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Abstract

Stimulus response latency is the delay in the onset of stimulus-evoked neuronal activity. We develop maximum likelihood and
least squares estimators of stimulus response latency and present a comparison of the performance of these methods with
estimators commonly used in the neuroscience literature. The formal statistical change-point estimation problem is nontrivial due
to the inclusion of a ‘nuisance parameter’, the end of stationarity in the stimulus-evoked activity. Our results suggest that the
automation of the estimation of stimulus response latency will benefit from the use of the maximum likelihood estimator. © 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

Information is transmitted in the nervous system
through the firing of action potentials, known as spikes,
by neurons (see Kandel and Schwartz, 1985 for an
introduction). Factors affecting the temporal firing pat-
terns allow neurophysiologists to assess the functional
role of the neuron. Temporal aspects of the firing
patterns which are typically examined include the mean
firing rate, the autocorrelation, and the stimulus re-
sponse latency.

Since neurons have a finite transmission velocity and
a synaptic delay, a lag exists between the stimulus onset
and the evoked modulation in neural activity. This
delay, known as the stimulus response latency, provides
information concerning hierarchal processing and func-
tionality (Bullier and Nowak, 1995; Gawne et al.,
1996). For example, in the primary visual cortex neu-

rons are often categorized as belonging to a magnocel-
lular or parvocellular system (Livingston and Hubel,
1984). These systems are believed to perform different
functional roles (Livingston and Hubel, 1988; Fellman
and Van Essen, 1991) and a significant difference in
response latency has been reported for these two popu-
lations (Nowak et al., 1995). Neurons often have a
non-stimulus evoked firing rate, known as the sponta-
neous firing rate. Consequently, response latency detec-
tion reduces to the determination of a change-point in
the neural firing rate from the spontaneous activity rate
to the stimulus-evoked response rate.

In a typical neural recording session, a stimulus is
presented a number of times and the spike arrival times
from stimulus onset are binned to form a peri-stimulus
histogram (see Fig. 1). A number of techniques which
have been utilized to measure stimulus response latency
involve computations based on this histogram.

These include assuming the spontaneous activity is
Poisson distributed and searching for a combination of
consecutive bins which exceed a fixed threshold deter-
mined by this distribution (Maunsell and Gibson,
1992), smoothing the peri-stimulus histogram and de-
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termining the time corresponding to half-height of the
peak (Gawne et al., 1996), and determination by vi-
sual inspection of the spike arrival trains (for exam-
ple, Celebrini et al., 1993; Mazzoni et al., 1996).

While these techniques have been effective in deter-
mining a value for the latency, they typically provide
only a local examination of the neural firing pattern
and do not invoke the mathematical formulations of
change-point estimation (Carlstein, 1988; Larson,
1992; Muller, 1992). Since maximum likelihood and
least squares estimation methodologies have advanta-
geous theoretical properties (see Rice, 1995 for an

Fig. 2. A common nonparametric technique for estimating the latency
u involves smoothing the peri-stimulus histogram (same as Fig. 1B) to
obtain a smoothed version (box smooth, 5 ms bandwidth) of the
stimulus evoked neural response (2B). The maximum and minimum
values of the smoothed histogram are then determined. The first time
from stimulus onset in which the histogram exceeds the average of the
minimum and maximum of the smoothed histogram is the estimated
latency u. HH.

Fig. 1. Spike arrival times of a neuron from area V1 of an awake,
fixating monkey for a flashing stimulus (1 Hz) are represented as tick
marks in (A). The stimulus was presented for 500 ms, starting at time
t=0, for a total of 20 presentations. Using a bin width of 1 ms the
histogram of spike arrival times (B) clearly demonstrates that there is
a burst of activity approximately 60 ms from the time of stimulus
onset. Summing the peri-stimulus histogram (B) produces the cumu-
lative peri-stimulus histogram (C). The neural response as a function
of time may be categorized into three response periods: (1) nonstimu-
lus evoked response rate, (2) initial stimulus evoked response rate,
and (3) terminal stimulus evoked response. Transitions between re-
sponse periods are changepoints in the neural firing rate. The time
from stimulus onset (t=0) to the change-point between the non-stim-
ulus evoked rate and the initial stimulus evoked response rate is
defined as the neural response latency u.

introduction) one may anticipate success when using
related approaches to detect response latencies. Previ-
ous research has demonstrated that maximum likeli-
hood estimation of change-points applied to the
neural spike train can be an effective latency estima-
tor (Seal et al., 1983; Commenges and Seal, 1985).
This technique is distinguished from the techniques
we present in that it operates on the neural spike
train rather than the peri-stimulus histogram.

The goal of our research is to derive latency esti-
mation techniques which use developments from
mathematical statistics and to compare the efficacy of
these latency detection techniques to some of the
techniques used in the literature. The results of this
comparison indicate that maximum likelihood is the
preferred technique for estimating stimulus response
latency under a criterion of minimum mean squared
error.
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Fig. 3. The maximum likelihood and least squares techniques for estimating the latency u involve estimating the nuisance parameter k. As depicted
in A, this is accomplished by truncating the cumulative peri-stimulus histogram at candidate cutoff value k̂ % so that the curve can be considered
a single-knot linear spline on [0, k̂ %]. The histogram may then be segmented into two parts, the first section extending from the time of stimulus
onset to the candidate segmentation point u. %k̂%, the second segment from u. %k̂% to the candidate cutoff k̂ %. Least squares fits for each segment result
in an estimated slope and intercept for each line segment. The candidate segmentation point u. %k̂% which maximizes the difference in the slopes of
the two segments (B) corresponds to the candidate estimated latency u. %k̂% for the candidate cutoff k̂ %. For the cell depicted in Fig. 1, Fig. 3 indicates
that the candidate estimated latency is u. %k̂%=56 ms for k̂ %=75 ms.

2. Methods

2.1. Estimation techniques

A common nonparametric technique which has
been used to estimate the neural response latency u

involves smoothing the peri-stimulus histogram. The
first time from stimulus onset in which the histogram
exceeds the half-height of the peak of this smoothed
function is used as the estimated latency u. HH (e.g.
Gawne et al., 1996). In our simulations, the peri-stim-
ulus histogram is smoothed with a simple box
smoother using the optimal bandwidth. Fig. 2 depicts
this estimation, in which the delay between stimulus
onset and the time corresponding to the midpoint be-
tween the minimum and maximum of the smoothed
peri-stimulus histogram is the estimate u. HH.

A common parametric technique for latency detec-
tion assumes that the spontaneous activity has a Pois-
son distribution. The spontaneous activity rate l1 is
estimated by fitting a Poisson distribution to the 250
bins before stimulus presentation in the peri-stimulus
histogram. For this technique the estimated latency
u. MG is defined as the time from stimulus onset to the
first bin that exceeds a level corresponding to a sig-
nificance of p=0.01 for the background distribution
Poisson (l. 1) and is immediately followed, in sequence,
by a bin that exceeds the 0.01 level and a bin that
exceeds the 0.05 level (Maunsell and Gibson, 1992;
Nowak et al., 1995).

We write the peri-stimulus histogram as f. (t) and
the cumulative peri-stimulus histogram as F. (t) for

discrete values of t=0, 1, . . . , t representing bin
numbers starting from stimulus onset. We derive
maximum likelihood and least squares estimators for
the latency by assuming that the spontaneous activity
from stimulus onset (t=0) to latency (t=u) has a
Poisson (l1) distribution and the response activity
from latency (t=u) to cutoff (t=k) has a Poisson
(l2) distribution. Thus the stochastic process j repre-
senting neural activity may be written as

j(t ; l1, l2, u, k)=Í
Á

Ä

Poisson (l1)
Poisson (l2)

unknown

on
on
on

[0, u)
[u, k ]
(k, t ]

(1)

where Poisson rates are in units of spikes/bin. While
the Poisson assumption for spikes/bin is by no means
universally accepted, it is nonetheless a common ap-
proach for modeling cortical neural spike trains (see,
for instance, Gerstein and Mandelbrot, 1964; Shadlen
and Newsome, 1994). Additionally, we have assumed
a step change in the neural firing rate (Seal et al.,
1983).

Our goal is to estimate u in the presence of the
nuisance parameter k and under the assumptions
l2\l1 and 0BuBkBt. The cutoff k is a nuisance
parameter; its value is incidental but its estimation
accuracy nonetheless impacts the accuracy of the sub-
sequent estimate of the parameter of interest u.

Given an estimate k̂ for the nuisance parameter k,
the maximum likelihood estimate u. ML(k̂) for the la-
tency is the value of u�{1, . . . ,k̂−1} which maxi-
mizes the discrete log-likelihood function
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Fig. 4. The candidate estimated latency u. %k̂% reported by the technique
of Fig. 3 is dependent on the choice of candidate cutoff value k̂ %. A
depicts the latency estimate and the uncertainty in the location of this
estimate for each choice of cutoff k̂ %. B depicts the uncertainty
directly. The estimated cutoff k̂ is the point at which the single-knot
linear spline is most accurate, in terms of uncertainty in candidate
estimated latency u. %k̂%. As shown in B, this is determined by finding
the uncertainty in the intersection of the two segments at the candi-
date estimated latency u. %k̂% for each candidate cutoff value k̂ %. This
results in an estimate of k̂=75 ms for the cell depicted in Fig. 1.

To obtain a least squares estimate u. LS for the la-
tency given an estimate k̂ for the nuisance parameter
k note that the model described in Eq. (1) implies
that, if the nuisance parameter is known, then the
cumulative peri-stimulus histogram is a single-knot
linear spline on [0, k ]. Under the assumption that the
estimate k̂ is close to the true value k, we proceed by
assuming that the cumulative peri-stimulus histogram
is a single-knot linear spline on [0, k̂ ]. The least
squares estimate u. LS(k̂) for the latency is the value of
u�{1, . . .,k̂−1} which minimizes the discrete residual
sum of squares function

RSS(u �k̂)= %
u

t=0

(F. (t)−l. 1t)2

+ %
k̂

t=u+1

(F. (t)−l. 1u+l. 2(u− t))2 (4)

where l. 1 and l. 2 are given by

Fig. 5. Monte Carlo Simulation c1 (k known). The estimator of
stimulus response latency with the minimum MSE over the class
{HH, MG, ML, LS} depends on the spontaneous rate l1 and the
response rate l2. For simulations in which these rates are stationary
the best estimator is either the maximum likelihood estimator or the
least squares estimator. No point in the parameter space is found
where either the Maunsell-Gibson or half-height technique have a
smaller MSE than both the least squares and maximum likelihood
techniques. From this experiment we conclude that when k is known
u. ML and u. LS are admissible estimators of stimulus response latency u

relative to the class {HH, MG, ML, LS} while u. MG and u. HH are
inadmissible.

l(u �k̂)= −l. 1(u+1)+ (log l. 1) %
u

t=0

f. (t)− %
u

t=0

log(f. (t)!)

−l. 2(k̂−u)+ (log l. 2) %
k̂

t=u+1

f. (t)

− %
k̂

t=u+1

log(f. (t)!) (2)

where l. 1 and l. 2 are given by

l. 1=
� %

u

t=0

f. (t)
�
/(u+1)

and

l. 2=
� %

k̂

t=u+1

f. (t)
�
/(k̂−u) (3)

That is, u. ML(k̂)=arg maxu�{1, . . . ,k̂−1}l(u �k̂).
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around u. k̂%=56 ms, when the candidate cutoff is k̂ %=
75 ms for the example data set depicted in Fig. 1. The
error in the location of the intersection of the two lines
is considered to be an estimate of the uncertainty in the
candidate estimated latency u. k̂%. To determine the final
estimate k̂ for the cutoff, we consider all values for the
candidate cutoff k̂ % between 35 ms after stimulus onset
and the final bin. We select as our estimate k̂ of k the
candidate cutoff which results in the smallest uncer-
tainty in the candidate estimated latency; k̂=arg mink̂%

(uncertainty in u. k̂%) (see Fig. 4).

2.2. Monte Carlo comparison methodology

The Poisson assumption technique of Maunsell and
Gibson (u. MG) differs from the other estimators in that
it may report that a latency does not exist, whereas the
other three estimators always provide a latency loca-
tion. In order to fairly compare all four estimators, we
select from the estimated latencies only values which
fell into a pre-defined ‘accepting region’ Ra. The proba-
bility that an estimated latency falls into the accepting
region is defined to be the efficiency. For each estimator
Z�{HH, MG, ML, LS} we obtain an estimate of the
efficiency êZ as the ratio of the number of times u. Z�Ra

to the number of Monte Carlo replicates. The estimated
mean squared error MS. EZ for each estimator is calcu-
lated from the subset of the 500 Monte Carlo replicates
for which u. Z�Ra, and the standard error of this mean
squared error is estimated using a bootstrap technique.

To directly compare the performance of the four
estimators described above, we first consider the case in
which the nuisance parameter k is known. Thus for
Monte Carlo Simulation c1 we simulate vectors con-
taining 100 random variables in which the first 50
component samples of the simulated vector are inde-
pendent and identically distributed (i.i.d.) from a Pois-
son (l1) distribution, representing the spontaneous
activity, and the last 50 components are i.i.d. Poisson
(l2), representing the initial response activity. We con-
sider the subset of parameter space defined by 0.015
l1510 and 25l2510. In this case the assumptions of
both the least squares and maximum likelihood models
are correct, with a latency of u=50 and a (known)
cutoff of k=100. All four estimators search for laten-
cies from the 10th bin (t=10) to the 90th bin (t=90).

and

l. 2=
l. 1u %

k̂

t=u+1

(u− t)− %
k̂

t=u+1

F. (t)(u− t)

%
k̂

t=u+1

(u− t)2

(5)

That is, u. LS(k̂)=arg minu�{1, . . . ,k̂−1}RSS(u �k̂).
In order to obtain an estimate k̂ for the cutoff as

required for u. ML and u. LS, it is necessary to select the
point at which the assumption of stationarity in the
response rate is best supported. For a fixed candidate
cutoff value k̂ %, we segment the data sequence into two
parts and perform a least squares fit to both segments.
All possible candidate segmentation points u. k̂% are ex-
amined in this manner and the candidate which maxi-
mizes the difference in the slopes of the two lines is the
candidate estimated latency u. k̂% for the candidate cutoff
k̂ %; u. k̂%=arg maxu. %

k̂ %
(slope difference). As seen in Fig. 3,

the difference in the slopes of the lines has a clear peak

Fig. 6. Monte Carlo Simulation c2 (k known, varying response
length). For l1=1 spikes/bin and l2=4 spikes/bin, the MSE perfor-
mance of the latency estimators is independent of response length
k−u.
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Fig. 7. Monte Carlo Simulation c3. Plots are presented for a spontaneous rate l1=1 spike/bin and for (A) l3=1 spike/bin and (B) l3=0.9 · l2

spikes/bin. The maximum likelihood estimator u. ML has the smallest MSE when l2\3 (this agrees with Fig. 5) and none of the estimators exhibits
a statistically significant superiority for l253. For large values of l1 (e.g. l1\2) u. ML is always the superior estimator. For fixed l1 the MSEs
decrease as l2 increases, as intuition suggests. This simulation requires the estimation of the nuisance parameter k for u. ML and u. LS.

This is repeated 100 times for each estimator. From the
resulting vectors of estimated latencies, only those in
the acceptance region Ra= [20, 80] are used to estimate
the MSE.

In order to investigate the dependence of estimation
performance on the length of the response, we again fix
the latency at u=50 and assume k is known. For
Monte Carlo Simulation c2 we vary the length of the
simulated vector representing the initial response activ-
ity. For this simulation the parameters are the sponta-
neous rate l1, the response rate l2, and the response
length k−u. Each technique scanned the region be-
tween t=10 and t=k−10 and reported an estimated
latency. This was repeated 100 times for each estimator
and each value of response length. In this case Ra=
[35, 65].

Monte Carlo Simulation c3 is designed to compare
the full latency estimation techniques, including the
estimation of the nuisance parameter. We simulate
vectors containing 150 random variables. The first 50
component samples are i.i.d. from a Poisson (l1) distri-
bution, representing the spontaneous activity. Observa-
tions 51 through 100 are i.i.d. Poisson (l2), representing
the initial response activity. The last 50 samples are
i.i.d. Poisson (l3), representing nonstationarity in the
response activity. Hence, the latency is fixed at u=50
throughout the simulation and the cutoff is fixed at

k=100. We vary l1 between 0.1 spikes/bin and 10
spikes/bin. Various ratios of l2/l1 are considered in a
range from 2 to 10. For fixed values of l1 and l2, l3 is
varied over a range from l1 to 0.9 ·l2. Since the half-
height technique and the Maunsell and Gibson tech-
nique do not require stationarity in the response rate,
these techniques scan the range between t=10 and
t=140 and report an estimated latency for the ob-
served sequence. For least squares and maximum likeli-
hood we first estimate the cutoff k. These two
techniques then scan the range from t=10 to t= k̂−5,
five bins less than the estimated cutoff k̂. We consider
Ra= [20, 80] and report Monte Carlo results which are
obtained by repeating this process 500. For each of the
four techniques and for each choice of l1, l2, l3 there
are 500 estimated latencies upon which to perform
statistical inference in order to distinguish between the
performance of the four estimators u. HH, u. MG, u. ML, u. LS.

2.3. Application to neural data

To test our techniques on neural data, we use two
data sets of spike arrival times recorded from neurons
in the primary visual cortex of an awake, fixating
monkey. The animal performed a fixation task during
which time a figure was continuously flashed on for 500
ms and off for 500 ms. The trials ranged in length from
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800 to 4700 ms. Trials were segmented into one second
cycles, where the spike arrival time was with respect to
the most recent figure onset. Spike arrival times were
placed in 1 ms bins to form a peri-stimulus histogram.
Response latencies are estimated for each stimulus
presentation as well as for the entire data set. The
Maunsell-Gibson and half-height techniques scan the
range between 10 and 100 ms. For maximum likelihood
and least squares, the cutoff is estimated between 10
and 100 ms; candidate latencies between 10 and k̂−3
are then considered. A mean squared error is obtained
from the distribution of latencies from individual
presentations where the bias term is estimated using the
latency obtained for the entire data set.

3. Results

3.1. Monte Carlo comparison results

Fig. 5 presents the results of Monte Carlo Simulation
c1, in which the nuisance parameter k is known. As
indicated in the figure, the parameter space divides into
regions for which either the least squares estimator or
the maximum likelihood estimator has the minimum
estimated MSE of the four estimators considered. That
is, u. ML and u. LS are admissible estimators of stimulus
response latency u relative to the class

Fig. 9. Monte Carlo Simulation c3. The estimated efficiency êZ is
similar for all values of initial response rate l2 for u. HH, u. ML and u. LS,
with the half-height technique u. HH exhibiting slight superiority. That
is, these techniques detected the latency within the acceptance region
Ra most of the time. For small values of l2/l1, the Maunsell-Gibson
technique u. MG failed to detect the latency within Ra a significant
proportion of the time. For the least squares and maximum likeli-
hood estimation more than 50% of the inefficiency may be attributed
to the cutoff detection.

Fig. 8. Monte Carlo Simulation c3. The Maunsell-Gibson estimator
u. MG is biased, reporting latencies which tend to be larger than the
true latency. The other estimators demonstrate little or no bias for
larger values of l2/l1.

{HH, MG, ML, LS} for this experiment. We do not
observe any area of the parameter space in which either
the Maunsell-Gibson technique or the half-height tech-
nique is admissible; u. MG and u. HH are inadmissible
estimators. While the minimum MSE estimator is a
function of both the spontaneous rate l1 and the ratio
l2/l1, the maximum likelihood estimator u. ML is gener-
ally superior for larger values of l1.

As seen in Fig. 6, Monte Carlo Simulation c2
suggests that for l1=1 spikes/bin and l2=4 spikes/bin
the maximum likelihood estimate u. ML has the smallest
MSE of all the techniques. Furthermore, the MSEs for
all four techniques appear to be independent of the
response length k−u.

Fig. 7 investigates the performance of the four esti-
mators when the nuisance parameter k must be esti-
mated. Fig. 7 indicates that when the spontaneous rate
l1=1 spike/bin and (A) l3=1 spike/bin and (B) l3=
0.9 ·l2 spikes/bin the maximum likelihood estimator
u. ML has the smallest MSE when l2\3 (this agrees with
Fig. 5) and none of the estimators exhibits a statistically
significant superiority for l2B3. For large values of l1

maximum likelihood is always the superior estimator.
This result is supported by the results presented in Fig.
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5 for l1\2. As intuition suggests, for fixed l1 the
MSEs decrease as l2 increases.

Fig. 8 indicates that the Maunsell-Gibson estimator
u. MG is biased, reporting latencies which tend to be
larger than the true latency. The other estimators
demonstrate little or no bias for larger values of l2/l1.
As seen in Fig. 9, the estimated efficiency êZ is similar
for all values of initial response rate l2 for u. HH, u. ML

and u. LS, with the half-height technique u. HH exhibiting
slight superiority. That is, these techniques detected the
latency within the acceptance region Ra most of the
time. For small values of l2/l1, the Maunsell-Gibson
technique u. MG failed to detect the latency within Ra a
significant proportion of the time. For u. ML and u. LS

more than 50% of the inefficiency can be attributed to
the estimation of the nuisance parameter k.

3.2. Application to neural data

Of course, assumptions made in Monte Carlo analy-
sis may or may not be appropriate for real neural
responses. Fig. 10 depicts the results of automated
stimulus response latency estimation applied to data
sets obtained from two neurons in the primary visual
cortex. Fig. 10 suggests that in both cases the estimate
k̂ for the nuisance parameter k is reasonable. Using the
estimated cutoff k̂, response latency estimates are suc-

cessfully obtained using least squares and maximum
likelihood for the data sets. These values agree closely
with those obtained via the Maunsell-Gibson and half-
height techniques.

Fig. 11 indicates that no significant differences are
observed in the distribution of latencies obtained for
cell A. Furthermore, the correlation in reported laten-
cies is greater than 0.99 for the three pairwise compari-
sons. For cell B, the mean squared error of the
maximum likelihood technique is significantly smaller
than that of the other techniques due to the difference
in the bias term. The mean value of maximum likeli-
hood estimation for this cell is 47.3 ms, whereas the
mean value for the half-height technique (using a nor-
mal smoother with a 5-ms band width; see Gawne et
al., 1996) is 42 ms. For least squares the mean value is
33.2 ms. The Maunsell-Gibson technique fails to obtain
an estimated latency for these data because the re-
sponse rate is too low; it never occurs that three
consecutive bins contain a spike.

To further investigate the performance of the tech-
niques on the cell B data, simulations designed specifi-
cally to relate to this data are performed. The response
rates are fixed at the estimated rates for a single presen-
tation (l1=0.018 spikes/ms, l2=0.137 spikes/ms, l3=
0.022 spikes/ms) and the relevant durations are
obtained from Fig. 10b (n1=55 ms, n2=6 ms, n3=39
ms). The results indicate that the maximum likelihood
technique has the smallest mean squared error due to a
smaller bias term. The mean value for the maximum
likelihood estimator is 46.5 ms (standard error=0.7
ms), compared to 42.1 ms (standard error=0.7 ms) for
half-height and 28.5 ms (standard error=0.9 ms) for
least squares.

4. Discussion

The major conclusions to be drawn from the
investigations presented herein are two-fold. First,
when k is known, for the portion of the l1, l2

parameter space studied, u. ML and u. LS are admissible
estimators of stimulus response latency u relative to the
class {HH, MG, ML, LS} while u. MG and u. HH are
inadmissible. That is, with respect to the mean squared
error criterion, there is no situation in which statistical
analysis suggests the use of u. MG and u. HH. Second, in
the more realistic scenario in which the estimation of u

must be done in the presence of the nuisance parameter
k, the maximum likelihood estimator u. ML is the
superior estimator for large values of the ratio l2/l1 or
large values of l1. The statistical problem of estimating
a change-point in the presence of a nuisance parameter
is a difficult one, and our method of obtaining the
estimate k̂ for this particular application is but one
option.

Fig. 10. Application to neural data. Cumulative peri-stimulus his-
tograms of two neurons recorded from area V1 of an awake, behav-
ing monkey. The estimates of the cutoff k (the point at which
response rate is no longer stationary) are k̂=71 ms in A and k̂=60
ms in B. For cell A, the estimates for the latency are: u. ML=51,
u. LS=51, u. HH=54, u. MG=52. For cell B, the estimates for the
latency are: u. ML=55, u. LS=54, u. HH=56, u. MG=56.
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Fig. 11. Application to neural data. Depicted are the distributions of estimated latencies via maximum likelihood, least squares, and half-height,
for the individual stimulus presentations which constitute the data for the two cells considered in Fig. 10. (Maunsell-Gibson never detects a latency
for these individual stimulus presentations). The cell A data consists of 19 presentations, and the cell B data consists of 46 presentations. For cell
A, the distributions are nearly identical. For cell B maximum likelihood is superior.

We emphasize the importance of choosing the optimal
smoothing bandwidth for the popular half-height esti-
mate u. HH. This choice is a function of l1, l2, the length
of initial response rate, and the latency itself. The
performance of the estimator is quite sensitive to subop-
timal smoothing. Indeed, a choice of smoothing band-
width off by as few as five bins from the optimal can
result in an estimator that is a full order of magnitude
less accurate. We expended significant computational
effort to present best-case results for u. HH, but warn the
practitioner of the potential for significantly poorer
performance. The superior performance in terms of
efficiency for u. HH compared to u. ML and u. LS should not
be disregarded. The majority of this difference can be
attributed to error in estimating the nuisance parameter
k for u. ML and u. LS.

The Maunsell-Gibson estimator u. MG has the advan-
tage of being robust to non-stationarities in the response

rate, but has some notable limitations as well. In partic-
ular, Figs. 7 and 8 indicate that the bias-dominated mean
squared error of u. MG makes it inadmissible. Nonetheless,
the Maunsell-Gibson technique has the advantageous
property of determining whether there is a response at
all. For the maximum likelihood and least squares
techniques, this information may be obtained following
detection of the cutoff. At this point, the experimenter
has an estimate of the spontaneous activity rate, the
initial response rate, and the standard errors of those
rates. Using a t-test the experimenter may decide whether
the initial response rate is significantly larger than the
spontaneous activity rate, and, consequently whether
there is any modulation in neural activity.

A comment is in order regarding the parameters l1 and
l2 and our decision to report results in terms of l2/l1. For
a fixed cell and stimulus paradigm (and stationarity in
response over the time of recording) increasing the
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number of repetitions of a stimulus increases l1 while
keeping l2/l1 fixed. Thus, for instance, Fig. 5 suggests
that we can always move into the region of parameter
space for which u. ML is the superior estimator, while
Fig. 7 indicates that if l2/l1 is large then the experi-
menter should use u. ML.

It is noteworthy that the maximum likelihood and
least squares approaches presented herein are general
techniques, suitable for estimating the latency of either
excitation or inhibition. In order to search for the
moment of inhibition, the cutoff detection must now
minimize the difference between the slopes of the two
lines, rather than maximize. Once the cutoff has been
obtained, the maximum likelihood and least squares
approaches detect the onset of inhibition with similar
efficiency as for the onset of excitation.

The results obtained for cell A indicate that the
choice of latency estimation technique is not critical for
neurons with very low spontaneous activity (in 18 of 19
trials, no spikes occurred in the first 50 ms of stimulus
presentation). For cell B, where the spontaneous activ-
ity is estimated to be 18 spikes/s, the maximum likeli-
hood estimator is superior. For typical ranges of neural
response, the half-height technique selects the first spike
following a stimulus presentation. Consequently, the
half-height technique often selects latencies that are
smaller than the true latency due to the high sponta-
neous activity.

The remarkable agreement between the simulation
results and the distribution obtained from the neural
data set, in spite of the simplifying assumptions of
Poisson activity and a step change in firing rate, sup-
port the notion that our model characterizes the neural
data sufficiently well to have strong predictive power.
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