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a b s t r a c t

Many problems can be cast as statistical inference on an attributed random graph. Our
motivation is change detection in communication graphs. We prove that tests based on a
fusion of graph-derived and content-derived metadata can be more powerful than those
based on graph or content features alone. For some basic attributed random graphmodels,
we derive fusion tests from the likelihood ratio. We describe the regions in parameter
space where the fusion improves power, using both numeric results from selected small
examples and analytic results on asymptotically large graphs.
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1. Introduction

There are many problems that can be cast as statistical inference on an attributed random graph. An example commonly
encountered in language processing is a communication graph, in which vertices represent entities and edges the messages
between them. Thus edges and vertices are both complex objectswithmanypotential attributes of interest. Graphproperties
such as degree and adjacency provide a context for inference; see Grothendieck et al. (2009) on Switchboard and Priebe et al.
(2005) on the Enron corpus. Similar attributed graphs emerge from social network analysis (Leenders, 1995), internet traffic
(Sen et al., 2004), and in applications of entity-relation extraction (Doddington et al., 2004).
A great deal is known about random graphs (Bollobas, 2001). Certain attributed graphs (e.g. k-colorings) are also familiar.

Yet the intersection – random graphs with attributes – has a sparse literature. This is a regrettable omission; certain tasks
such as understanding natural language benefit from context beyond the content itself, and a communication graph is a
natural model for capturing elements of context. Our goal is to move beyond intuition to an analytic understanding of how
and under what circumstances the additional context provided by an attributed graph aids statistical inference.
This work considers the inference problem of detecting departures from some ordinary state, which shall serve as our

null model of an attributed graph. The motivating application is change detection — the null model is constructed from
past observations in some time window, and present observations may or may not be a good fit with that past model. We
consider several basic models of edge-attributed random graphs, building upon the notion of an Erdõs–Rényi (ER) random
graph (Gilbert, 1959). Our null models are homogeneous random graphs with one edge feature. Models for the alternative
case include a homogeneous random graph with different parameters, or a heterogeneous graph with an anomalous block
of vertices. Some natural generalizations of these structures suggest themselves.
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In the case of a communication graph such as the Enron email corpus, message attributes can be divided into classesΞC ,
ΞE , and ΞG for content, externals, and graph features, respectively. Less briefly, these are: features extracted from content
(e.g. topic classification of the message body), features external to the message body (e.g. header fields such as ‘‘Date’’:), and
features that depend on graph context beyond the message itself (e.g. an identical message was just received by everyone
in the company). For our inference problem, we demonstrate that a test using both graph and content features can be more
powerful than testing either alone. Different tests are best at different points in the set of alternatives; we prove that, under
certain conditions, fusion is most helpful in the region where the individual features have similar power.
The remainder of this paper is organized as follows. In Section 2, we analyze the simple case of detecting a homogeneous

alternative. Section 3 considers the case of detecting an anomalous block of vertices, derives the asymptotic form of the
likelihood ratio test, and presents power improvement results on simulation data. In Section 4, we extend our models to
more general families of attributed random graphs and consider the impact on asymptotic hypothesis testing. Conclusions
are presented in Section 5.

2. Attributed random graphs: Global alternative

In this section we consider the simplest case of interest. Here the hypothesis test is whether the stochastic parameters of
a basic attributed graph model take the values under the null hypothesis. We present the random graph model and derive
the likelihood ratio (LR) test. This provides a proof that fusion tests can be more powerful than tests based on the graph or
content features alone; several other results of analytic interest are immediate consequences.

2.1. ERc model

Consider an attributed graph G = (V , A)where V = {1, . . . , n}. For simplicity, edges A possess one categorical attribute,
so that each e ∈ A is given by a triple (u, v, l) ∈ V×V×L. In our conception, (u, v, l) ∈ A is a communication between vertex
u and vertex v. The pair (u, v) represents the externals of the communication which has content labeled by topic ` ∈ L, the
topic set. The graph features are extracted from the overall collection of externals. We consider |L| = k < ∞, and simple
graphs G — undirected, without graph loops, and having at most one edge between any two vertices.
We first consider the simplest random graph models that admit hypothesis testing based upon both graph features and

content. For integer n ≥ 2 and p, c ∈ [0, 1], let ERc(n, p, c) denote the random graphmodel on vertices V = {1, . . . , n} such
that each unordered pair of distinct vertices is joined by an edge according to independent Bernoulli(p) random variables, as
in the classic ER random graph. In addition, each edge has associated with it topic l ∈ L = {0, 1} according to independent
Bernoulli(c) random variables. The notation ERc is meant to suggest an Erdõs–Rényi graph ‘‘with content’’ or ‘‘with color’’
on the edges. Notice that consideration of unattributed graph structure alone gives rise to an ER(n, p) random graph model,
identified with all edges and denoted A, and that consideration of content alone gives rise to an ER(n, pc) random graph
model, identified with all edges labeled with topic l = 1 and denoted C .
Our null hypothesis shall be an ERc graph. We investigate an alternative scenario involving another ERc graph with

distinct stochastic generation of both graph features and content. Then one may consider statistical power based on one
aspect alone, or using their joint distribution — a combination or fusion of features.
For integer n ≥ 2 and p0, c0 in the interval [0, 1], let the null hypothesisH0 be an ERc(n, p0, c0) graph. This contrasts with

alternative HA an ERc(n, pA, cA) graph, for pA, cA ∈ [0, 1]with pA ≥ p0, cA ≥ c0. We denote the set of alternative parameters
ΘA = [p0, 1] × [c0, 1] \ {(p0, c0)}, where \ denotes set subtraction. These basic alternative models provide analytic insight
before we consider the non-homogeneous models of Section 3.

2.2. Log-likelihood ratio for fusion

Consider the test statistics T1 = |A| based upon graph features only, T2 = |C | based upon content only, and s(T1, T2) some
fusion of both (to be defined later). These are random variables, defined as functions of the random graphmodel. What form
do tests of a simple null versus simple alternative take?
An ER graph with n vertices has

( n
2

)
potential edges, each of which exist according to independent Bernoulli random

variables. Thus, under the ERc(n, p0, c0) null hypothesis, the statistics are distributed as binomial random variables:

T1∼H0 Bin
((n
2

)
, p0
)

T2∼H0 Bin
((n
2

)
, c0p0

)
.

Under the ERc(n, pA, cA) alternative

T1∼HA Bin
((n
2

)
, pA

)
T2∼HA Bin

((n
2

)
, cApA

)
.

T1 and T2 are dependent, since only edges that exist are given topics. In particular, using lower-case t1 and t2 to represent
observed values of the corresponding random variables
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T2 | (T1 = t1) ∼H0 Bin(t1, c0)
∼HA Bin(t1, cA).

Thus we have likelihood functions

f0(t1, t2) =
(( n

2

)
t1

)
pt10 (1− p0)

( n2 )−t1

(
t1
t2

)
ct20 (1− c0)

t1−t2

fA(t1, t2) =
(( n

2

)
t1

)
pt1A (1− pA)

( n2 )−t1

(
t1
t2

)
ct2A (1− cA)

t1−t2 .

The Neyman–Pearson Lemma states that the most powerful (MP) test of a simple null versus simple alternative hypothesis
is the (log-)likelihood ratio (LR) test. For a particular (pA, cA), log-likelihood ratio λ = log fA/f0 is

λ(pA,cA)(t1, t2) = t1 log
pA
p0
+

((n
2

)
− t1

)
log
1− pA
1− p0

+ t2 log
cA
c0
+ (t1 − t2) log

1− cA
1− c0

= t1

(
log
pA
p0
+ log

1− p0
1− pA

− log
1− c0
1− cA

)
+ t2

(
log
cA
c0
+ log

1− c0
1− cA

)
+

(n
2

)
log
1− pA
1− p0

= γ1t1 + γ2t2 + γ3. (1)

This test statistic λ(pA,cA) is a linear combination of observed (t1, t2), and the MP test rejects the null for values of λ(pA,cA)
above some threshold.

Theorem 2.1. For almost any (pA, cA) ∈ ΘA, there exists a test using (T1, T2) that is more powerful at that point than a test based
on T1 or T2 alone.

Proof. By the Neyman–Pearson Lemma. The likelihood ratio above provides such a test, save in cases where γ1 = 0 or
γ2 = 0. �

Different values (pA, cA) can lead to different λ(pA,cA). Over a compound (more than one-point) alternative hypothesis,
there may be no uniformly most powerful (UMP) test.

Corollary 2.2. No UMP test using (T1, T2) exists for H0 : ERc(n, p0, c0) versus HA : ERc(n, pA, cA) over allΘA.

Proof. The critical value of a likelihood ratio is determined by the desired test level (probability of rejecting the null when
it is true). It is well known that a linear transform of any test statistic leads to a test of equivalent power. Thus adding a
constant to γ3 in the LR statistic above leads to an equivalent test, simply with a different critical value. Similarly, scalar
multiplication leads to a scalar change in the critical value and an equivalent test. Hence all λ(pA,cA) with the same ratio
γ1/γ2 (i.e. same projective coefficient) are equivalent test statistics. However, the MP tests on different points in ΘA have
different values of this ratio, defining non-equivalent statistics of (T1, T2). No UMP test exists on all ofΘA. �

Corollary 2.3. There exist curvesΛr inΘA on which a UMP test using (T1, T2) exists.

Proof. Those (pA, cA)with the same ratio r = γ1/γ2 define curves inΘA:

Λr =

{
(pA, cA) :

crA(1− c0)
r+1

cr0(1− cA)r+1
=
pA(1− p0)
p0(1− pA)

}
=

{
(pA, cA) : pA =

[
1+

(1− p0)cr0(1− cA)
r+1

p0crA(1− c0)r+1

]−1}
.

On each Λr , the individual λ(pA,cA) define equivalent tests. This test is MP for each point in Λr , hence UMP if attention is
restricted to those points. �

Note the curve on which the coefficient for T1 is zero:

1− cA =
p0(1− pA)(1− c0)
pA(1− p0)

cA =
c0p0(1− pA)+ pA − p0

pA(1− p0)
.

Neglecting the degenerate caseswith zero Bernoulli probabilities, this always returns a valid cA ∈ [c0, 1]. Rearranging terms,

1(cp) = K1(p)

(cApA − c0p0) =
1− c0p0
1− p0

(pA − p0)
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Fig. 1. Λr for selected values of projective coordinate r , with p0 = c0 = 0.5. The most powerful test uses both T1 and T2 for any point not on solid
curveΛ0 .

defines a line in the coordinate system based upon Bernoulli parameter differences. For cA below Λ0, the best test puts a
positive coefficient on T1; above it, the somewhat non-intuitive result that larger T1 implies less relative likelihood for the
alternative hypothesis. Fig. 1 shows these curves. This also demonstrates that fusion cannot always improve power. TheUMP
test overΛ0 rejects for T2 above some threshold, independent of T1. WhileΛ0 is of measure zero (given a Lebesgue prior on
parameter space), its existence indicates that a fusion test will not have improved power over all possible alternatives.
In practice, we are unlikely to have a simple alternative hypothesis, or to conveniently know that the alternative lies

in some Λr . The standard extension of the simple-versus-simple LR test addresses this by comparing the members of the
set of nulls/alternatives with the greatest likelihood. Maximum likelihood (ML) parameter estimates are not quite trivial to
calculate; unrestricted parameters lead to ML estimates

p̂A =
t1( n
2

) , ĉA =
t2
t1
.

However, there are special cases to consider where the ML parameters lie on the boundary of ΘA. Replacing fixed pA, cA in
Eq. (1) with ML estimates provides the general LR test, with λ no longer dependent on unknown (pA, cA).

2.3. Alternative coordinates

The ‘‘natural’’ coordinates for the parameter space are not obvious, even in this simple example. Our interest in
attributed random graphs and the combination of graphical and content-derived metadata motivates parameters (pA, cA).
Mathematically, the parameters (pA, cApA) are natural for binomial random variables T1 and T2 respectively, while their joint
distribution might be more easily modeled via a trinomial random variable (i.e. edges are absent, topic 1, or topic 2). See
Fig. 2. While this work primarily uses (pA, cA) for internal consistency, the authors do invoke different parameterizations
where these provide insight.

3. Attributed random graphs: Block alternative

3.1. Simple blockmodel

We have considered random graph models under some form of homogeneity — all pairs of vertices have the same
stochastic properties in terms of communication (graph structure and content). In this section, we consider a more complex
alternative model. The alternative stochastic blockmodel hypothesis is that the vertex set V is partitioned into subsets such
that the stochastic properties of communications between a pair of vertices depend only on the subset membership of each
(see for example Airoldi et al., 2008). Thus, when vertices are ordered by subset, an n× nmatrix of a stochastic feature such
as edge probabilities Pij is a blockmatrix. Blockmodels better fit many communication graphs — people interact with friends
or coworkers more often than with random strangers.
The simplest nontrivial such model has two subsets V 0 and V A such that the stochastic properties of any pair of vertices

in V 0, or of a pair of vertices one from V 0 and one from V A, is the same as under the null while the stochastic properties
of any pair of vertices in V A differs from that under the null. The standard blockmodel further allows different stochastic
properties for edges connecting V 0 and V A; the simpler model is motivated by the smaller difference from null, with
particular application to security problems. That is, a group of actors involved in nefarious activitymight present as ‘‘typical’’
a profile towards those outside the group as they could contrive, in order to avoid notice.
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Fig. 2. Λr for selected values of r , with p0 = c0 = 0.5, using (pA, cApA) coordinates.

Fig. 3. Sketch of alternative hypothesis Kc(n, p0, c0,m, pA, cA). As with ERc , subscript-c denotes ‘‘with content’’. The small ‘‘egg’’ represents the m
vertices with anomalous communication activity amongst them, via parameters pA and cA . The large ‘‘kidney’’ represents the remaining n − m vertices,
and communication activity between any pair of these vertices or between one of these kidney vertices and one of the egg vertices behaves as in the
ERc(n, p0, c0) null model.

Alternative HA is the graph model, denoted Kc(n, p0, c0,m, pA, cA), in which there is a subset V A of V with cardinality
|V A| = m ∈ {2, . . . , n}. (Note that |V A| ≥ 2 in order for the alternative to differ from the null.) Each unordered pair of distinct
vertices in V A has an edge according to independent Bernoulli (pA) random variables and each edge has associated topic
l ∈ {0, 1} according to independent Bernoulli (cA) random variables, and all other pairs of vertices have edge probability p0
and topic probability c0 as in ERc(n, p0, c0). Thus theKc(n, p0, c0,m, pA, cA) alternative can be conceived as a communication
graph in which there is a subset of vertices with increased probability of activity and that activity involves an increased
probability of topic l = 1. Fig. 3 provides a sketch ofKc(n, p0, c0,m, pA, cA). We assume 2 ≤ m ≤ n− 2 so that both V A and
V \ V A contain at least one pair of vertices.
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3.2. Finite sample results: Analysis and theorem

Under the ERc(n, p0, c0) null hypothesis, we have

T1∼H0 Bin
((n
2

)
, p0
)

(2)

while under theKc(n, p0, c0,m, pA, cA) alternative, T1 is the sum of two independent binomial random variables

T1∼HA Bin
((n
2

)
−

(m
2

)
, p0
)
+ind Bin

((m
2

)
, pA

)
. (3)

Similarly,

T2∼H0 Bin
((n
2

)
, c0p0

)
(4)

and

T2∼HA Bin
((n
2

)
−

(m
2

)
, c0p0

)
+ind Bin

((m
2

)
, cApA

)
. (5)

Define T A1 (resp. T
A
2 ) to be the total counts in T1 (resp. T2) among the

(m
2

)
possible edges in V A. Likewise define T 01 and T

0
2

to be the counts from the
( n
2

)
−
(m
2

)
edges with the same stochastic properties as under the null hypothesis. Note that

T1 = T 01 + T
A
1 and T2 = T

0
2 + T

A
2 .

T2 is dependent on T1. As well as the range of possible values of T2, T1 also impacts the ‘‘average’’ content parameter by
providing information about the relative size of T A1 . Let a(T1) be the expected proportion of existing edges among V

A. In
particular, there is conditional distribution

T2 | (T1 = t1) ∼H0 Bin(t1, c0)
∼HA Bin(t1, c̃)

where

c̃ = a(t1)cA + (1− a(t1))c0, and a(t1) =
1
t1

EA
(
T A1 | T1 = t1

)
.

In principle we can directly calculate critical values and test powers using these null and alternative distributions, simply by
summing over the appropriate binomial count probabilities. For large n, this is not tractable, but does allow the following
result.

Theorem 3.1. A test based on fusion of graph features and content can be more powerful than a test based on either one alone.
Proof. By construction, we provide an example wherein the result holds.
Define H0, HA, T1, and T2 as in the rest of Section 3.
Define T = s(T1, T2): test statistic based on fusion of graph features and content.
Let β1 be the power of a test based upon T1, β2 the power of a test based upon T2.
We demonstrate that β > max{β1, β2} for appropriate choices of n, p0, c0,m, pA, cA, α, and T .
Consider T = T1 + T2. Under the alternative, (T 01 + T

0
2 ) is independent of (T

A
1 + T

A
2 ). Thus we need only identify the

distributions of the independent conditional random variables Z0 = T 02 |T01=t01 , which is Binomial (t
0
1 , c0), and Z

A
= T A2 |TA1=tA1 ,

which is Binomial (tA1 , cA). From these distributions we can directly calculate the critical value and the power value for the
test based on T .
It remains to calculate rejection probabilities and compare tests at the same level of falsely rejecting the null. Calculating

alternative power is then simply amatter of summing binomial probabilities over all combinations of kidney/egg edges that
would exceed the critical threshold. (Decisions may be randomized at threshold counts T1 or T2 to achieve any desired test
level α.) Fig. 4 presents results for one case showing β > max{β1, β2} on a region inΘA. �

3.3. Asymptotic distributions

Analytic structure might be more apparent (and certainly more tractable) using the asymptotic distributions as number
of vertices n→∞. For notational convenience, we define

x1 =
T1 −

( n
2

)
p0√( n

2

)
p0(1− p0)

, µ1 =

(m
2

)
(pA − p0)√( n

2

)
p0(1− p0)

x2 =
T2 −

( n
2

)
c0p0√( n

2

)
c0p0(1− c0p0)

, µ2 =

(m
2

)
(cApA − c0p0)√( n

2

)
c0p0(1− c0p0)

.
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Fig. 4. Figure demonstrating the superiority of fusion of graph features and content. This result is for s0.5(x, y) = x+y
2 withn = 5, p0 = c0 = 0.5, α = 0.05,

with fixed m = 2 and (pA, cA) varying throughout alternative region ΘA . Lighter shades indicate larger values of β − max{β1, β2}, solid curves indicates
values of (pA, cA) for which β−max{β1, β2} = 0, and the region within the solid curves is the collection of values (pA, cA) for which β−max{β1, β2} > 0.
e.g., at (pA = 0.95, cA = 0.65) – the star – we obtain β = 0.083 > max{β1 = 0.079, β2 = 0.079}.

By the Central Limit Theorem, as n→∞,

x1
D
→H0

Z(0, 1)

D
→HA

Z

(
µ1,

(m
2

)
pA(1− pA)+

(( n
2

)
−
(m
2

))
p0(1− p0)( n

2

)
p0(1− p0)

)
x2

D
→H0

Z(0, 1)

D
→HA

Z

(
µ2,

(m
2

)
cApA(1− cApA)+

(( n
2

)
−
(m
2

))
c0p0(1− c0p0)( n

2

)
c0p0(1− c0p0)

)
.

Note the consequence that power goes to α in the limit if m is of order less than n0.5, with V A too small to impact global
statistics T1 and T2. Likewise power goes to one ifm grows faster than n0.5, with V A large enough to detect with no possible
improvement from fusion. Asymptotically the interesting case is wherem grows exactly as n0.5. Henceforth we assume such
an order relationship, yielding

x1
D

→HA
Z(µ1, 1), x2

D

→HA
Z(µ2, 1).

Another consequence is to suggestmore natural coordinates for Fig. 4.We could base these upon the normalized statistics
for tests based on T1 and T2 alone. Thus each value along the x-axis (or y-axis) would correspond to a particular β1 (or β2),
as in Figs. 5 and 6.
T1, T2, and the T from the proof of Theorem 3.1 are instances of more general

sγ (T1, T2) = γ T1 + (1− γ )T2,

xγ =
sγ (T1, T2)−

( n
2

)
(γ p0 + (1− γ )c0p0)√( n

2

)
p0
(
γ 2(1− p0)+ 2γ (1− γ )c0(1− p0)+ (1− γ )2c0(1− c0p0)

) .
Then there is asymptotically normal

xγ
D
→H0

Z(0, 1)

D
→HA

Z

 (m
2

)
(γ (pA − p0)+ (1− γ )(cApA − c0p0))√( n

2

)
p0
(
γ 2(1− p0)+ 2γ (1− γ )c0(1− p0)+ (1− γ )2c0(1− c0p0)

) , 1
 .

For fixed (p0, c0, pA, cA), the alternative mean has a critical value w.r.t.

γ =
c0(1− c0p0)(pA − p0)− (1− p0)(cApA − c0p0)
(1− c0) (c0p0(pA − p0)+ (1− p0)(cApA − c0p0))

.
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Fig. 5. Here axes are alternative expected values of normalized test statistics for T1 and T2 alone, µ1 and µ2 . s0.5(x, y) = x+y
2 and n = 10, p0 = c0 =

0.5, α = 0.05, and m = 5. The image of ΘA lies within the dashed lines. Solid black lines are where β −max{β1, β2} = 0. The solid gray line shows the
best observed power improvement for fixed pA . Dotted lines are asymptotic solutions to contrast with the empirical power results.

Fig. 6. Empirical power results as in Fig. 5, except here axes are alternative rejection probability increases βi−α of the UMP level α hypothesis tests based
on T1 and T2 .

This defines the MP member of the family of fusion statistics sγ (T1, T2) with respect to detecting that particular (pA, cA)
∈ ΘA.

3.4. Asymptotic LLR

Direct calculation of T A1 proportion a(t1) from the binomial sum of HA becomes expensive — polynomial in
( n
2

)
.

Asymptotically T1 and T2 are Gaussian with known covariance, with a simple formula for conditional expectation:

a(t1) →
1
t1

((m
2

)
pA +

(m
2

)
pA(1− pA)

[
t1 −

( n
2

)
p0 −

(m
2

)
(pA − p0)

](m
2

)
pA(1− pA)+ (

( n
2

)
−
(m
2

)
)p0(1− p0)

)

→

(m
2

)
pA
t1
→

(m
2

)
pA( n

2

)
p0
. (6)

Given our order assumptions a(T1) = O(n−1).
Consider LR statistic λ for simple null ERc(n, p0, c0) against simple alternativeKc(n, p0, c0,m, pA, cA) using both T1 and

T2. Conditionally, T2|T1 can be normalized via

x2|1 =
T2 − c0t1
√
t1c0(1− c0)

, µ2|1 =
t1a(t1)(cA − c0)
√
t1c0(1− c0)

.
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This leads to

λ(T1 = t1, T2 = t2) =
[
µ1x1 −

µ21

2

]
+

[
µ2|1x2|1 −

µ22|1

2

]

= t1

[ (m
2

)
(pA − p0)( n

2

)
p0(1− p0)

−
a(t1)(cA − c0)
(1− c0)

−
a(t1)2(cA − c0)2

2c0(1− c0)

]

+ t2
a(t1)(cA − c0)
c0(1− c0)

−

(m
2

)
(pA − p0)
1− p0

[
1+

(m
2

)
(pA − p0)

2
( n
2

)
p0

]
. (7)

Consider the coefficient on T1:(m
2

)
(pA − p0)( n

2

)
p0(1− p0)

−
a(t1)(cA − c0)
(1− c0)

−
a(t1)2(cA − c0)2

2c0(1− c0)
→

(m
2

)
(pA − p0)( n

2

)
p0(1− p0)

−
a(t1)(cA − c0)
(1− c0)

≈

(m
2

)
(pA − p0)( n

2

)
p0(1− p0)

−

(m
2

)
pA(cA − c0)( n

2

)
p0(1− c0)

.

Setting this equal to zero:

cApA − c0p0 ≈
(
c0 +

1− c0
1− p0

)
(pA − p0).

As in the global alternative case, there is in fact such cA ∈ (c0, 1) for each pA ∈ (p0, 1).

Theorem 3.2. Asymptotically as n→ ∞, for almost any (pA, cA) ∈ ΘA, there exists a test using (T1, T2) that is more powerful
at that point than a test based on T1 or T2 alone. No UMP test exists for H0 : ERc(n, p0, c0) versus HA : Kc(n, p0, c0,m, pA, cA)
over all of ΘA. There exist curves inΘA on which a UMP test using (T1, T2) exists.

Proof. Essentially the same arguments as for HA : ERc(n, pA, cA). �

Note that each λ(pA,cA) test, as a linear combination of T1 and T2, is equivalent to a member of the family sγ considered
earlier. Each λ(pA,cA) is optimal on some subset of ΘA. Recall tests sγ = γ T1 + (1 − γ )T2. We now provide some
characterization of where these tests improve power over T1 or T2 alone.

Theorem 3.3. Let the power of a test based on T1 alone be β1, and on T2 alone be β2. A test sγ (T1, T2) with γ ∈ (0, 1) has
greater power thanmax{β1, β2} in some region of ΘA. Let βγ be the power of the test rejecting for large sγ . Power improvement
βγ −max{β1, β2} is greatest on the curve {(pA, cA) : µ1 = µ2 ⊂ ΘA}.

Proof. We abuse notation and denote the normalized mean value of sγ under the alternative by µγ . sγ does as well as the
test using T1 alone when µ1 = µγ , and as well as the test using T2 alone when µ2 = µγ . This describes a region in ΘA on
which sγ is better than content or graph features alone.
Consider dγ = µγ − max(µ1, µ2) for fixed γ , pA. Calculate

∂dγ
∂cA
. For γ < 1, this is non-negative when µ1 > µ2, and

non-positive when µ2 > µ1. Thus the maximum value is on curve µ1 = µ2, irrespective of γ . Equivalently the maximum
is where test power β2 equals the β1 for given pA.
Consider Dγ = βγ −max{β1, β2}. Below the equal power curve, Dγ = βγ −β1, hence increasing in cA for fixed pA. Above

the curve, Dγ = βγ − β2. Here taking derivatives along the level curves of β2 (i.e. fixed cApA) shows that D decreases for
increasing cA when γ > 0. Thus for γ ∈ (0, 1), the maximum for Dγ lies on the equal power curve. �

Thus the lightest ridge in Fig. 4 is along β1 = β2. This illustrates γ = 0.5, but the theorem implies similar results for
γ ∈ (0, 1).
This result does not entirely characterize the performance of the λ(pA,cA) since some are equivalent to sγ for γ < 0.

For those, Dγ increases for increasing cA along fixed pAcA. Such tests are powerful in the upper left corner of alternative
coordinates (pA, cA).
The theorem explains our empirical observations of best power improvement on the equal power curve. The gray line

of Fig. 5 shows µ1 = µ2, while the black lines are solutions to µγ = µ1 and µγ = µ2. The observed and theoretical lines
differ only slightly, suggesting that the normal approximation is good even at n = 10.
A classical LR test overΘA requires finding the most likely (p̂A, ĉA):

∂λ

∂pA
=

(m
2

)
(x1 − µ1)√( n

2

)
p0(1− p0)

+

(m
2

) (cA − c0)(x2|1 − µ2|1)
√
t1c0(1− c0)

∂λ

∂cA
=

(m
2

) pA(x2|1 − µ2|1)
√
t1c0(1− c0)

.
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Fig. 7. Contours of log-likelihood ratio, showing shape of rejection regions. Here n = 100,m = 10, p0 = c0 = 0.5.

Simultaneously setting both equal to zero results in

p̂A →
t1 −

(( n
2

)
−
(m
2

))
p0(m

2

)
ĉA → c0 +

t2 − c0t1
at1

→ c0 +
t2 − c0t1(m
2

)
pA

.

These can be solved iteratively for m known. For the ratio m/
√
n unknown, the problem is under-determined since larger

m̂ can be balanced by smaller p̂A and ĉA. Thus a range of solutions exists setting x1 = µ1 and x2|1 = µ2|1, so long as bounds
ĉA ∈ [c0, 1] and p̂A ∈ [p0, 1] are respected.
Assuming m known, the parameter restrictions still complicate analysis. In the case where no constraints are invoked,

µ̂1 = x1 and µ̂2|1 = x2|1:

λ(t1, t2) =
x21
2
+
x22|1
2
=

(
t1 −

( n
2

)
p0
)2( n

2

)
2p0(1− p0)

+
(t2 − c0t1)2

2t1c0(1− c0)
. (8)

Eight special cases exist in which the ML estimates lie on the boundary; each can be entered into Eq. (7). Cases ĉA = c0 lead
to tests that reject H0 for large t1. Cases p̂A = p0 lead to tests that reject for large t2 − c0t1. If both hold, the LR is zero and
there is no evidence to reject. Estimates p̂A = 1 and/or ĉA = 1 change the form of the LLR but do not greatly simplify it.
Eq. (8) is a test on the location parameter of a multivariate normal distribution, although the covariance on the second

term is decidedly non-standard. Large values of t1 −
( n
2

)
p0 or t2 − c0t1 are evidence for rejection of the null hypothesis —

Fig. 7 shows contours in the (T1, T2) plane. There is a literature on generalizations of one-sided normal hypothesis tests to the
multivariate case, and Eq. (8) resembles the LR test of Kudo (1963) or the simplified chi-square test of Follmann (1996). The
paper Chongcharoen et al. (2002) studies the powers of several related tests, with Kudo’s original test typically performing
as well or better than proposed alternatives.
While no best test exists over all of ΘA, the literature suggests that the standard LR test performs well. Fig. 8 displays

power contours of tests based upon T1, T2, s0.5, and λ. In terms of average power (flat distribution onΘA), T1 < s0.5 < λ < T2,
but this depends on the particular choice of null parameters (p0, c0). T1 does best in the lower right corner ofΘA, but rather
poorly compared to the others overall. T2 does best along the top, with the fusion tests doingwell in the intermediate region.
Fig. 9 compares the powers of the fusion tests. Fig. 10 compares the powers of individual λ(pA,cA) to the global LR test. Despite
highly variable ML parameter estimates based upon one observed graph, the power difference from the null level βλ − α
averages more than 90% that of max{β1, β2} − α, and more than 85% that of the theoretical ceiling using optimal λ(pA,cA) at
each point.

4. Results on more general graph models

Several generalizations of our basic hypothesis test seem desirable. Here we briefly consider the effects of certain model
extensions on the results of the previous section.

4.1. More than 2 topics

Extending one fixed topic of interest to multiple mutually exclusive topic labels with global relative probabilities is
straightforward. Bernoulli parameter c becomes probability vector −→c . T2 becomes a vector of topic counts, following
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Fig. 8. Empirical power results using T1 , T2 , s0.5 , and λ on simulation data. Here (n,m, p0, c0, α) = (100, 10, 0.5, 0.5, 0.05).

Fig. 9. Power difference β0.5 − βλ on simulation data.

a multinomial rather than binomial distribution. Asymptotically this leads to Gaussian (T1, T2) with known mean and
covariance, with the earlier analysis essentially unchanged.

4.2. Heterogeneous H0

A real-world communication graph bears little resemblance to an ER random graph. What follows from relaxing the null
assumption of global edge probability p0? Most generally, we can define local pij between vertices i and j. This allows a null
matrix P0 of background message probabilities. We denote the set of potential edges among the V A by EA. Thus we have
null ERc(n, P0, c0) versus alternativeKc(n, P0, c0,m, PA, cA) where m × m matrix PA encodes alternate edge probabilities
in EA. The natural interpretation of the null is now lack of change rather than homogeneity; interest is in detecting that
communications among some group have changed with respect to previously observed levels.
Matrix P can encode a sparse structure via zero probabilities. In such a case E(T1) = O(n2) or E(T A1 ) = O(m

2) are
not guaranteed. For the earlier observed asymptotic behavior to follow, rather than m = O(n0.5) we directly impose the
constraint E(T A1 ) = O(E(T1)

0.5).
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Fig. 10. Power difference of λ(pA,cA) versus λ test powers on simulation data.

The membership of V A now impacts mean and variance under HA. Without restricting the V A, there are
( n
m

)
possibilities.

It becomes necessary to analytically or numerically average over these possibilities to determine global statistics. For
simplicity, assume fixed entries of PA. Assuming all choices of V A equally likely,

ET1 =H0
n∑
i<j

P0ij

=HA

(
1−

(m
2

)( n
2

) ) n∑
i<j

P0ij +
∑
PAij .

Then

Var(T1) =H0
n∑
i<j

P0ij (1− P
0
ij )

=HA

(
1−

(m
2

)( n
2

) ) n∑
i<j

P0ij (1− P
0
ij )+

∑
PAij (1− P

A
ij ).

Results on conditional T2 | T1 hold as before, but now

a(t1) =
1
t1


∑
PAij +

∑
PAij (1− P

A
ij )

(
t1 −

∑
PAij −

(
1− (

m
2 )
( n2 )

) n∑
i<j
P0ij

)
∑
PAij (1− P

A
ij )+

(
1− (

m
2 )
( n2 )

) n∑
i<j
P0ij (1− P

0
ij )

 .
While Bernoulli trials corresponding to each edge are no longer identically distributed, asymptotic analysis similar to our
previous results holds by the Generalized Central Limit Theorem,
The intuition of V A representing increased communications about some topic becomes less clear. Should we insist that

min{PAij } ≥ max{P
0
ij }? Perhaps the entries of P

A should be some function of the entries in P0 corresponding to the particular
choice of V A. However, averaging functional increases over all possible V A may not be computationally feasible.
Using local topic probabilities −→cij seems problematic in general. Marginal analysis on T2 can be made as on T1 using Pij

above. However, the conditional distribution of T2 given T1 becomes difficult to evaluate, since T1 could provide information
about the membership of anomalous set V A.

4.3. Multigraphs

Another generalization is to allow G = (V , A) to be amultigraph. For some applications (e.g. email networks Priebe et al.,
2005), communications naturally divide into distinct messages. Beyond recognizing that communication took place, one
can determine howmany, and recognize features of individual messages. Includingmultiple edges between entities may be
a more appropriate model than a simple random graph.
For n ≥ 2 and c0 ∈ [0, 1], and m ∈ {2, . . . , n − 2} and cA ∈ [0, 1] with λA > λ0 > 0, cA > c0, let the null hypothesis

H0 be a random Poisson multigraph MP
c (n, λ0, c0) with Poisson(λ0) edges between each pair of vertices. HA, denoted
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KP
c (n, λ0, c0,m, λA, cA), is defined as previousKc(n, p0, c0,m, pA, cA) using Poisson random variables to generate random

multi-edges between vertex pairs, with each edge having a random topic attribute.ΘA = [λ0,∞)× [c0, 1] \ {λ0, c0}.
From the additivity and binomial thinning property of Poisson distributions,

T1 ∼H0 Poisson
((n
2

)
λ0

)
∼HA Poisson

((n
2

)
λ0 +

(m
2

)
(λA − λ0)

)
T2 ∼H0 Poisson

((n
2

)
c0λ0

)
∼HA Poisson

((n
2

)
c0λ0 +

(m
2

)
(cAλA − c0λ0)

)
.

Under HA, conditioning on the sum of independent Poisson variables leads to

T A1 | T1 = t1 ∼ Bin

(
t1,

(m
2

)
λA(m

2

)
(λA − λ0)+

( n
2

)
λ0

)

a =

(m
2

)
λA(m

2

)
(λA − λ0)+

( n
2

)
λ0
.

Asymptotic results using the Central Limit Theorem can be derived as in Section 3. In particular,

λ(t1, t2) = t1

[(m
2

)
(λA − λ0)( n
2

)
λ0

−
a(cA − c0)
1− c0

−
a2(cA − c0)2

2c0(1− c0)

]

+ t2
a(cA − c0)
c0(1− c0)

−

(m
2

)
(λA − λ0)

[
1+

(m
2

)
(λA − λ0)

2
( n
2

)
λ0

]
(9)

with ML estimates

λ̂A = λ0 +
t1 −

( n
2

)
λ0(m

2

)
ĉA = c0 +

t2 − c0t1
at1

subject to constraints λA > 0, cA ∈ [p0, 1].

Corollary 4.1. Asymptotically as n→∞, for almost any (pA, cA), there exists a test using (T1, T2) that is more powerful at that
point than a test based on T1 or T2 alone. No UMP test exists for H0 : MP

c (n, λ0, c0) versus HA : K
P
c (n, λ0, c0,m, λA, cA) over

allΘA. There exist curves inΘA on which a UMP test using (T1, T2) exists.

Proof. Same argument as for Section 2. �

5. Conclusions

We have demonstrated that statistical inference on random graphs with attributes associated with the graph features
and content of communications can, under simple hypotheses, benefit from fusion of the disparate information types. That
benefit is not assured, since incorporating a weak feature can decrease power. Fusion performs best in those regions where
individual tests have similar power. For a particular inference problem, we have derived a maximum likelihood ratio test
with overall discrimination above the null level on the space of alternatives about 90% of that from themaximum of the best
tests based on graph features alone or content alone.
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