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Abstract—Suppose there is a need to swiftly navigate through
a spatial arrangement of possibly forbidden regions, with each
region marked with the probability that it is, indeed, forbidden.
In close proximity to any of these regions, you have the dynamic
capability of disambiguating the region and learning for certain
whether or not the region is forbidden—only in the latter case may
you proceed through that region. The central issue is how to most
effectively exploit this disambiguation capability to minimize the
expected length of the traversal. Regions are never entered while
they are possibly forbidden, and thus, no risk is ever actually in-
curred. Nonetheless, for the sole purpose of deciding where to dis-
ambiguate, it may be advantageous to simulate risk, temporarily
pretending that possibly forbidden regions are riskily traversable,
and each potential traversal is weighted with its level of undesir-
ability, which is a function of its traversal length and traversal
risk. In this paper, the simulated risk disambiguation protocol is
introduced, which has you follow along a shortest traversal—in
this undesirability sense—until an ambiguous region is about to
be entered; at that location, a disambiguation is performed on
this ambiguous region. (The process is then repeated from the
current location, until the destination is reached.) We introduce
the tangent arc graph as a means of simplifying the implementation
of simulated risk disambiguation protocols, and we show how to
efficiently implement the simulated risk disambiguation protocols
that are based on linear undesirability functions. The effectiveness
of these disambiguation protocols is illustrated with examples,
including an example that involves mine countermeasures path
planning.

Index Terms—Canadian traveller problem, disambiguation
protocol, probabilistic path planning, random disambiguation
path, visibility graph.

I. INTRODUCTION

S ECTION I-B provides an overview of this paper and a
review of the literature, but we begin in Section I-A with a

formulation of the setting in which we will be working. More
discussion of this setting can be found in [1].

A. Random Disambiguation Paths

Let S be a marked point process on S ⊆ R2; this process
generates random detections XT , XF ⊆ S (respectively called
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true and false detections), and it generates random marks
ρT : XT → (0, 1] and ρF : XF → (0, 1]. When observing a
realization of this process, you only see X := XT

⋃
XF and

ρ := ρT
⋃
ρF , but you may assume that, independently for all

x ∈ X , ρ(x) is the probability—conditioned on the observed
values X and ρ—that x ∈ XT . Indeed, for the remainder of
this paper, the specific values X and ρ have been observed,
and all discussion of probability is accordingly conditioned.
See Section III for an example realization of such a marked
point process; the detections are the centers of the discs visual-
ized in Fig. 4.

For every detection x, the open disc about x of a given
radius r > 0 is denoted Rx. Given a starting point s ∈ R2 and
a destination point t ∈ R2, you seek a continuous s, t curve
in (

⋃
x∈XT

Rx)C of the shortest achievable arclength. Without
means of verifying which detections in X are true, you could
not do better than the shortest s, t curve in (

⋃
x∈X Rx)C ,

which is denoted qs,t,X . (The curve qs,t,X can be computed
using the visibility graph described in Section I-C.) However,
what makes our setting interesting is a dynamic capability of
disambiguating detections from the boundaries of their asso-
ciated discs; that is to say, when the curve is on ∂Rx for
any x ∈ X , you can dynamically discover whether x ∈ XT

or x ∈ XF , and in the latter case, the curve is permitted to
proceed through Rx. However, a fixed cost c ≥ 0 (reflecting
the cost of disambiguation) is added to the Euclidean length of
the curve for each disambiguation, and it is assumed that there
are a maximum of K disambiguations that may be performed
during an s, t traversal. The broad goal here is to efficiently
exploit this disambiguation capability in order to minimize the
traversal curve’s (expected) Euclidean length.

A disambiguation protocol is a function D that, to any such s,
t, X , ρ, K, assigns a detection x ∈ X and a point y ∈ ∂Rx (we
explicitly allow y = t, in which case x is not defined). Given a
disambiguation protocol D, the random disambiguation path
pD (as in [1]) is the s, t curve in (

⋃
x∈XT

Rx)C , which is
realized by the following procedure: Suppose D associates
x ∈ X and y ∈ ∂Rx to s, t, X , ρ, K. Traverse qs,y,X from
s to y (e.g., by finding the shortest path in an appropriate
visibility graph, as described in Section I-C). If y = t, then
terminate (in particular, if K = 0, then it is required that y = t),
otherwise, disambiguate detection x. Recursively repeat this
entire procedure using y in place of s, decrementing K by 1
and updating X and ρ as follows: If the disambiguation had
just discovered that x ∈ XT , then update ρ(x) := 1, and if the
disambiguation had just discovered that x ∈ XF , then remove
x from X .

The random disambiguation path pD is an s, t-curve-valued
random variable even after X and ρ are observed since the
emerging outcomes of the disambiguations dictated by the
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Fig. 1. Example of a random disambiguation path.

protocol are still random; in fact, the distribution of pD is
specified through ρ.

To illustrate, suppose K = 2 and s, t, X , ρ are given as
shown in Fig. 1, and consider one particular disambiguation
protocol D which, for instance, dictates that the next (i.e., first)
disambiguation be of detection x1 at point y1. Now, suppose,
if it is discovered that x1 ∈ XF , D would then dictate that
no more disambiguations be performed, and the curve should
proceed to t. Furthermore, suppose, if it is instead discovered
that x1 ∈ XT , D would then dictate that x2 should be disam-
biguated next, i.e., at point y2. Whether x2 is revealed to be a
true or false detection, D would then dictate that we proceed
directly to t, since no more disambiguations are available
(currently, K = 0). There are three possible realizations of the
random disambiguation path pD, each shown in Fig. 1: With
1 − ρ(x1) = 1 − 0.3 probability, pD traverses the points s, y1,
t; with ρ(x1)ρ(x2) = (0.3)(0.9) probability, pD traverses the
points s, y1, y2, t, employing the curve γ at the traversal
conclusion; and with ρ(x1)(1 − ρ(x2)) = (0.3)(1 − 0.9) prob-
ability, pD traverses the points s, y1, y2, t, employing the
line segment y2, t at the traversal conclusion. (Note that in
between disambiguations, the s, t curve traverses the shortest
curves, avoiding all possibly forbidden risk regions—using
the notion of a visibility graph described in Section I-C).
If the lengths of these three paths are 6, 8, 7, respectively,
and if the cost of disambiguation was c = 5, then the expected
length of pD is given by (1 − 0.3)(6 + 1 ∗ 5) + (0.3)(0.9)(8 +
2 ∗ 5) + (0.3)(1 − 0.9)(7 + 2 ∗ 5).

In the example above, we illustrated one particular disam-
biguation protocol D; a different choice of protocol may, in-
deed, yield a significantly lower expected length. Unfortunately,
choosing (from among all disambiguation protocols) an optimal
protocol (which results in the minimum expected length) is
not currently practical, either analytically or computationally,
as we discuss in Section I-B. The purpose of this paper is
to present a class of efficiently computable, suboptimal but
effective disambiguation protocols; we call them simulated risk
disambiguation protocols.

B. Overview

The problem that we describe here is a minor modification of
the stochastic obstacle scene problem (SOSP) of Papadimitriou
and Yannakakis [2], who also describe a discrete version of
this problem, which they call the Canadian traveller’s problem
(CTP). (In CTP, a short traversal is desired through a finite
graph whose edges are marked with their respective proba-
bilities of being traversable, and every edge’s status can be

dynamically discovered when encountered.) Papadimitriou and
Yannakakis prove the intractability of several variants of SOSP
and CTP. (For more information on CTP, see [3].)

CTP is a special case of the stochastic shortest paths with
recourse (SPR) problem of Andreatta and Romeo [4], who
present a stochastic dynamic programming formulation for SPR
and note its intractability. Polychronopoulos and Tsitsiklis [5]
also present a stochastic dynamic programming formulation for
SPR and then prove the intractability of several variants. Provan
[6] proves that SPR is intractable even if the underlying graph
is directed and acyclic.

The underlying difficulty in obtaining a tractable stochastic
dynamic programming formulation of these problems—even in
the discrete setting—is that, in order for actions to be consid-
ered at any given location, there is a need to know the current
ambiguous/true/false status of all of the detections, and the
exponentially many such possibilities need to be accordingly
incorporated. Andreatta and Romeo [4] note that if there is
a limit of K = 1 disambiguations allowed, then SPR can be
efficiently solved. Indeed, we are willing to assume here a limit
K on the number of allowed disambiguations, but solving our
random disambiguation problem—even a discrete variant of
it—is not currently practical, unless K has a very small value.

Heuristics are suggested for CTP and SPR in [7]–[9] and [5],
but they would not be applicable to the problem that we address
here in this paper without initially approximating and recasting
our continuous setting to the setting of a finite graph, in which
case the resolution of the discretization drives up the number of
vertices and edges in the approximating graph. By contrast, the
algorithm that we propose here is polynomial time solely in the
number of detections |X|.

The principal aim of this paper is to introduce the simulated
risk disambiguation protocol (which is, effectively, a particular
policy in the stochastic dynamic programming formulation) and
its associated random disambiguation path. They are defined in
Section II-A, and their evaluation is greatly simplified through
the use of the tangent arc graph introduced in Section II-B.
The tangent arc graph is an extension of the visibility graph
[10] detailed next in Section I-C. In Section II-C, we describe
how to efficiently evaluate simulated risk disambiguation pro-
tocols that are generated by linear undesirability functions,
and we show how to efficiently realize their associated ran-
dom disambiguation paths. Then, in Section III, we illus-
trate these protocols by using an example that involves mine
countermeasures path planning. Other examples are found in
Section IV.

In practice, suppose you are presented with the problem
described in Section I, i.e., you need to traverse from s to t and
have observed X and ρ (and you are permitted K disambigua-
tions), and further suppose that you have decided to, indeed,
utilize a simulated risk disambiguation protocol to realize the
associated random disambiguation path to accomplish your s,
t traversal. The question still remains as to how to choose
the most effective simulated risk disambiguation protocol from
among the many simulated risk disambiguation protocols that
exist. Section IV is concerned (given s, t, X , ρ, K) with
how to select the best (or a nearly optimal) simulated risk
disambiguation protocol from among the family of simulated
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Fig. 2. Example of a visibility graph. The dashed arcs are not visibility graph
edges since they are not in ∂(∪x∈XRx).

risk disambiguation protocols that are generated by linear un-
desirability functions.

C. Visibility Graph

We conclude this background section with the construction
of the visibility graph associated with s, t, X; as mentioned,
this visibility graph can be used to compute qs,t,X . (In addition,
the details of this construction will be quite relevant to the con-
struction of the tangent arc graph introduced in Section II-B.)
Our visibility graph is an adaptation of the visibility graph
from [10] and [11], more similar to the generalized visibility
graph in [12].

Let s, t and X be specified. For distinct points a, b ∈
{s, t}

⋃
∂(∪x∈XRx), we call the closed line segment a, b a

tangent segment, provided that 1) for all r ∈ {a, b}\{s, t}, a, b
is tangential to ∂(∪x∈XRx) at r and 2) the relative interior of
a, b is contained in the interior of [(∪x∈XRx) ∪ {s, t}]C .

The visibility graph associated with s, t, X is defined as
follows. Its vertex set consists of s, t, all points of ∂(∪x∈XRx)
that intersect a tangent segment, and all points of ∂(∪x∈XRx)
at which two or more ∂Rx’s intersect. The edge set of the vis-
ibility graph consists of all tangent segments and all connected
components of ∂(∪x∈XRx) after the vertices of the visibility
graph are removed (the latter edges are segments of arc from
circles). The graph-theoretic endpoints of these edges are their
line and arc endpoints, respectively, and each edge is weighted
with its arclength. An example of a visibility graph is shown
in Fig. 2.

It is a well-known (and true) folk theorem that qs,t,X is the
shortest s, t path in the visibility graph associated with s, t,
X . Since every pair of nonidentical ∂Rx’s have at most four
mutually tangential lines and two points of intersection, the
number of vertices and edges in this visibility graph is O(|X|2)
each. Thus, Dijkstra’s algorithm, with a heap implementation
applied to this visibility graph, yields qs,t,X in O(|X|2 log |X|)
operations, and the naive construction of the visibility graph

performs O(|X|3) assignment, arithmetic, and trigonometric
operations.

II. SIMULATING RISK

We now introduce our main idea—the simulated risk disam-
biguation protocol—which gives rise to an associated simulated
risk random disambiguation path.

A. Simulated Risk Disambiguation Protocol

Of course, in our framework, you will never enter regions
of the form Rx : x ∈ X while they are possibly forbidden, and
thus, you never experience actual risk. However, for the purpose
of deciding the next disambiguation point, the simulated risk
disambiguation protocol temporarily pretends (simulates) that
the possibly forbidden regions are riskily traversable.

Under this simulation of risk, for any s, t curve p
(allowing intersection with

⋃
x∈X Rx), define its Euclidean

length $ep in the usual way, and its risk length $rp :=
− log

∏
x∈X:p∩Rx )=∅(1 − ρ(x)); this negative logarithm of the

probability that p is permissibly traversable is a measure of the
risk in traversing p—if you were willing to take on risk. An
undesirability function is any function g : R≥0 × R≥0 → R
that is monotonically nondecreasing in its arguments; that is to
say, for all u1, u2, v1, v2 ∈ R≥0 such that u1 ≤ u2 and v1 ≤ v2,
it holds that g(u1, v1) ≤ g(u2, v2). The number g($ep, $rp)
is thought of as a measure of the undesirability of p in
the sense that, if you were required to traverse from s to
t under the simulation of risk and without a disambiguation
capability, you would want to traverse the s, t curve φg :=
arg mins,t curves p g($ep, $rp). For this s, t curve φg , let y ∈ R2

be the last point of φg before φg intersects
⋃

x∈X Rx, and say
x′ ∈ X is the detection whose associated region Rx′ the curve
φg was entering at y. (If there is no intersection between φg and⋃

x∈X Rx, then y := t.) Back in our setting (where there is a
disambiguation capability and you may not experience risk),
the simulated risk disambiguation protocol Dg is defined as
assigning this x′ and y to s, t, X , ρ, K (provided that K > 0).

Thus, the simulated risk random disambiguation path pDg

follows a shortest s, t curve (in the sense of g and under
the simulation that potentially forbidden disks are riskily tra-
versable) until it encounters an ambiguous region (which, in
actuality, it cannot enter without disambiguation), at which
point a disambiguation is performed, and the whole process
is repeated using the current location in place of s (and the
updated information on ρ, X , and K).

Note that for the particular undesirability function g(u, v) =
u + ∞v>0 (where ∞v>0 denotes ∞ or 0 accordingly as v > 0
or v = 0), it holds that pDg = qs,t,X , which is the s, t curve
that you would traverse if you did not have the disambiguation
capability (and you were still not permitted to take any risk). In
Section IV, we will discuss how, in practice, you would
select an undesirability function g to use; we advocate
choosing—from among a specific family of undesirability
functions—the undesirability function whose associated ran-
dom disambiguation path has the minimum expected length.
As long as this family of undesirability functions that you
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Fig. 3. Example of a tangent arc graph. Here, there were 11 general tangent
segments; in particular, one of these was the line segment s, t, which intersected
boundaries of discs in two places. These two intersections became vertices in
TAGs,t,X and, upon removal from s, t, three TAGs,t,X edges are created in
s, t’s place. In total, this TAGs,t,X has 21 vertices and 37 edges; 16 of these
edges are line segments, and 21 are segments of arc from circles.

choose from also includes the function g(u, v) = u + ∞v>0

(which is, indeed,1 the case for the strategy that we advocate
in Section IV), you are always guaranteed to do no worse (in
expectation) than the s, t curve that you would follow if you
did not have a disambiguation capability (and you were not
permitted any risk).

B. Tangent Arc Graph

Given an undesirability function g, in order to evaluate
Dg and realize pDg , one must be able to compute φg :=
arg mins,t curves p g($ep, $rp). Although there are uncountably
infinitely many s, t curves over which to minimize, we will
use the monotonicity of g to show that φg must be a path in
the tangent arc graph TAGs,t,X , which is defined in the next
paragraph and illustrated in Fig. 3, so that φg solves the finite
optimization problem mins,t paths p in TAGs,t,X g($ep, $rp).

For any distinct points a, b ∈ {s, t} ∪ (
⋃

x∈X ∂Rx), we say
that the closed line segment a, b is a general tangent segment,
provided that, for all r ∈ {a, b}\{s, t}, a, b is tangential to ∂Rx

for some x ∈ X . The vertex set of TAGs,t,X consists of s, t,
all points of intersection between any general tangent segment
and any ∂Rx (over all x ∈ X), and all points of intersection
between two or more ∂Rx’s. The edge set of TAGs,t,X consists
of all connected components of all general tangent segments
after the vertices of TAGs,t,X are removed, and all connected
components of ∪x∈X∂Rx after the vertices of TAGs,t,X are
removed. An example of a TAGs,t,X is shown in Fig. 3.

Note that the graph TAGs,t,X is a topological superimposi-
tion of all the (exponentially many) visibility graphs generated
by s, t, Y over all Y ⊆ X . Hence, if φg is the shortest s, t
curve in the sense of g, then for Y = {x ∈ X : φg ∩ Rx = ∅},

1The disambiguation protocol Dg associated with g(u, v) = u + ∞v>0 is
precisely the protocol Dα discussed later in this paper with α = ∞.

Fig. 4. Marked point process realization. Gray scale of discs reflects ρ of
detections at respective disc’s centers.

we have that φg is a path in the visibility graph associated with
s, t, Y . Thus, in particular, φg is a path in TAGs,t,X , as claimed.

However, there are only O(|X|2) general tangent segments,
each intersecting O(|X|) regions of the form Rx : x ∈ X , so
we have O(|X|3) vertices and O(|X|3) edges in TAGs,t,X , and
the number of operations to set up TAG is O(|X|3 log |X|). In
particular, there are only a finite number of s, t paths p that are
candidates for being φg.

C. Linear Undesirability Functions

The simplest undesirability functions are the linear ones,
where g(u, v) = u + α · v for some fixed parameter α ≥ 0; in
this case, we abbreviate the disambiguation protocol Dg to Dα.
We next show that for any fixed value of α, Dα is efficiently
computable, and pDα is efficiently realizable.

For each edge f = {a, b} in TAGs,t,X , we assign its
Euclidean length $ef in the usual manner, and we de-
fine its risk length as $rf :=−

∑
x∈X If∩Rx )=∅(Ia∈∂Rx/2 +

Ib∈∂Rx/2) log(1−ρ(x)) where I is the indicator function; this
definition is consistent with that of risk length for an s, t
curve since, for any s, t path p in TAGs,t,X,ρ, it holds that
$rp =

∑
edgesf∈p $

rf (provided that p never revisits any region
Rx twice). Thus, φg may be found by running Dijkstra’s
algorithm on TAGs,t,X using the lengths $ef + α · $rf for each
edge f in TAGs,t,X . The running time for Dijkstra’s algorithm
with a heap implementation is O(|X|3 log |X|), so Dα can
be computed in O(|X|3 log |X|) operations, and pDα is thus
realizable in O(|X|3 log |X|) operations since K is a constant.
(In particular, if there was no limit K on the number of disam-
biguations permitted, then pDα is realizable in O(|X|4 log |X|)
operations.)

III. MINE COUNTERMEASURES EXAMPLE

Minefield detection and localization is an important problem
that is currently receiving much attention in the scientific and
engineering literature (see, for instance, [13] and the references
cited there). Witherspoon et al. [14] depict the operational con-
cept for minefield reconnaissance via an unmanned aerial ve-
hicle. Multispectral imagery of an area of interest is processed
and a mine detection algorithm identifies locations of potential
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TABLE I
x AND y COORDINATES AND ρ’s FOR MARKED POINT PROCESS REALIZATION

mines (see [15]), with the collection of these points constituting
our point process realization. The marks are posterior proba-
bilities that the respective detections represent actual mines, as
rendered by a postprocessing classification rule [16]–[20].

The following marked point process realization, as shown in
Fig. 4, is referred to in [16] and [21] and has 39 potential mines
whose x and y coordinates are listed in Table I.

The associated marks ρ in Table I were generated by the
postclassification rule in [16]. Each disc Rx has a radius of 50,
s is the point (0, 800), and t is the point (0, 100). Suppose a
maximum of K = 4 disambiguations may be performed.

For α = 2000, the first disambiguation is at the point
(−10.42, 286.09) and, regardless of the result, no more dis-
ambiguations are performed; thus, there are only two possible
realizations of pD2000 , and they are shown in Fig. 5, along with
their respective Euclidean lengths and their respective proba-
bilities. In particular, E$epD2000 =0.89671 · (707.97 + 1 · c) +
0.10330 · (1116.19 + 1 · c) = 750.14 + c, where c is the dis-
ambiguation cost.

For α = 100, all seven possible realizations of pD100 are
shown in Fig. 6, which are labeled with their respective
Euclidean lengths and probabilities. In particular, we can
compute E$epD100 = 0.89671 · (707.97 + 1 · c) + 0.040105 ·
(714.90 + 3 · c) + 0.038472 · (859.37 + 4 · c) + 0.012796 ·
(831.04 + 3 · c)+ 0.0089469 · (1188.77+ 4 · c)+ 0.0019532 ·
(1185.40 + 4 · c) + 0.0010226 · (958.43 + 4 · c) = 721.14 +
1.2570 · c.

Note that the coefficient of c in E$epDα is the expected
number of disambiguations. Observe also that E$epD100 <
E$epD2000 (i.e., α = 100 is a better choice than α = 2000)
precisely when c < 112.80.

In practice, you will want to select a nonnegative value for α
of minimum E$epDα . In Fig. 7, we plot E$epDα as a function
of α for the specific cost c = 5; here, arg minα≥0 E$epDα is
seen to be the interval (30.23, 55.09). It turns out that pDα is,
in fact, identical to pD50 for all values of α in (30.23, 55.09);
a maximal interval I where pDα is identical for all values of
α in I will be called an indifference interval.2 Here, in total,

2Note that the specific value of c is relevant to neither Dα nor pDα , so c
has no influence in the establishment of indifference intervals. However, c will
affect $epDα , E$epDα , and arg minα≥0 E$epDα , so c will influence our
choice of α.

Fig. 5. All (two) possible realizations of pD2000 . (a) Length = 707.97, and
prob = 0.89671. (b) Length = 1116.19, and prob = 0.10329.

there are 11 indifference intervals, which are listed in Table II
with their respective values of E$epDα and the range of costs c
where that interval is precisely arg minα≥0 E$epDα .

In other words, suppose you were presented—in practice—
the specific X and ρ given in Table I, with s = (0, 800), t =
(0, 100), K = 4, and some disambiguation cost c ≥ 0. If you
would choose to traverse from s to t via a random disambigua-
tion path based on a simulated risk disambiguation protocol
using a linear undesirability function, then the particular value
of the parameter α you should select depends on the particular
disambiguation cost c. For example, if c ∈ (0.0000, 4.1013)
then, by comparing (for the various indifference intervals)
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Fig. 6. All (seven) possible realizations of pD100 . The probabilities are the respective probabilities of the path realizations. (a) Length = 707.97, and prob =
0.89671. (b) Length = 714.90, and prob = 0.040105. (c) Length = 859.37, and prob = 0.038472. (d) Length = 831.04, and prob = 0.012796. (e) Length =
1188.77, and prob = 0.0089469. (f) Length = 1185.40, and prob = 0.0019532. (g) Length = 958.43, and prob = 0.0010226.

Fig. 7. E$epDα as a function of α for c = 5.

E$epDα in the second column of Table II (as linear functions
in c), it is clear that, for c ∈ (0.0000, 4.1013), the fourth in-
difference interval listed there is best, and you should use any
α ∈ (26.77, 30.23) in practice. If c ∈ (4.1013, 15.9145) then

by similar reasoning you should use any α ∈ (30.23, 55.09);
see the third column of Table II. Furthermore, in a similar
fashion, for each possible value of c ≥ 0, consider such α
minimizing E$epDα ; the values of minα≥0 E$epDα are plotted
as a (piecewise linear) function of cost c in Fig. 8.

Now, observe that for all c < 228.1639, it holds that
minα≥0 E$epDα < E$epD∞ = $eqs,t,X , which means that, for
disambiguation costs less than 23.34% of $eqs,t,X = 977.54,
the optimal simulated risk disambiguation path based on
a linear undesirability function yields a strict (expected)
improvement over the curve qs,t,X , which would be traversed
if the disambiguation capability was not available at all and risk
was not permitted.

Next, in Section IV, we address the issue of how, in general,
to select an optimal or near-optimal value for α.

IV. MINIMIZING E$epDα OVER α ≥ 0

Given s, t, X , ρ, K and assuming that you will use a linear
undesirability function in the establishment of a simulated risk
disambiguation protocol, you still need to determine the value
of the parameter α to use; once the value of α is chosen, then
you can efficiently realize pDα , as described in Section II-C.
Thus, what is needed is a practical way to minimize E$epDα

over α ≥ 0, exactly or approximately.
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TABLE II
ALL INDIFFERENCE INTERVALS, THE E$epDα FOR VALUES OF α IN

THE RESPECTIVE INDIFFERENCE INTERVALS, AND THE RANGE OF
DISAMBIGUATION COSTS c WHERE THIS INDIFFERENCE

INTERVAL IS OPTIMAL. FOR EXAMPLE, FOR ANY
VALUE 0 < c < 4.1013, THE OPTIMAL VALUE

OF α IS ANY 26.77 < α < 30.23 AND, AS
SUCH, E$epDα = 717.22 + 2.1665 c

Fig. 8. E$epDα for the optimal α as a function of c.

As a first step, suppose it is desired to evaluate E$epDα

for just one particular value of α. This may be accomplished
by considering all possible outcomes of the disambiguations
dictated by Dα and encountered by pDα (which can be done
via straightforward recursion) and then weighting the lengths
of the possible s, t curves that pDα can assume by their respec-
tive probabilities. Indeed, we used this procedure to compute
E$epDα in Section III.

The number of different s, t curves that can be realized by
pDα is bounded by 2K . Note that this is just an upper bound;
in the example of Section III, where K was 4, the number of
different s, t curves that could be realized by pDα for α in the
11 different indifference intervals was 13, 12, 9, 9, 8, 7, 6, 5, 3,
2, and 1, respectively. In particular, since K is fixed, E$epDα

can be efficiently evaluated for a particular α; the time required

Fig. 9. Nine realizations of a marked point process.

is O(|X|3 log |X|), with a multiplicative constant that depends
on K. When K is small, it can be practical to evaluate E$epDα

for a particular α in this manner.
Therefore, it may be practical to compute E$epDα for a

mesh of different values of α and to then adopt the best value
α′ from the mesh as your parameter, hoping that E$epDα′ ≈
minα:α≥0 E$epDα .

To illustrate, we obtained 11 realizations of a particular
marked spatial point process on [0, 55] × [0, 220] ⊆ R2, where
the true and false detections are Poisson(20) and Poisson(50),
respectively, and the true and false marks are Beta(6, 2) and
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Fig. 10. Plots of E$epDα against α = 2, 7, 12, 17, . . . for the respective nine realizations in Fig. 9. Note that in each of these plots, for the largest plotted value
of α, we have pDα = pD∞ .

Beta(2, 6). We adopted the starting point s = (−11, 110), desti-
nation point t = (66, 110), disc radius r = 10, disambiguation
cost c = 1, and the number of available disambiguations
K = 4. Two of these 11 point process realizations had nearly
unobstructed s, t paths and were therefore trivial; the other nine
realizations are shown in Fig. 9. The discs in Fig. 9 are gray
scaled to reflect the marks of the associated detections; discs
are darker and lighter accordingly as the marks are closer to
1 and 0.

In each of these nine nontrivial realizations, we computed
E$epDα for α = 2, 7, 12, 17, . . . until the values of α are large
enough so that no disambiguations are performed, i.e., until
the values of α are large enough so that pDα = pD∞ . Fig. 10
shows the plots of E$epDα against α for each of these nine re-

alizations. From among the mesh of values α = 2, 7, 12, 17, . . .,
we found that the value of α of minimum E$epDα are, for
the respective nine realizations, 32, 162, 252, 147, 22, 187,
37, 162, and 22. These respective nine values would be the
ones to choose for the parameter α in (linear undesirability
function based) simulated risk disambiguation protocols if you
encounter these respective nine realizations.

In general, since E$epDα can be efficiently evaluated for any
single value of α, the usual numerical optimization methods
for real functions of the real line are applicable in minimizing
E$epDα over α ≥ 0.

For large values of K, where an exact evaluation of E$epDα

may not be practical (even for a single value of α), Monte Carlo
simulations of pDα can yield approximate values of E$epDα .
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V. CONCLUSION

Given a starting point s, destination t, and observations X
and ρ, we have illustrated in Section IV how to practically
choose a simulated risk disambiguation protocol based on a lin-
ear undesirability function to efficiently (Section II-C) traverse
a realization of the associated random disambiguation path
from s to t. In future work, we intend to seek faster methods of
choosing a useful linear undesirability function, perhaps based
on easily computed descriptive measures of s, t, X , ρ, K.

It might also be useful to seek nonlinear undesirability func-
tions g that are more effective (i.e., that yield lower E$epDg )
than linear undesirability functions. However, we would then
need a practical way to compute φg, since only when g is linear
can we use Dijkstra’s algorithm to find a shortest (in the sense
of g) path in TAGs,t,X,ρ. We intend to also consider this
direction in future work.

Finally, another, and different, research direction would be
to explore possible computational advantages in modeling the
underlying problem that utilizes fuzzy numbers in place of
probabilities, which is similar to the fuzzy network flow prob-
lems in [22].
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