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Abstract

Stimulus response latency is the delay between stimulus onset and the evoked modulation in neural activity. A common
technique to estimate latencies involves binning the spike arrival times to form a peri-stimulus histogram. This histogram is
smoothed using a fixed bandwidth. The estimated latency is the first time following stimulus onset in which the smoothed
histogram exceeds the midpoint between the minimum and maximum of the smoothed histogram. We demonstrate that the choice
of smoothing bandwidth is critical to the accuracy of this latency estimation technique. We suggest a bootstrap resampling
technique for bandwidth selection which results in a robust latency estimate. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Latency; Peri-stimulus histogram; Smoothing bandwidth; Bootstrap

Since neurons have finite transmission velocities and
synaptic delays, a lag exists between stimulus onset and
the evoked modulation in neural activity. This delay,
known as the stimulus response latency, provides infor-
mation concerning hierarchical processing and func-
tionality (Bullier and Nowak, 1995; Gawne et al.,
1996). For example, in the visual system, significant
differences in response latencies have been reported for
neurons belonging to the parvocellular and magnocellu-
lar systems (Nowak et al., 1995), which are believed to
play different functional roles in visual processing (e.g.
Livingston and Hubel, 1988; Fellman and Van Essen,
1991).

In a typical neural recording session, a stimulus is
presented a number of times and the spike arrival times
from stimulus onset are binned to form a peri-stimulus
histogram. An example of this histogram appears in
Fig. 1, which displays data obtained from a single unit
recording in the primary visual cortex of an awake,
fixating monkey. The response latency is often esti-
mated through analysis of this histogram.
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One common nonparametric response latency estima-
tion procedure, known as the ‘half-height’ technique,
involves smoothing the peri-stimulus histogram using a
fixed bandwidth. The minimum and maximum values
of the smoothed histogram are then determined. As
seen in Fig. 2, the first time from stimulus onset in
which the smoothed histogram exceeds the average of
the minimum and maximum value is the estimated
latency (e.g. Mastronarde, 1987; Humphrey and Weller,
1988; Heggelund and Hartveit, 1990; Saul and
Humphrey, 1990; Kwan et al., 1991; Lu et al., 1995;
Gawne et al., 1996).

In this estimation technique the choice of smoothing
bandwidth is critical. The bias-variance tradeoff sug-
gests that using a bandwidth which is too large will
result in an estimate which is dominated by bias,
whereas using a bandwidth which is too small will
result in an estimate which is dominated by variance
(Silverman, 1986). To demonstrate the importance of
the smoothing bandwidth, we consider simulated vec-
tors containing 100 random variables in which the first
50 component samples are independent and identically
distributed (i.i.d.) from a Poisson (1 spike/bin) distribu-
tion, representing the spontaneous activity, and the last
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50 components are i.i.d. Poisson (6 spikes/bin), repre-
senting the initial response activity. That is, in this
simulation, the latency was fixed at the 50th bin. If the
bin size under consideration is 1 ms, then this simula-
tion represents the data collected from 100 stimulus
presentations to a neuron with a spontaneous activity
of 10 spikes/s and an initial response rate of 60 spikes/s.
While the Poisson assumption is by no means univer-
sally accepted, it is nonetheless a common approach for
modeling cortical neural spike trains (see, for instance,
Gerstein and Mandelbrot, 1964; Shadlen and New-
some, 1994).

Using a normal smoother of integer bandwidths in
the range 1-23 bins, we estimate the latency using the
half-height technique. This is repeated 1500 times to
obtain an empirical distribution of estimated latencies.
As seen in Fig. 3, the smoother with a bandwidth of 13
bins had the minimal root mean squared error of the
latency estimation. There is a clear asymmetry in that
using a smoother which is larger than 13 bins is less
critical than using a bandwidth which is too small. In
fact, choosing a smoothing bandwidth 5 bins smaller
results in a latency estimate with twice the root mean
squared error.

We now suggest a simple bootstrapping procedure
(Efron, 1982) for selecting a smoothing bandwidth and
obtaining a latency estimate. We sample with replace-
ment from the set of spike arrival times to create a set
of replicated spike arrival times (a bootstrap replicate).
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Fig. 1. Peri-stimulus histogram. Spike arrival times of a neuron from
area V1 of an awake, fixating monkey for a flashing stimulus (1 Hz)
are represented as tick marks in (A). The stimulus was presented for
500 ms, starting at time ¢ =0, for a total of 20 presentations. Using
a bin width of 1 ms the histogram of spike arrival times (B), known
as the peri-stimulus histogram, clearly demonstrates that there is a
burst of activity approximately 60 ms from the time of stimulus onset.
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Fig. 2. Half-height estimation. A common nonparametric technique
for estimating the latency involves smoothing the peri-stimulus his-
togram (same as Fig. 1B) to obtain a smoother version of the
stimulus evoked neural response (B). Here we have used a 5 bin box
smooth. The maximum and minimum values of the smoothed his-
togram are then determined. The first time from stimulus onset in
which the smoothed histogram exceeds the average of the minimum
and maximum of the smoothed histogram is the estimated latency.

Next, we smooth the new peri-stimulus histogram with
all bandwidths to obtain a second vector of estimated
latencies. Repeating for m bootstrap replicates yields a
set of m estimated latencies for each smoothing band-
width. Since the true latency is unknown and hence a
bias estimate is unavailable, we suggest selecting the
bandwidth which provides the smallest variance of esti-
mated latencies. Using this selected bandwidth, the
latency is then estimated from the original data set.
To demonstrate the efficacy of this suggestion, we
select one vector from the first simulation and create
the corresponding spike arrival times. This now simu-
lates the situation in which the experimenter has ob-
tained a set of spike arrival times from repeated
stimulus presentations. We then use m = 500 bootstrap
replicates to create a distribution of estimated latencies
for each smoothing bandwidth. As shown in Fig. 4, the
preferred bandwidth is estimated to be 13 bins. This is
in agreement with the results from Fig. 3 and demon-
strates that the bootstrap technique can be effective in
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Fig. 3. Simulation results. Using the half-height technique (Fig. 2), the
root mean squared error of the latency estimation is minimal at a
bandwidth of 13 bins, when the spontaneous activity is 1 spike/bin, the
initial response is 6 spikes/bin, and the lengths of the spontaneous and
initial response are 50 bins. Choosing a smoothing bandwidth 5 bins
smaller results in a latency estimate with twice the root mean squared
error. A bootstrap resampling technique is employed to estimated the
uncertainty in the root mean squared error.
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Fig. 4. Bootstrap example. Using the simulated vector in which the
spontaneous activity was 1 spike/bin, the initial response was 6
spike/bin, and the length of the spontaneous and initial response was
50 bins, the variance of latency estimation using the bootstrap
methodology was minimal at a bandwidth of 13. In the bootstrap
method, the experimenter samples with replacement from the set of
spike arrival times to create a set of replicated spike arrival times. The
peri-stimulus histogram is smoothed using all smoothing bandwidths
to obtain a vector of estimated latencies. Repeat this process for m
bootstrap replicates yielding a set of m estimated latencies for each
smoothing bandwidth (in this case m = 500). Select the bandwidth
having the minimal variance of estimated latencies. Using this selected
bandwidth, the latency is then estimated from the original data set.
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Fig. 5. Bootstrap example. Five hundred vectors were simulated in
which the spontaneous activity was | spike/bin, the initial response
was 6 spikes/bin, and the lengths of the spontaneous and initial
response were 50 bins (so that the true latency = 50 bins). For each
vector, the latency was estimated using a fixed bandwidth (5 bins) and
a bootstrap-derived bandwidth. The distribution of latencies clearly
demonstrates that the bootstrap-derived bandwidth (A) provides
more accurate and precise (mean of bootstrap-derived bandwidth
latencies = 50.7 + 0.06 bin, mean of fixed bandwidth latencies =
54.2 + 0.4 bins) latency estimates than the fixed bandwidth estimator

(B).

choosing the smoothing bandwidth. Using the selected
bandwidth in the original data set resulted in an esti-
mated latency of 51 bins. It should be noted that, in our
simulations, we only sampled integer bandwidths, the
use of non-integer bandwidths would result in greater
improvement in the latency estimation.

The above example illustrates that the bootstrapping
technique is a viable method for improving the estima-
tion of response latencies using the half-height tech-
nique. In order to demonstrate the statistical superiority
of the bootstrapping technique, we select 500 vectors
from the first simulation. We estimate the latency using
a fixed bandwidth smoother (5 bins as in Gawne et al.,
1996) and with the bootstrap-derived bandwidth. The
distribution of latencies obtained from this simulation
(Fig. 5) clearly demonstrates that the bootstrap-derived
bandwidth provides more accurate and precise latency
estimates than the fixed bandwidth estimator (mean of
bootstrap-derived bandwidth latencies = 50.7 4+ 0.06
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Fig. 6. Bootstrap example. For each value of the response rate, 500
vectors were simulated in which the spontaneous activity was 1
spike/bin, and the lengths of the spontaneous and initial response
were 50 bins (so that the true latency = 50 bins). For each simulated
vector, the latency was estimated using a fixed bandwidth (5 bins) and
a bootstrap-derived bandwidth. As seen in plot A, the bootstrap-
derived bandwidth provides more accurate and precise latency esti-
mates than the fixed bandwidth estimator for all values of response
rate. Plot B demonstrates the fact that the optimal bandwidth de-
creased as the response rate increased when the spontaneous rate was
fixed at 1 spike/bin. In general, for a fixed spontaneous rate, this
relationship was true.

bins, mean of fixed bandwidth latencies = 54.2 + 0.4
bins, true latency = 50 bins).

One issue that must be emphasized is that the opti-
mal bandwidth is a function of the spontaneous rate,
response rate, and latency. We illustrate this point by
comparing the latency estimation from the fixed band-
width and bootstrap-derived bandwidth smoothers us-
ing different values of the response rate. For each value
of the response rate, 500 vectors were simulated in
which the spontaneous activity was 1 spike/bin, and the
lengths of the spontaneous and initial response were 50
bins (so that the true latency =50 bins). For each
simulated vector, the latency was estimated using a
fixed bandwidth (5 bins) and a bootstrap-derived band-
width. As seen in plot A of Fig. 6, the bootstrap-
derived bandwidth provides more accurate and precise
latency estimates than the fixed bandwidth estimator

for all values of the response rate. Plot B of Fig. 6
demonstrates the fact that the optimal bandwidth de-
creases as the response rate increases when the sponta-
neous rate was fixed at 1 spike/bin. In general, for a
fixed spontaneous rate, this relationship appears to be
true.

Since the smoothing bandwidth plays a critical role
in the accuracy of latency estimation, it is imperative
that the experimenter select the bandwidth in an in-
formed manner. Our bootstrap methodology provides a
simple and robust automated method for choosing the
smoothing bandwidth.
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