it is not necessary to compute all
O(n2) proximities in order to find approximate nearest neighbors. Because the SASH
data structure is organized as a multi-level hierarchy of random samples, where objects
in a given level are connected only to approximate nearest neighbors drawn from the
level immediately above, not all pairs of proximities are necessarily computed.

3.4 Embed

In order to embed our high-dimensional objects in a low-dimensional space, as dis-
cussed in Sect. 2.3, we want to convert our computed similarities to dissimilarities in
part by computing the d smallest positive eigenvalues of our Laplacian eigenmap L .
One difficulty in computing these eigenvalues is that L may be quite large. But L may
also be sparse, and so we utilize the ARPACK library (Lehoucq and Yang 1988) to

123

506 K. E. Giles et al.

exploit this sparsity in order to address scalability issues. ARPACK is a collection of
Fortran routines that solve large eigenvalue problems by implementing a variant of
the Arnoldi process (Arnoldi 1951) [which in the symmetric case reduces to a variant
of the Lanczos process (Lanczos 1950)]. Because ARPACK does not have a mode
in which it calculates the d smallest positive eigenvalues, we ask for the d ′ smallest
eigenvalues, then use the d < d ′ smallest positive eigenvalues and corresponding
eigenvectors to construct an embedding. The discrepancy, d ′ − d, equals the number
of connected components of the graph G ′. ARPACK is an iterative method that suc-
cessively computes vectors and asks for matrix–vector products. ARPACK does not
actually store or factor the matrix, L , but rather queries a user-provided function that
computes the product of L with an ARPACK-provided vector.

3.5 Partition

As noted in Sect. 2.4, to measure dissimilarity in Fiedler space by Euclidean distance,
we use k-means clustering. In our implementation we use the k-means implementation
of Lloyd’s algorithm in Kanungo et al. (2004). k-means clustering supposes that,
given a set of n ∈ R

d data points and a number of desired centers γ , minimize the
mean-squared distance from each data point to its nearest center. Lloyd’s algorithm, as
implemented in Kanungo et al. (2004), observes that the optimal placement of a center
is at the centroid of its associated cluster. For a set of k centers z ∈ Z , Lloyd’s algorithm
iteratively moves every center z to the centroid of the corresponding neighborhood of
data points V (z) until convergence.

3.6 Interact

For visualization and user interaction, we utilize SpaceTree (Grosjean et al. 2002).
Among other changes, we modified the original code to allow for images to be dis-
played when a user clicks on a particular denoising tree code. Our Interact com-
ponent outputs an XML file containing information on node contents and tree hierarchy
information in the format desired by SpaceTree.

4 Application: Science News corpus

As an example, we used a heterogeneous corpus D = {D1, . . . ,Dn} of n text docu-
ments from the Science News (SN) website. Table 2 shows the number of documents
in D per class, where |D| = 1,047. In addition, we note the symbol scheme used to
identify class membership in the following figures. We again stress that our framework
is an unsupervised approach, and so the class labels are just for validation; we applied
the previously described implementation of Iterative Denoising to this database to
examine the structures and relationships contained therein.

Each document in the corpus is represented in its own text file. The result of our
Extract Summary Metrics step was a collection of 1,047 files, each contai-
ning the Ngrams for that document and appropriate summary counts. For this example,

123

Iterative Denoising 507

Table 2 Science news corpus
Class Number of documents Symbol

Anthropology 54 ◦ Open circle

Astronomy 121 � Closed diamond

Behavioral Sciences 72 � Open square

Earth Sciences 137
 Open triangle

Life Sciences 205 ♦ Open diamond

Math & CS 60 � Closed square

Medicine 280 • Closed circle

Physics 118 � Closed triangle

we only used monograms. Once the summary metrics were extracted, we began the
Iterative Denoising recursion by choosing some initial parameter values and invoking
our implementation on the dataset. We used initial parameters of K = 20 nearest
neighbors, γ = 3 partition cells, and d = 4 dimensions for our Fiedler space embed-
ding. Depending on the size of the nodes deeper into the Iterative Denoising tree, we
adjusted K to keep the K/n ratio small.

Figure 2 shows the resulting Iterative Denoising tree. Each node in the figure shows
the node index, the K used for that node, counts for each class (in the order given in
Table 2), and the size of the node. Below each node label is a view of that node’s Fied-
ler Space embedding of the documents in that node. There are a total of four levels to
the tree, though for space limitations the entire tree is not shown. In general, Iterative
Denoising trees are not symmetric—iteration occurs if the node is sufficiently large
and non-homogeneous. For example, Node 12 is small and relatively pure—this node
contains a large collection of Behavioral Sciences documents that have been extracted
from among the Medicine documents, so it may be sufficient for iteration to stop there.
However, Node 13 is large and mixed, so iteration can proceed to another level. Where
appropriate, some of the Fiedler Space embeddings will be shown below in a magnified
form for exposition. However, this tree view shows an example of the overall Itera-
tive Denoising framework, where a large collection of non-homogeneous documents,
in Node 1, is iteratively denoised to produce relatively homogeneous collections of
documents in the leaves of the tree, as seen in Node 12. Finally, it should be remembe-
red that iteration proceeds as a function of corpus-dependent feature extraction—new
features and dimension reduction processing are recomputed for subsets of a node
rather than relying on simple hierarchical clustering, as described in Sect. 2 and as
detailed in the following.

In Fig. 2, and throughout, each document is shaded according to its partition, each
document’s location is noted by a symbol appropriate to the class of the document,
and each location is plotted according to the smallest two Fiedler vectors. Note that
partition boundaries are not linear—partitioning occurs in the entirety of the embed-
ding space (in this example, d = 4, though only the first two dimensions are plotted).
The resulting geometric relationships immediately reveal a large cluster of Medicine
documents (closed circles) in the southeast portion of the figure, and a cluster of Astro-
nomy documents (closed diamonds) in the southwest. It is not unreasonable to suggest

123

508 K. E. Giles et al.

Fig. 2 An iterative denoising tree on science news corpus

that Astronomy and Medicine are two very distinct fields, and so it is interesting, and a
partial validation of our approach, that Astronomy and Medicine documents are reco-
gnized and realized as separate clusters. Similarly, a collection of Physics documents
(closed triangles) is next to Astronomy, and a collection of Behavioral Sciences (open
squares) documents is next to Medicine. Though the cluster is less well defined, on the
left after Physics is a collection of Earth Sciences (open triangles), along with a collec-
tion of Math/CS (closed squares). Similarly, on the right after Medicine and Behavioral
Sciences is a collection of Life Sciences (open diamonds) and Anthropology (open
circles). So, though some clusters overlap, from the root node it can be seen that
Iterative Denoising has reasonably clustered the documents by type, and the clus-
ters have been arranged according to an intuitive affinity of document contents—the

123

Iterative Denoising 509

(a) With CDFE (b) Without CDFE

Fig. 3 Node 4

physical sciences on the left (e.g., physics, astronomy, earth sciences, math/CS) and
the human/life sciences on the right (e.g., medicine, life science, behavioral science,
anthropology).

The structural relationships in the documents of Node 1 are reflected in the resulting
partitionings. Partition 1 (darkest shade) contains documents at the apex of Node 1, and
so contains a large mixture of all document types, whereas Partition 2 (medium shade)
is weighted more with physical sciences documents and Partition 3 (lightest shade) is
weighted with more life sciences documents. Though some clustering by document
type was evident in Node 1, as a result of corpus-dependent feature extraction from
another iteration of Iterative Denoising on each partition, Nodes 2, 3, and 4 exhibit
clearer cluster boundaries. Node 4, for example, contains in particular evident clusters
of Behavioral Sciences, Earth Sciences, and Medicine documents, as shown in Fig. 3.
This node also contains a large collection of Life Sciences documents, though this
collection is difficult to see because they are largely intermixed with the Medicine
documents.

As a specific example, note that there are two arrows drawn very close together
in Fig. 3a (note: Fig. 3b will be discussed in Sect. 4.2). These arrows point to two
specific documents that are in very close proximity. Iterative Denoising has placed
one Life Sciences document, “Skin cells reveal they have hairy origins” by J. Travis,
close to a Medicine document titled “New inner ear hair cells grow in rat tissue” by
Nathan Seppa. The first document details the work of a research group that believes
that hair follicles are the origins of growing skin cells, while the second document
details another research group trying to grow new inner ear hair cells. These two
documents, by two different authors in two different fields, both discuss a common
theme of research on cells and hair.

Through another iteration of Iterative Denoising, Node 4 is split into Nodes 11,
12, and 13, as shown in Fig. 2. Node 12, as mentioned previously, contains most of
the Behavioral Sciences documents, Node 11 contains relatively distinct clusters of
Medicine, Earth Sciences, and Life Sciences, and Node 13 contains largely Medicine
and Earth Sciences. Though not shown, the tree-view class labels show two relatively
pure leaves of Medicine documents in Nodes 38 and 39, and a two-class node of
Medicine and Earth Sciences in Node 40.

Node 3, shown in Fig. 4a, shows distinct clusters of Astronomy, Earth Sciences,
Physics, and Math/CS documents, though in this node the Physics and Math/CS

123

510 K. E. Giles et al.

(a) Node 3. (b) Node 8.

(c) Node 9. (d) Node 10.

Fig. 4 Nodes 3, 8–10 of Fiedler space embedding

clusters are not that distinct. Similar to the recursion for Node 4, Fig. 4b, c, d show the
Level 3 embeddings of Node 3. Node 8 shows mainly the two classes of Earth Sciences
and Astronomy, Node 9 shows a homogeneous class of Astronomy documents, except
for one Life Sciences document, and Node 10 shows mainly two distinct clusters of
Physics and Math/CS. Again, whereas Physics and Math/CS clusters were overlapped
in Fig. 4, their clusters are largely distinct in Node 10.

4.1 A detailed analysis of clustered documents

While the above illustrates how, on the whole, Iterative Denoising denoises and clus-
ters documents according to rough document types, it can be seen, however, that this
clustering is not perfect, as shown in Fig. 4b. The two dominant classes, Astronomy and
Earth Sciences, contain 33 and 42 documents, respectively. In addition, there are also
two Anthropology, three Physics, one Math/CS, and five Life Sciences documents in
this cluster. If the goal of Iterative Denoising was only to create homogeneous clusters
of documents in an unsupervised fashion based on assigned document types, then the
addition in particular of at least the life sciences documents would indicate a possible
shortcoming of the approach, considering that this node is dominated by the physical
sciences. However, consideration of the placement of these life sciences documents
in this physical sciences node suggests that Iterative Denoising can cluster by docu-
ment subtype in addition to document type. Table 3 shows a summary of some of
the Life Sciences and Anthropology documents placed in this node. Each document is
followed by its nearest physical sciences neighbor, for comparison. Along with each

123

Iterative Denoising 511

Table 3 Similarities in Node 8 document neighbors

Class Title Representative sentence

Anthropology Primordial Water A meteorite’s salty
tale

A water-rich, icy projectile, such as a co-
met, could have plowed into the new-
born asteroid and spilled some of its
water.

Astronomy Searching for Life in a Martian Me-
teorite A seesaw of results

Jeffrey L. Bada of the Scripps Institu-
tion of Oceanography in La Jolla, Ca-
lif., says he’s all but convinced that cell
walls and other biological artifacts, if
found, come from meltwater that pas-
sed through the meteorite during its
13,000-year sojourn in the Antarctic.

Life Sciences Myriad Monsters Confirmed in Water
Droplets

Within these droplets danced a variety
of little animals, some “so exceedingly
small that millions of millions might
be contained in one drop of water,” he
reports.

Physics Big guns, bench work: How life
could’ve come from above

Could life’s building blocks have stowed
away on such space debris and then
survived an impact with Earth?

Life Sciences Bacteria under ice: Some don’t like it
hot

Bacteria with odd lifestyles have come
under increasing scrutiny of late, with
most research focused on the so-
called thermophilic species, which pre-
fer scalding homes.

Earth Sciences Core Concerns The hidden reaches of
Earth are starting to reveal some of
their secrets

Peering deep into the bowels of the pla-
net, he saw vast currents of molten iron
alloy swirling at temperatures above
5,000 kelvins, nearly as hot as the sur-
face of the sun.

document class label, we show the title of the document and a representative sentence
from that document. The first document, “Primordial Water A meteorite’s salty tale”,
details the analysis of water-containing meteorites found on Earth that might explain
how water originated on this planet. If these meteorites contained water that originated
from somewhere off Earth, then this would give weight to the theory that Earth got its
water from bombardment by water-containing meteors. This document’s neighboring
Astronomy document, “Searching for Life in a Martian Meteorite A seesaw of results”,
also is concerned about the contents of meteorites—especially whether or not a parti-
cular meteor contains fossils of bacteria originating from Mars. The debate is whether
the structures found are bacteria structures, and whether or not the bacteria could have
seeped into the meteor through meltwater once the meteor landed on Earth. So, both
documents deal with the analysis of meteors and the tales they might tell about life on
Earth. Certainly it seems plausible that these two documents be placed together due to
the similarity of their contents. In fact, this Anthropology document could be conside-
red well-placed here, since this document could be a welcome find for a researcher or
analyst searching documents relating to the study of meteorites on Earth, who might

123

512 K. E. Giles et al.

not have otherwise discovered the questionably labeled Anthropology document had
he been looking exclusively in Astronomy or physical sciences documents.

One pair where the relationship is not as evident is the Life Sciences “Bacteria
under ice: Some don’t like it hot”, and the Earth Sciences “Core Concerns The hidden
reaches of Earth are starting to reveal some of their secrets”. The former article des-
cribes how a large portion of bacteriological research focuses on bacteria that thrive
in scalding environments, though research focusing on bacteria that lives in extreme
cold environments is of great interest. The latter article details researchers studying
computer models of the Earth’s (hot) inner core. The relationship seems to be that
both articles detail the study of extreme environments—one of ice and one of molten
iron. A common author may also explain the geometric affinity of these two docu-
ments. We detail one additional document pair. The Life Sciences document “Myriad
Monsters Confirmed in Water Droplets”, written as if it were a Science News article
from the year 1677, describes experiments with viewing tiny creatures inside drops
of water using a new scientific apparatus called a microscope. Its closest physical
sciences neighbor is a Physics document, “Big guns, bench work: How life could’ve
come from above”, that describes experiments with testing whether meteors could have
brought the building-blocks for life to Earth. So, both documents evoke the study of life
on the small-scale in small containers—in drops of water and chunks of rock. Each
of the remaining life sciences documents has some similarly reasonable connection to
its closest physical sciences neighbor. From this detailed analysis, Iterative Denoising
can emphasize subtype relationships, such as documents relating to the study of me-
teorites, over global document labels, such as “Astronomy” and “Anthropology”. It is
also interesting that a common theme of all the documents in this table seems to reflect
a common theme of the study of and the search for life in extreme environments. This
feature of Iterative Denoising suggests that this document classification approach may
have practical benefits for analysts and data miners.

4.2 Illustration by comparison of two key features

Finally, we illustrate two features of the methodology that distinguish it from conven-
tional machine learning approaches. First, we present a specific example of denoi-
sing (where the projection at the branch node is superior for some purpose to that at
the root) compared to hierarchical clustering. Second, we demonstrate the utility of
corpus-dependent feature extraction specific to text mining. In Iterative Denoising, the
features (e.g., word-weights) are recomputed on the subset, as opposed to repartitio-
ning the subset based on features computed at the root, and we give an example where
this processing choice affects discovered relationships between documents.

We illustrate the first point by considering, for simplicity, a four-class subset of
the original document corpus. Here, the corpus is composed of Astronomy, Physics,
Medicine, and Math/CS documents, for n = 579, with class counts and symbols as in
Table 2. Using initial parameters of K = 10 nearest neighbors, γ = 3 partition cells,
and d = 3 dimensions for our Fiedler space embedding, Fig. 5 shows the Fiedler
embedding for the root node. Partition membership is again noted by shade. Note
that the four classes cluster cleanly, with one partition relatively homogeneous for

123

Iterative Denoising 513

Fig. 5 Four-class science news,
root node

Astronomy, one partition relatively homogeneous for Medicine, and the final partition
containing a mix of Physics and Math/CS.

With corpus-dependent feature extraction, Iterative Denoising embeds the mixed
partition as in Fig. 6a after one iteration. Whereas, in the root node, one partition was
mixed Physics and Math/CS, after one iteration of Iterative Denoising that partition
has been denoised into one relatively homogeneous partition containing most of the
Physics documents, one relatively homogeneous partition containing a large portion
of the Math/CS documents, and one mixed partition. Table 4a shows the resulting
confusion matrix.

Contrast this performance with that of hierarchical clustering. Figure 6b shows the
results of taking the mixed partition in the root node and then performing k-means
clustering. Here the quality of the clusters is not as good compared to the quality of the
leaves using corpus-dependent feature extraction. As can be seen from the resulting
confusion matrix in Table 4b, a comparatively large number of physics documents are
in all three partitions, and the partition containing the most Physics documents also
contains a large number of Math/CS documents. In addition, the partition containing
the largest number of Math/CS documents also contains a large number of Physics
documents. Here, Partition 1 is estimated to be Math and CS, Partition 2 is estimated
to be Physics, and Partition 3 is estimated to be Physics. So, with corpus-dependent
feature extraction, the clusters appear to be more homogeneous by class than without
corpus-dependent feature extraction.

(a) With CDFE. (b) Without CDFE.

Fig. 6 Iterative Denoising versus hierarchical clustering

123

514 K. E. Giles et al.

Table 4 Physics and Math/CS
confusion matrices

Class Partition

1 2 3

(a) With corpus-dependent feature extraction
Astronomy 6 2 0

Physics 81 28 1

Medicine 1 2 0

Math and CS 4 17 34

(b) Without corpus-dependent feature extraction

Astronomy 0 5 3

Physics 11 36 63

Medicine 0 1 2

Math and CS 37 0 18

There are a number of ways that we can quantify some assessment of node quality,
but we choose an intuitively-appealing and commonly used entropy function to assess
node quality. Essentially, the impurity of a node τ is the probability p(y = 1|τ) for
some binary response variable. Here, y = 1 if the predicted class is the true class, 0
otherwise. The impurity of the node is given by (see Berk 2006):

i(τ) = [−plog(p)] − [(1 − p)log(1 − p)].

Here, i(τ) = 0 when all the node observations are all the correct class or none are
of the correct class, and i(τ) = 0.6931472 when half the observations are labeled
correctly and half incorrectly (i.e., the worst case). The “goodness” of a partitioning
by a particular classifier g is then given by the difference between the impurity of the
parent node and the probability-weighted impurity scores of the m partitions:

�I (g, τ) = i(τ) −
m∑

j=1

p(τ j)i(τ j).

With �I (g, τ), larger values mean better (more homogeneous) partitioning.
If n j1 are the number of observations in partition j that have been classified

incorrectly, n j2 are the number of observations in partition j that have been classified
correctly, n j · are the number of observations in partition j , and n·· are the number of
observations in the parent node, then we can estimate �I (g, τ) as:

î(j) = −(n j1/n j ·)log(n j1/n j ·) − (n j2/n j ·)log(n j2/n j ·), and

�̂I (g, τ) = î(τ) −
m∑

j=1

(n j ·/n··)î(j).

Using these measures of node quality, for the partitioning with corpus-dependent fea-
ture extraction, summarized in Table 4a, �̂I (cdfe, τ) = 0.254, while the partitioning

123

Iterative Denoising 515

goodness without corpus-dependent feature extraction, summarized in Table 4b,
�̂I (no cdfe, τ) = 0.133. So, between the two approaches, subjectively and quan-
titatively, in this example corpus-dependent feature extraction has produced leaves of
better quality than hierarchical clustering.

We illustrate the second point, the utility of corpus-dependent feature extraction
to text mining, by returning to Node 4 of the original document corpus, shown in
Fig. 3a. In this node, which was produced by an iteration of Iterative Denoising on
Partition 3 of the root node, a relationship was noted between two similar documents
from two different classes and written by two different authors that were placed in
close proximity in the Fiedler space embedding. By recomputing the features for a
subset of documents, corpus-dependent feature selection has an effect of ‘tuning’ the
features for that subset by only considering the documents in that subset. A common
alternative is to reuse the features that were computed at the root node based on all the
documents in the root. One benefit of having word-weights for a node be computed
based on only the documents in that node is that relationships may be found that are
obscured when using global-computed word-weights.

As an example, Fig. 3b shows the resulting geometric relationships when global
word-weights are used instead of word-weights computed based on only the documents
in a subset. While much of the global document type clusters are similar to those seen
in Fig. 3a, note the geometric distance between the two similar documents that were
found in close proximity when using corpus-dependent feature extraction. Here, it
might be difficult for an analyst to find these similar documents, whereas before their
close proximity suggested they might have some relationship. In Fig. 3b, the nearest
neighbor to the Life Sciences document “Skin cells reveal they have hairy origins” by
J. Travis is the Medicine document “The Y copies another chromosome’s gene”, also
by J. Travis. The only relationship between these two documents appears to be just the
author. So, in this case using global word-weights obscured the topic area relationship
between two documents that might have been of interest to an analyst, a relationship
that was discovered by Iterative Denoising using corpus-dependent feature extraction.

5 Conclusions

Though further analysis is warranted, we have detailed our Iterative Denoising frame-
work and have demonstrated its performance on a heterogeneous document corpus.
In our analysis of a real-world dataset, we illustrated the usefulness of our metho-
dology for allowing an analyst to discover potentially meaningful relationships in
high-dimensional data. These results suggest that Iterative Denoising can assist the
user in the discovery of relationships of interest between documents. For example, the
user may have a known document that he/she wishes to place in context with other
unknown documents, and so visually comparing the proximity of the known docu-
ment with the unknown documents may provide useful information. Also, the user
may wish to uncover common themes within a large corpus, and so the user would
explore the different identified clusters to find broad categories or ideas shared among
the documents. Thus, the adjudication of these tasks can be effectively and practically
aided by Iterative Denoising.

123

516 K. E. Giles et al.

References

Alpert C, Kahng A (1995) Recent directions in netlist partitioning: a summary. Integr VLSI J 19(1):1–81
Arnoldi W (1951) The principle of minimized iterations in the solution of the matrix eigenvalue problem.

Q J Appl Math 9:17–29
Arya S, Mount D, Netanyahu N, Silverman R, Wu A (1998) An optimal algorithm for approximate nearest

neighbor searching in fixed dimensions. J ACM 45(6):891–923
Banerjee S, Pedersen T (2003) The design, implementation, and use of the ngram statistics package. In:

Proceedings of the fourth international conference on intelligent text processing and computational
linguistics. Mexico City, Mexico

Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Comput 15(6):1373–1396

Berk R (2006) An introduction to ensemble methods for data analysis. Sociol Methods Res 34(3):263–295
Clarkson K (1999) Nearest neighbor queries in metric spaces. Discrete Comput Geom 22(1):63–69
Cormack R (1971) A review of classification (with discussion). J R Stat Soc Ser A (General) 134(3):321–

367
Critchley F (1988) On certain linear mappings between inner-product and squared-distance matrices. Linear

Algebra Appl 105:91–107
de Leeuw J (1988) Convergence of the majorization method for multidimensional scaling. J Classif 5:163–

180
Donoho D, Grimes C (2003) Hessian eigenmaps: locally linear embedding techniques for high-dimensional

data. Proc Natl Acad Sci 100(10):5591–5596
Everitt B (1993) Cluster analysis, 3rd edn. Halsted Press, New York
Faloutsos C, Lin K (1995) FastMap: a fast algorithm for indexing, data-mining, and visualization of tradi-

tional and multimedia datasets. In: Proceedings of the 1995 ACM SIGMOD international conference
on management of data, pp 163–174

Fiedler M (1973) Algebraic connectivity of graphs. Czech Math J 23(98):298–305
Garey M, Johnson D, Stockmeyer L (1974) Some simplified NP-complete problems. In: Proceedings of the

sixth annual ACM symposium on theory of computing, pp 47–63
Giles K (2006) Knowledge discovery in computer network data: a security perspective. Ph.D. dissertation.

Johns Hopkins University, Baltimore
Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In: Proceedings of

25th VLDB conference, pp 518–529
Gordon A (1999) Classification, 2nd edn. Chapman & Hall/CRC, Boca Raton
Gower J (1966) Some distance properties of latent root and vector methods in multivariate analysis. Bio-

metrika 53:325–338
Grosjean J, Plaisant C, Bederson B (2002) Spacetree: supporting exploration in large node link tree, design

evolution and empirical evaluation. In: Proceedings of IEEE symposium on information visualization,
pp 57–64

Hendrickson B, Leland R (1995) A multilevel algorithm for partitioning graphs. In: Supercomputing ’95:
Proceedings of the 1995 ACM/IEEE conference on supercomputing (CDROM), ACM Press

Houle M (2003) Sash: a spatial approximation sample hierarchy for similarity search, Technical Report
RT-0517, IBM Tokyo Research Laboratory

Houle M, Sakuma J (2005) Fast approximate similarity search in extremely high-dimensional data sets. In:
21st International Conference on Data Engineering, pp 619–630

Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimensionality.
In: Proceedings of 30th ACM symposium on theory of computing, pp 604–613

Kanungo T, Mount D, Netanyahu N, Piatko C, Silverman R, Wu A (2004) A local search approximation
algorithm for k-means clustering. Comput Geom Theory Appl 28:89–112

Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J Sci Comput 20(1):359–392

Kernighan B, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J
49(2):291–307

Kushilevitz E, Ostrovsky R, Rabani Y (1998) An algorithm for approximate closest-point queries. In:
Proceedings of the 30th ACM symposium on theory of computing, pp 614–623

Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. J Res Natl Bur Stand 45(4):255–282

123

Iterative Denoising 517

Lehoucq R, Yang C (1998) ARPACK users guide: solution of large-scale eigenvalue problems with impli-
citly restarted Arnoldi methods. SIAM, Philadelphia

Lin D, Pantel P (2002) Concept discovery from text. In: Proceedings of conference on computational
linguistics, pp 577–583

Mirkin B (2005) Clustering for data mining: a data recovery approach. Chapman & Hall/CRC, Boca Raton
Porter M (1980) An algorithm for suffix stripping. Program 14(3):130–137
Priebe C, Marchette D, Healy D (2004a) Integrated sensing and processing decision trees. IEEE Trans

Pattern Anal Mach Intell 26(6):699–708
Priebe C, Marchette D, Park Y, Wegman E, Solka J, Socolinsky A, Karakos D, Church K, Guglielmi R,

Coifman R, Lin D, Healy D, Jacobs M, Tsao A (2004b) Iterative denoising for cross-corpus discovery.
In: Antoch J (ed), COMPSTAT: Proceedings in computational statistics, 16th symposium. Physica-
Verlag, Springer, pp 381–392

Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science
290(5500):2323–2326

Saerens M, Fouss F, Yen L, Dupont P (2004) The principal components analysis of a graph and its relation-
ships to spectral clustering. In: Proceedings of the 15th European conference on machine learning.
Lecture Notes in Artificial Intelligence, pp 371–383

Schalkoff R (1991) Pattern recognition: statistical structural and neural approaches. Wiley, New York
Tenenbaum J, DeSilva V, Langford J (2000) A global geometric framework for nonlinear dimensionality

reduction. Science 290(5500):2319–2322
Torgerson W (1952) Multidimensional scaling: I theory and method. Psychometrika 17:401–419
Trosset M, Groenen P (2005) Multidimensional scaling algorithms for large data sets. Comput Sci Stat

123

	Iterative Denoising
	Abstract
	1 Introduction
	2 Methodology
	2.1 Denoising
	2.2 Compute proximities
	2.3 Embed
	2.4 Partition

	3 Implementation description
	3.1 Extract summary metrics
	3.2 Extract features
	3.3 Compute proximities
	3.4 Embed
	3.5 Partition
	3.6 Interact

	4 Application: Science News corpus
	4.1 A detailed analysis of clustered documents
	4.2 Illustration by comparison of two key features

	5 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

