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1. Introduction

One-class classification problems are abundant in real-world applica-
tions. They often arise in the context ofdetection, where a system is tasked
with determining whether or not a given stimulus is part of a certain type. A
common example of such a system comes from target detection,either from
imagery or acoustic data. In this case, a continuous unlabeled stream of data
is processed in order to segment portions of it that are consistent with a pre-
determined definition of what a target is. Targets can be vehicles or people in
the military context, abnormal tissue in the medical context, human speech in
the acoustic context, etc. A common feature of these target detection applica-
tions is that the relative frequency of occurrence of targets is overwhelmingly
lower than that of non-targets. For example, when searchingfor an armored
vehicle in a radar image, most of the scene is occupied by things other than the
desired target, such as trees, buildings, ground, etc. We may think of this as a
classification problem with two classes, one of which is very common while the
other is exceedingly rare. Alternatively, we may approach this as the problem
of modeling the support of a single distribution (that of thetarget class).

Regardless of the approach we choose for this problem, it is important
to understand that the relative abundance of the target and non-target classes
in the real world must be taken into consideration when evaluating classifier
performance. Relative priors for the two classes in typicaldetection problems
can be off by six or more orders of magnitude. Under these circumstances, and
considering that we often have a limited training and evaluation set of data, a
naive performance evaluation will indicate that simply classifying every obser-
vation as non-target is the optimal strategy. Proper penaltyterms on the type-I
and type-II errors are required in order to obtain meaningful results.

A number of techniques for modeling the support of a distribution can
be found in the literature (Duda and Hart 1973; Duda, Hart andStork 2000;
Jain, Duin and Mao 2000; Hastie, Tibshirani, and Friedman 2001; McLachlan
and Peel 2000; Ripley 1996; Scott 1992; Silverman 1986). All of these degrade
sharply as the dimensionality of the data increases, and most of them are not
applicable for relatively high dimensions, say above ten. We are particularly
interested in detection problems, where the data dimensionality is routinely on
the order of several hundred. Additionally, in such problems the volume of
data to be processed is normally very large, therefore the run-time speed of
the classifier/detector is important. Our goal in this paper is to demonstrate a
set of related strategies for approaching the one-class (detection) problem with
low computational cost. Emphasis will be on obtaining the highest possible
operational speed, and at every point choices will be made that favor speed
or simplicity instead of performance or theoretical correctness. These choices
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will, of course, be justified at the very least heuristically.The reader should
keep in mind, however, that the principle of computational efficiency is a major
driving force for the techniques proposed herein.

Throughout the paper we will use, as an example, the problem ofde-
tecting human faces in grayscale images. The data, in this case, will consist
of 21 × 21 pixel image chips, interpreted as441-dimensional vectors by raster
scanning. The target class consists of those vectors corresponding to a face cen-
tered in the image chip with eyes at specified locations. The non-target class
consists of all other possible441-dimensional vectors, with the distribution of
naturally occurring non-face images. This is a well studied problem, which
exhibits the key aspects of the skewed-priors one-class problem in high dimen-
sions. In addition, a successful face detector must often operate in real-time on
live video streams, so the role of computational complexityis very relevant. In
our example application, as in most other detection problems, we have a limited
amount of training/testing data for the target class and an essentially unlimited
amount of training/testing data for non-targets. This is a typical scenario, since
data from the target class usually must be manually processed prior to use, and
is cumbersome or expensive to acquire. Non-target data, on the other hand, is
plentiful and normally easily collected. Specific details of the application of
our methods to face detection are reported in Socolinsky, Neuheisel, Priebe,
Marchette, and DeVinney (2003). In the current article, we concentrate on pat-
tern recognition aspects of the problem, and use the face detection dataset as a
unifying thread.

The present work builds upon our previous research, specifically lever-
aging the Class Cover Catch Digraph classifier, developed in Priebe, Marchette,
DeVinney, and Socolinsky (2003); DeVinney, Priebe, Marchette, and Socolin-
sky (2002); Socolinsky et al. (2003). Much of what follows canbe adapted to
other classifiers, and we attempt to make a note of that whenever relevant. An
extension of this work using support vector machines is under way, and will
be reported on in a later publication. A number of of authors have proposed re-
lated methods in various contexts (Viola and Jones 2001a,b;Fleuret and Geman
2001).

This paper is organized as follows: In Section 2 we describe theClass
Cover Catch Digraph classifier. In Section 3 we develop a structure for boosting
the CCCD classifier, which is then optimized for data with unequal priors in
Section 4. A data-adaptive technique is explored in Section 5 to further improve
performance. Finally, in Sections 6 and 7 we present results and conclusions.
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2. The Class Cover Catch Digraph Classifier

This section provides a brief introduction to the Class-Cover Catch Di-
graph (CCCD) classifier. A more detailed description and analysis can be found
in Priebe et al. (2003). In particular, this work uses a derivative of the random-
walk CCCD classifier introduced in DeVinney et al. (2002).

The CCCD classifier is a nearest-prototype classifier with respect to a
non-linear dissimilarity function. For simplicity, consider as training data two
sets of class-conditionalR

n-valued observationsX0 andX1, and a dissimilarity
measureρ : R

n × R
n → R+, satisfying0 = ρ(x, x) < ρ(x, y) < ∞, for

x 6= y ∈ R
n. The goal of classifier design is to construct a functiongX0,X1

:
R

n → {0, 1} such that for a given unlabeled observationx ∈ R
n with unknown

class label iny ∈ {0, 1}, the probability of misclassificationP [gX0,X1
(x) 6= y]

is close to Bayes optimal (Fukunaga 1990; Kulkarni, Lugosi, and Venkatesh
1998).

For a set of prototypesCi = {ci,1, . . . , ci,k} ⊂ Xi and scaling factors
Ri = {r1, . . . , rk} ⊂ R+, i = 0, 1, the CCCDcover-dissimilarity measureis
defined by

d(x, Ci) = min
k

ρ(x, ci,k)

rk

. (1)

Given setsCi, andRi as above, the CCCD classifier is defined in terms of the
cover-dissimilarity measure (1) by

gX0,X1
(x) = arg min

i
d(x, Ci). (2)

The choice of prototypesCi and scaling factorsRi, determines the clas-
sifier map. Below, we give a short account of the method for choosing these
parameters. A more thorough account can be found in Priebe et al. (2003);
DeVinney et al. (2002); Socolinsky et al. (2003), along with performance analy-
ses for applications other than face detection.

For each pointxi,j ∈ Xi, we consider the random walk defined as follows

Rxi,j
(r) = |{x ∈ Xi : ρ(xi,j , x) < r}| − |{x ∈ X(1−i) : ρ(xi,j , x) < r}|, (3)

for r ∈ R+, i = 0, 1. This random walk can be thought of as a ball growing
around the pointxi,j . As it reaches each observation the walk takes a step either
up or down, depending on the class of the observation. This is illustrated in
Figure 1, where the random walk is depicted as the ball grows. The horizontal
steps correspond to the distance taken to reach the next observation. A large
value ofRxi,j

indicates a high local density of same-class points aroundxi,j ,
relative to the local density of other-class points (see DeVinney et al. (2002) for
the case of unequal training priors). In fact, the value of the random walk at
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Figure 1. Example of random walk construction for a two-dimensional problem.

any givenr ∈ R+ can be taken as a measure of relative deviation between the
local densities of the training data. A Kolmogorov-Smirnov type test is applied
in DeVinney et al. (2002) to obtain a distinguished choice ofr for each training
observation, given by

r∗xi,j
= arg max

r
Rxi,j

(r)− P (r), (4)

whereP (r) is an increasing penalty function that biases the choice toward
smaller values ofr. This is done in order to encourage more local estimation
of the classifier parameters, and is achieved in practice by the use of a linear
penalty function.

Once a distinguished scaling factorr∗xi,j
has been chosen for each train-

ing observation, it remains to find the choice of class-conditional prototypes
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Ci that will fully determine the CCCD classifier. The procedure inthe standard
CCCD classifier is somewhat different than the one used in thispaper (described
in detail below), but we include a summary of it for completeness. Ideally, the
choice of prototypes would be that which maximizes classifierperformance.
However, the combinatorial explosion involved in checkingall possible pro-
totype sets precludes this direct approach. The choice of prototypes for each
class proceeds in a greedy fashion, using a surrogate criterion for the classifier
performance

Txi,j
= Rxi,j

(r∗xi,j
)− P (r∗xi,j

). (5)

For a given class, the first prototypeci,1 is chosen to be that with the highest
value ofT . All training observationsx for which ρ(x, ci,1) < r∗ci,1

are then
deleted from the training set, all scaling factorsr∗ are recomputed for the re-
maining training observations, and the next prototype is chosen using the surro-
gate criterionT as before. This process continues until all but a predetermined
proportion of the class-i training data has been deleted.

3. A Sequentially Boosted CCCD Classifier

Although some degree of boosting is inherent to the CCCD classifier (by
means of censoring the training data in the greedy prototypeselection process),
increased performance can be achieved by more explicit boosting during train-
ing. Additionally, it is necessary to incorporate the fact that in our skewed-
priors scenario, the relative likelihood of observing a non-target (class1) is
several orders of magnitude larger than that of observing a target (class0).
Therefore, classifier design should be geared toward rejecting the background
class, both for accuracy and performance reasons (Fleuret and Geman 2001).
In our case, we will achieve this by boosting on only the background class and
structuring the classifier as a sequential testing procedure.

3.1 Structure of the Class Cover

By virtue of the nature of the surrogate criterion (5), the CCCD classifier
(2) for a set of prototypesCi = {ci,1, . . . , ci,k} ⊂ Xi and scaling factorsRi =
{r1, . . . , rk} ⊂ R+ is dominated by the influence of the first few elements
of each set. In particular, the first prototype and scaling factor are the most
important in determining the classification map. Figure 2 shows the number of
training observations in each of the balls corresponding tosuccesively chosen
prototypes for a typical two-class CCCD classifier. Clearly,most of the training
data is represented by the first few prototypes in each class.
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Figure 2. Number of data points per ball for a typical two-class CCCD classifier.

3.2 Biasing Classifier Performance

It is often necessary to bias the performance of a classifier tomeet re-
quired tolerances on type-I and type-II errors. This is oftendone, in the Neyman-
Pearson spirit, by varying a threshold. This is a quick and easymethod, and we
will take advantage of it below. We would like to point out that the appropriate
way to bias performance for a CCCD classifier is to alter the random walk (3).
We see that in (3), equal absolute value is assigned to observations of either
class; that is, the penalty for covering a training observation of the opposite
class is equal in magnitude as the reward for covering a like-class observation.
Simply rewriting (3) as

Rxi,j
(r) = α|{x ∈ Xi : ρ(xi,j , x) < r, }| − |{x ∈ X(1−i) : ρ(xi,j , x) < r, }|,

(6)
with α > 0 we obtain a classifier with a variable ratio of type-I to type-II error.

Note that the previous procedure requires that we re-train aclassifier each
time we wish to change the bias, which can be a time-consumingprocedure.
Since we desire the ability to easily change the bias, we forego the previous
construction in favor of a simpler procedure. We easily biasthe classification
performance of any CCCD classifier in favor of lower type-I or type-II error by
modifying the scaling factors as

R̃0 = t R0, R̃1 = t−1 R1, (7)
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for 0 < t <∞. Values oft in (0, 1) favor lower class-1 error at the expense of
higher error rate on class-0, and vice-versa. Geometrically, the value oft has
the effect of shrinking or growing the estimated support of each class.

3.3 Sequentially Boosted Classifier

A sequentially boosted CCCD classifier is essentially a chainof CCCD
classifiers trained in a specific fashion, detailed below, and applied in order to
an unlabeled observation. The process is best explained by first considering the
detection stage. In the original CCCD classifier, classification of an unlabeled
observation is based on the class label of the nearest set of prototypes, where
this is defined as the distance to the nearest prototype in eachset. For simplic-
ity, let us assume that the target class has a geometrically simple support, and
therefore can be represented by a small number of prototypes, whereas the non-
target class is more complex, and thus necessitates more prototypes. Computing
the distance from the unlabeled observation to the target class prototype set is
computationally cheap, since there are few prototypes. Unless implemented
on a parallel computing architecture, computation of the distance from the un-
labeled observation to the non-target prototypes proceedssequentially and in
order. The first simple observation is that if for any non-target prototype the
distance is lower than the minimum distance to the target prototypes, then we
need not compute the remaining distances, as the classifier output will be non-
target, regardless of those distances. Therefore, the classification process can
be shortened by bypassing the remaining computations. The second remark is
equally pedestrian but has farther-reaching implications. We simply note that if
an observation is closer to the first non-target prototype than to any of the target
prototypes, then that changes our prior on the distributionof that observation.
That is, we know more about the type of observation we are dealing with as we
sequentially compute its distance to consecutive non-target prototypes.

The first remark above leads to a sequential testing structure for the ul-
timate classifier, where comparison with successive non-target prototypes must
be favorable in order for the testing process to continue. Ifat any time, we
find that the unlabeled observation is closer to a non-target prototype than to
all target prototypes, we simply exit the decision process.In practice, this has
the advantage of quickly classifying all “easy” observations. We should note
that in real-world detection applications, the vast majority of observations are
easy. This is simply because the hard observations are those which lie near
the discriminant boundary between the two classes and for most problems this
is an almost everywhere regular submanifold of space with codimension one.
Therefore, the majority of possible non-target observations lie far away from
this boundary and can be correctly classified with ease.
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The second remark leads us to the boosted nature of the proposed classi-
fiers. In the standard CCCD classifier (DeVinney et al. 2002), each class cover
is computed separately using the greedy dominating set procedure in Section
2. This is done in the interest of training speed, since the dominating set prob-
lem is exponential in the size of the graph. The most time consuming step in
the greedy algorithm is the computation of distances between training observa-
tions needed to construct the catch digraph, which is quadratic in the number of
training observations. In the sequentially boosted classifier, we explicitly use
the fact that unlabeled observations that have passedn tests against non-target
prototypes are known to be drawn from a different distribution than those that
have passed onlyn− 1 such tests. We do this by filtering the training data with
partially trained classifiers, as described below.

3.4 Training a Sequentially Boosted Classifier

Training of a sequentially boosted CCCD classifier is separated intostages
andsub-stages. In what follows, we associate prototypes and their correspond-
ing scaling factors, and we refer to them simply as prototypes. A stage is char-
acterized by a fixed set of class-0 prototypes, while a sub-stage corresponds
to a single class-1 prototype (see Figure 3). The first prototype in each class
is selected by the same procedure as in Section 2 (if more class-0 prototypes
are desired, they are all chosen in this step, but we describethe process for a
1-prototype stage, for simplicity). At this point, we have a simple CCCD clas-
sifier, with one prototype per class. Using the biasing procedure of Equation (7)
and a test set of class-0 observations, we find the lowest value oft (or a suitable
approximation) that yields an empirical error rate below a predetermined fixed
tolerance. The two prototypes along with the resulting scaling factors consti-
tute the first sub-stage of the sequential CCCD stage. In orderto compute the
second sub-stage, we apply the first sub-stage classifier (see Algorithm 2) to a
set of class-1 data and collect the misclassified observations, which become the
class-1 training observations for the second sub-stage. Using onceagain the
procedure in Section 2, a single class-1 prototype is selected, and through the
bias procedure in (7), the scaling factors for the single (fixed) class-0 prototype
and the newly chosen class-1 prototype are computed. This process is repeated
as many times as necessary to obtain the desired number of sub-stages. In Fig-
ure 4 we see an example of how the training data is filtered by this process for
the face-detection example. On the left we see a uniformly sampled selection of
the non-face training data, while on the right we have a sample of the non-face
data that remains after training one stage of a boosted classifier. Note how the
images on the right hand side have more face-like structure,such as dark circles
located in the eye region, or horizontal striations that resemble eyebrows and
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Figure 3. Schematic representation of a sample CCCD tree stage. In this case, there is a single
target-class prototype and three sub-stages identified by distinct non-target prototypes.

Figure 4. Sample non-face training data before and after the first full boosting stage.

mouths.
The number of sub-stages within a given stage is empirically determined;

we continue to add sub-stages to a stage as long as the correctclassification rate
on the non-target class increases by a significant (predetermined) percentage
over that of the previous sub-stage. At that point, we start training an entirely
new classifier stage, using the original class-0 training data, and the class-1
training data that is misclassified by all previous classifier stages. While speed
considerations may dictate (see Socolinsky et al. (2003)) that the first stage of
the classifier have a single class-0 prototype, subsequent stages are allowed to
have multiple such prototypes. In fact, it is natural to allow later stages to use
more target-class prototypes than earlier ones, thus allowing the classifier to
more closely model the effective support of the distribution. Rather than hand-
select the number of target-class prototypes used for a given stage, we use the
following simple method. We pick the firstk prototypes for the target class,
wherek is the maximum desired number of prototypes. Then using the first
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Figure 5. Sequential CCCD structure with three stages of three sub-stages each. Target proto-
types are smiley faces and non-target prototypes are represented bypolygonal shapes. This is a
graphical representation of Algorithm 2.

sub-stage non-target prototype, we evaluate the emprirical performance of the
k classifiers using1 throughk target prototypes, and select the one with highest
accuracy. The resulting structure is illustrated in Figure 5,where we see a
classifier with three stages, each of which contains three sub-stages. Algorithm
1 shows the steps in the boosted training algorithm. Here, the indexesi andj
correspond to stages and sub-stages, respectively. Each stage i is defined by
its fi target-class prototypesCi

0 = {ci
0,1, . . . , c

i
0,fi
} and scaling factorsRi

0, as
well as theni non-target prototypes and scaling factorsCi

1 = {ci
1,1, . . . , c

i
1,ni
}

andRi
1 corresponding to each sub-stage. A large (on the order of a million or

more) set of non-target observationsT 0
1 is used for the boosting process, and a

separate setT1 of target-class samples is used to evaluate the empirical classifier
performance on the target class.

Figure 6 illustrates the result of sequentially boosted training for a sim-
ple problem in two-dimensions. The target class is supportedon the union of
two overlapping squares in the unit square, with the densitybeing uniform with
equal intensity on both components of their symmetric difference, and uniform
with twice the intensity on their intersection. The background class is distrib-
uted uniformly on the unit square. One-thousand training observations of each
class are used. Each row of Figure 6 corresponds to a stage of a sequentially
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Algorithm 1: Boosted training algorithm.

Let T0 andT 0
1 bei.i.d. sets of class-0 and class-1 data respectively.

Let β be the required number of stages.
Let α be the threshold on the incremental classification

j ← k ← 1; X 0
1 ← T

0
1

for i← 1 . . . β do
SelectCi

0 = {ci
0,1, . . . , c

i
0,fi
} andRi

0 as in Section 2
repeat

Selectci
1,j andri

1,j as in Section 2, usingX k−1
1 as training data

Adjust the scaling factors as in Equation 7 to enforce the required class-0 em-
pirical performance bound
Let T k

1 ⊆ T
0
1 be the class-1 observations incorrectly classified by the current

classifier;
LetX k

1 be the misclassified class-1 training observations
k ← k + 1

until |T k
1 |/|T

k−1
1 | ≥ α

end for

Algorithm 2: Sequentially boosted classification.
Let x be the unlabeled observation.
Let β be the number of stages.
Let Ci

j = {ci
j,1, . . . , c

i
j,ki

j

} for all j ∈ {0, 1}, i ∈ {1, . . . , β} be the sets of target

(j = 0) and non-target (j = 1) class prototypes for stagei.
Let Ri

j = {ri
j,1, . . . , r

i
j,ki

j

} be the scaling factors forCi
j .

for i← 1, . . . , β do

m0 ← min
ki
0

k=1 ρ(x, ci
0,k)

for j ← 1, . . . , ki
1 do

if ρ(x, ci
1,j) < m0 then

Classify as non-target andexit
end if

end for
end for
Classify as target
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Figure 6. Sequential refinement of the classifier through stages and sub-stages. Each row cor-
responds to a stage and each column to a sub-stage within it. The region inside the lines is the
true support of the target class. The three stages have one, three andsix target-class prototypes,
respectively. The first stage has three sub-stages, while the later oneshave four each.

boosted CCCD classifier, and each column represents a sub-stage within each
stage, so the figures should be read from left to right and top tobottom. Each
figure shows the estimate of the effective support for the target class corre-
sponding to the respective stage and substage. The three stages have one, three
and six target-class prototypes, respectively, and the allowed error for each sub-
stage is0.5% (thus the total error on the target class is bounded by5.5%). Note
that the first stage has only three sub-stages, while stages two and three have
four sub-stages each. We see how easy non-target observations can be correctly
classified using only a small portion of the classifier, and those rare ones near
the discriminant boundary must be processed by later stagesor sub-stages.

Figure 7 shows classifier performance on each class as a function of the
total sub-stage count, for a42 sub-stage sequentially boosted classifier. This
was evaluated using a set of several thousand faces and non-faces, disjoint from
the training set. Note how the performance on the face class decreases as the
number of sub-stages increases,1 while the error rate on the background class
decreases. A straight sum of the error rates is not a good criterion of perfor-
mance, however, as the priors are severely skewed toward thebackground class.
Hence, even though it would appear that the optimal classifierin this case has
around10 sub-stages, the full cascade indeed has a better detection to false
alarm ratio.

1. The error rate on the face class is bounded above by the number of sub-stages times the error bound on
each individual sub-stage.
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Figure 7. Sequentially boosted performance as a function of total sub-stage count, for a42 sub-
stage sequentially boosted classifier.

3.5 Fast Training of a Sequential Classifier

The main emphasis of our work lies in lowering the classifier error rate
and speeding up its application at time of detection. Training time is not a ma-
jor factor, since training occurs off-line and once completed does not need to
occur again; that is, once a classifier has been trained, it canbe used indefinitely
without modification. However, if training times are prohibitively long, then it
is not possible to obtain the desired classifier. In our case, the large number
of training observations used, especially for the non-target class, would make
standard CCCD training as in Priebe et al. (2003) and DeVinneyet al. (2002)
all but impossible, since the algorithm there requires the computation of all dis-
tances between training observations. Even though it may be clear to the reader,
we should remark that a very large number of non-target classobservations are
normally required to train a sequentially boosted CCCD classifier because of
the filtering inherent to the training process. In order to train a given sub-stage,
we must collect a sufficiently large number of non-target observations that have
been incorrectly classified by all previous stages and sub-stages. This becomes
increasingly hard for later stages, as the partial classifieris normally fairly good
early in the training process. As a concrete example, when training a face detec-
tor (Socolinsky et al. 2003) we have used tens of millions of non-face examples.
Note that this does not mean collecting tens of millions of images, but rather
using that many subwindows of a few hundred images manually determined to
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contain no faces.
In order to avoid the quadratic growth problem, we apply the following

stochastic search strategy. At each sub-stage of training,random subsamples
from the class-0 and class-1 training data are drawn, consisting of a few hun-
dred observations each. These subsets are used to train the sub-stage as above,
and the empirical performance of the resulting stage on class-1 data is evalu-
ated on the class-1 data not used for training (the complement of the random
sample). Recall that the performance on class-0 data is enforced explicitly, so
it is not necessary to evaluate it. This process is repeated multiple times for
new random samples of the training data, and the sub-stage yielding highest
empirical performance is used in the final classifier. We can think of this as a
degenerate form of bagging (Breiman 1998).

Experimentally, we have observed that if the random trainingsubsets are
not too small, this procedure yields a classifier whose performance is indistin-
guishable from that of one trained on the full set of trainingdata, but requiring
only a small fraction of the computation time. We normally use on the order of
50 random iterations of the above procedure for each sub-stageof the classifier
tree.

4. Biasing Performance for Optimal Sequential Testing

Given a training dataset, the CCCD training process in Section 2 seeks
to find the classifier minimizing the empirical error rate on that set. This is not
the desired outcome if the relative priors in the training set do not reflect those
in the real world. For a detection problem, where the real-world priors differ
by many orders of magnitude, it is not feasible to work with a representative
training set, so we resort to biasing the classifier performance, as in Section 3.2.
Likewise, when our classifier is to be used within a sequential testing process, it
becomes necessary to bias its performance. In this case, it is important that the
error rate on the target class for each test in the sequence bemuch lower than
that on the non-target class. It is easy to see that if for a true target observation
a sub-stage of our classifier makes a mistake, the final classification result will
be incorrect. On the other hand, if a mistake is made for a truenon-target
observation, we simply incur the cost of (at least) another test. Hence, errors
on the target class are unrecoverable, whereas those on the non-target class are
potentially recoverable at the price of additional computation.

It follows from the previous remarks that it is a valid strategy to seek,
for any given sub-stage, the highest performance on the non-target class for a
fixed maximum error rate on the target class. Note that given the structure of
our sequential testing procedure, the overall error (of alltests in sequence) on
the target class is bounded above by the sum of the target-class errors of the
individual tests. We do not have a comparable bound on the non-target class
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error, and in any case such a bound would not be of much use, since we have
no control over that error during training. It follows that if we seek to train a
sequentially boosted CCCD classifier with a given maximum allowable error
on the target class, we must simply control the individual sub-stage empirical
errors so that their sum does not exceed the allowed error. This recipe leaves us
with a great deal of freedom as to how to distribute the per-sub-stage errors, or
equivalently as to the choice of the corresponding biasing factors. When train-
ing the boosted classifier, the choice of biasing factor is of critical importance.
Not only will it affect the detection rate of the classifier, but it will affect the
computational cost as well, especially in the earlier stages. We show below
how different choices of per-substage-error with equal overall error result in
classifiers with substantially different run-time speeds.

4.1 Varying the Biasing Factor on a Per-Sub-Stage Basis

For this discussion, letεi(k) be the class-i error for sub-stagek only,
where the error rate is only evaluated for class-i samples for which all sub-
stages from1 to k − 1 assign the class-0 label.2 Let ε∗i (k) be the cumulative
class-i error for sub-stages1 throughk. Furthermore, let̄X denote the set com-
plement. Based on the algorithm for boosted classification 2,the cumulative
error rates are as follows:

ε∗0(k) =

{

0 whenk = 0,
ε0(k)ε̄∗0(k − 1) + ε∗0(k − 1) otherwise.

(8)

ε∗1(k) =

{

1 whenk = 0,
ε1(k)ε∗1(k − 1) otherwise.

(9)

To analyze the effects of varying the biasing factor, let us first consider
the simple case whenε0(k) is constant, soε0(k) = ε0(l), for all k, l ≥ 1. This
can be achieved by adjusting the biasing factor at each sub-stage, and allowing
the class-1 error to vary from sub-stage to sub-stage. In this case it is simple to
computeε∗0 as follows:

ε∗0(k) = ε0(k)
k−1
∑

i=0

ε̄0(k)i ≤ k ε0(k) (10)

On the other hand,ε∗1(k) will in general depend on the data, according to the
receiver operating characteristic (ROC) curves for the individual sub-stages.
See Figures 8 and 9.

2. Recall that if any sub-stage prior tok had assigned a class-1 label to the observation, then it would never
have been evaluated by sub-stagek.
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Figure 8. An ROC curve for a typical sub-stage as compared to a standard full CCCD classifier.
While it is a weaker classifier, it is faster to evaluate, and can be used with sequential testing to
achieve high performance. Inset shows a magnification.

Now assume that since the prior on the non-target class is much larger
than that on the target class, there is a fixed acceptable target error rate, and that
the goal of training is to get the best possible non-target rejection rate for that
amount of target-class error. The simplest way to achieve this is to take the total
allowed error, divide that by a constant number, and limit each sub-stage error to
that. If the total error is small, then each step up in error will be nearly the same
size according to Equation (10). When we compute empirical ROC curves for
a sequentially boosted CCCD classifier trained in this fashion, we see that each
sub-stage corresponds to a roughly constant step down (increasing error on the
target class), and an incrementally decreasing leftward motion (improving error
on the non-target class), as is shown as the solid line in Figure 8.

The expected computational cost of evaluating a non-target sample up to
no more thank sub-stages is proportional to the average number sub-stages that
need to be evaluated,

U1(k) ∝
k

∑

i=1

ε∗k(k). (11)

SinceU1 depends on the training and testing data, it is hard to estimate ahead
of time, but there are several strategies for reducing it.
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Figure 9. ROC curves for the first, third, and fifth stages in a boosted CCCD classifier. The
ROC curves are generated by adjusting the bias between the nearest face and non-face prototypes
explored. Also shown is an ROC curve generated by varying the numberof sub-stages used with
no bias. Inset shows a magnification.

Recall that after a sample has been classified as non-target, computation
stops, thus reaching a high rejection rate early in the sequential process will
result in a lower average number of sub-stages requiring evaluation. Since a
higher rejection rate on the non-target class will necessitate a higher error rate
on the target class, it is not possible to have many large reductions in false
alarms before exceeding the limit on correct classification.It is the early stages
that have the greatest effect on classification speed, so after initial stages of high
non-target rejection rates and high target error rates, we can switch to biasing
factors that yield lower target-class error for the remaining stages. See Figure
9.

Figure 10 shows three strategies for varying biasing factorsthat yield
the same final correct classification rate of 98% on the target class, but rapidly
achieve most of the non-target rejection in the first few sub-stages. The first
method is to allow a constant maximum error of 0.2%. The secondscheme is to
allow a large error in the first step, and then a constant smaller error thereafter.
This scheme is labeled “Stepped” in Figure 10, and uses a 1% initial step, fol-
lowed by a 0.1% limit, as compared to the 0.2% limit in the constant case. Both
the “constant” and “step” strategies take10 steps to reach 98% correct target
classification. The third scheme is to take an exponential decay rate of1/2 the
target error each step to converge on a final rate of 98%.
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Figure 10. ROC curves for three different biasing strategies. The operational point of the final
classifier is at 98% correct classification. While the linear strategy has a better rejection rate, the
computational expense of the other two strategies are significantly lower.

Table 1. Average number of sub-stages evaluated for non-face samples under three different
biasing schemes with equal final correct classification rate of 98% on theface class.

Linear Step Exponential

2.15 1.40 1.35

Performance results for these three different biasing strategies are shown
in Table 1. The performance is measured by the average number of sub-stages
that must be evaluated for a non-target observation. This is estimated using a
large set of non-target observations not used for training.It should be clear
that since the relative frequency of non-targets is overwhelmingly higher than
that of targets, the computational cost of classifying a non-target observation
determines the run-time speed of the classifier when used in the real world.
Results show that both of the dynamic strategies for adjusting the biasing factor
markedly improve performance. Between the two strategies,the exponential
decay of target error has slightly superior performance. Since the exponential
decay strategy is also able to achieve a higher non-target rejection rate for the
same correct classification, it should be preferred over the step method. The
constant bias factor will be able to achieve the best non-target rejection rates of
all however, so should be considered when speed is not as important.
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5. Adaptive CCCD Trees

In Section 3.4, we discussed the fact that as we train the second and sub-
sequent stages of a sequentially boosted CCCD classifier, we allow multiple
prototypes to be used for the target class. This is so that we can more accu-
rately model the support of the target class. In the classification stage, however,
we are only concerned with whether the unlabeled sample was closer to any
target or non-target prototype. In particular, if a sample is found to be closer
to some target prototype than to all non-target prototypes within a stage, the
specific closest target prototype is irrelevant. This is a waste of valuable infor-
mation, since the set of target-class protoypes induce a partition space. More
explicitly, for any given CCCD stage, we can view the set of target-class pro-
totypes as a set of cluster representatives. Now, almost every sample (target or
non-target) can be assigned to one target-class cluster using the nearest neigh-
bor rule with respect to (1). Figure 11 shows the cluster meansobtained by
training a CCCD stage on a set of zero mean unit norm face images with fixed
eye locations. Even though the choice of prototypes is a greedy optimization
of the graph dominating set, we see that structure within thedata arises natu-
rally. In this case, the three prototypes encode the type of illumination under
which the face image was acquired. In this section we introduce a variant of
the sequentially boosted CCCD classifier that exploits the partition induced by
the target representatives to yield better performance andfaster run times. The
inevitable trade-off is more complex and lengthier training.

In order to train a boosted tree, we proceed as in Section 3.4 toobtain the
first two stages of a sequentially boosted CCCD classifier. As wepointed out
before, for reasons of run-time speed, one normally uses a single target-class
prototype for the first stage, and multiple ones for subsequent stages. In order
to train the third level stages of the tree, we run the training data through the par-
tial classifier and discard, as before, any training observations that are labeled
as non-target. We separate the remaining training observations into groups ac-
cording to the nearest target-class prototype in the secondstage. Now, for each
one of these groups (one per target-class prototype) we train a sequential CCCD
stage using only the data in the group. As in the sequentiallyboosted CCCD
training, we need only specify the maximum allowable numberof target proto-
types, and the algorithm will select at most such a number. For example, when
training the stage whose target clusters are shown in Figure 11, the training al-
gorithm was told to select no more than four prototypes, yet it chose to stop at
three, since the data would only support three natural clusters. Figure 12 shows
a boosted CCCD tree. Each stage is shown as a box containing thetarget-class
prototypes along the bottom and the non-target prototypes along the right side.
A rightward-pointing arrow indicates classification as non-target. A downward-
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Figure 11. Clusters found by the CCCD classifier while training a boosted tree classifier. Each
image represents the mean face within that cluster. While the clusters are ultimately chosen
to maximize classification performance, they do correspond to the major image classes that are
intuitively expected. Frontal, left and right illumination are all the dominant clusters.

pointing arrow leads to either further testing or classification as target.
Once a boosted CCCD tree is trained, classification is a straightforward

extension of the sequentially boosted case. Algorithm 3 shows pseudo-code for
the boosted CCCD tree classifier. We simply compare the unlabeled sample se-
quentially against the target and non-target prototypes ina stage, as before, and
if the sample is closer to the target class, we choose the nextset of target/non-
target prototypes based on the closest target prototype, and continue. If at any
point the sample is closer to some non-target prototype thanto all target-class
prototypes, then it is labeled as non-target and the processis halted. Alterna-
tively, if the sample is never found to be closer to a non-target prototype, it
is declared target class. By partitioning the data at training time, we tune the
later-stage CCCD classifiers to local regions of the discriminant boundary. As
a result, each later stage is required to represent only a region of the boundary
in the vicinity of its target-class prototypes, thus allowing finer modeling of the
class support with the same number of prototypes. Note that even though a
boosted CCCD tree may have a large number of target class prototypes, only
those along the path explored by a given unlabeled sample areused. Therefore
the increase in representational capacity does not result in longer run times. On
the other hand, training is a lengthier process, and more data is needed. In some
cases, the need for extremely large amounts of training datamay render the tree
training infeasible after a few stages, especially for the branches exploring rare
cases. In order to obtain sufficient training data to extend these branches it is of-
ten necessary to filter millions of non-target training data through the previous
tree stages.

Performance when using a CCCD tree is improved on two fronts. Firstly,
overall accuracy is better, with results shown in Figure 13. The reason for this
is that the number of effective target prototypes is increased. In the sequen-
tially boosted CCCD classifier, only a few target prototypes have to represent
the entire target-class distribution, which does not substantially change from
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Figure 12. A boosted CCCD tree classifier. Terminal arrows facing right indicate a target-class
decision, while arrows facing up indicate a non-target decision. Non-target prototypes (sub-
stages) are evaluated from left to right.
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Algorithm 3: Boosted tree CCCD classifier
Let Ck(S) be the set of class-k prototypes for the stageS.
Let ck(S, j) be the class-k prototype for thej-th sub-stage of the stageS.
Let rk(S, j) be the class-k radius for thej-th sub-stage of the stageS.
Let T (S, j) be the biasing factor for thej-th sub-stage of the stageS.
Let Child(S, j) be thej-th child stage of the stageS.

S ← The root stage.
while S 6= ∅ do

for j ← 1 . . . |C0(S)| do
dj ← d(x, c0(S, j))

end for
for j ← 1 . . . |C1(S)| do

b← arg mink∈[1,|C0(S)|]
dk

T (S,j)r0(S,k)

r′0 ←
db

T (S,j)r0(S,b)

r′1 ←
d(x,c1(S,j))T (S,j)

r0(S,j)

if r′0 ≥ r′1 then
return 1

end if
end for
S ← Child(S, b)

end while
return 0

stage to stage. With the boosted CCCD tree classifier, the samenumber of face
prototypes can be used to model only the cluster within the face distribution
matching the previous decisions in the tree. As the target class distribution will
decrease in complexity as we narrow our scope, a small numberof prototypes
normally suffices for good performance.

A secondary performance improvement comes from the fact that the av-
erage cost of evaluating a target sample is lower than in the sequential case.
This is clear from the fact that for a face sample to be correctly classified by the
sequential process, it must be compared to all target prototypes. The average
number of comparisons for the tree case is lower, thus yielding faster run-times.
Of course, it is the expected cost of evaluating a non-targetsample that normally
drives the run-time speed of a detector. However, there are cases where the cost
of evaluating a target sample is a significant run-time factor.3 Table 2 shows the
average number of sub-stages evaluated when processing a target-class sam-

3. For example, if one were to use the detector within a target tracking framework, the likelihood of observing
a target would be relatively high as long as the tracker maintains a good estimate. In this case the relative
class priors are no longer so severely skewed, and the cost ofclassifying a true target observation is relevant
to overall speed.
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Figure 13. ROC curves for sequentially boosted and boosted tree CCCD classifiers. Insert shows
a magnification.

ple using sequentially boosted and boosted tree CCCD classifiers. We see that
the number of sub-stage evaluations required to process a target sample is sub-
stantially lower when using a tree-based classifier. The number of sub-stages
required for evaluating a non-target sample is not very different. This should be
no surprise, as the majority of non-target samples are correctly classified using
the first stage only, which occurs before the tree begins to branch.

6. Performance and Speed Analysis

This section provides a number of performance comparisons between the
proposed CCCD approaches and support vector machines (Vapnik 1998). The
comparison to SVMs is particularly relevant since CCCDs havemany concep-
tual similarities with them, especially SVMs based on radialbasis functions.
While SVMs model the discriminant boundary by choosing classrepresenta-
tives close to that boundary, CCCDs do so by using representatives in regions
of high statistical depth.4 Both methods restrict their choice of representatives
to elements of the training set, unlike other methods for prototype selection,
such ask-means. In both cases, this restriction is imposed in order to make

4. The statistical depth of a point can be thought of as its closeness to the center of a dataset. For a more
detailed discussion, see Zuo and Serfling (2000).
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Table 2. Average number of sub-stages that must be evaluated for each two classifiers of roughly
equal classification performance on both targets and non-targets.

Targets Non-Targets

Sequential CCCD: 20.58 1.44
Tree CCCD: 12.31 1.36

training computationally tractable. Unlike SVMs, however,CCCDs use a sub-
optimal procedure for picking the prototype set, since the optimal method is
NP-complete.

In some cases CCCD classifiers have been shown to have similar or su-
perior performance to SVMs (DeVinney et al. 2002). For many ofthe exper-
iments presented in this paper, SVMs have shown better classification perfor-
mance than CCCD classifiers, although at considerably highercomputational
cost. Figure 14 shows ROC curves for SVMs with linear, polynomial (degree
two), and Gaussian kernels as compared to a CCCD classifier. Multiple CCCD
classifiers were trained on random subsets of the data, and95% confidence in-
tervals on their performance are shown in the graphs. Note that the comparisons
are between standard CCCD classifiers with no bound on the number of proto-
types (not boosted ones) and SVMs. We have observed that a boosted CCCD
classifier will have roughly similar classification performance as a standard one
with no bound on the number of prototypes per class, althoughat a much lower
computational cost. Therefore, these comparisons should reflect the expected
performance of the boosted classifiers. Unfortunately, training the boosted clas-
sifiers is a lengthy process, and it would be infeasible to train a large enough
sample in order to have meaningful confidence intervals. As wecan see in Fig-
ure 14, SVMs with quadratic and Gaussian kernels outperform aCCCD, while
the CCCD outperforms a linear SVM. All of them were trained with the same
data set.

Figures 15, 16 and 17 explore the generalization capability of CCCD
classifiers versus linear, quadratic and Gaussian SVMs, trained and tested on
the same data. The training set consisted of face images with frontal or near
frontal illumination, and the test set consisted of face images with severly lat-
eral (left or right) illumination. As we can see, CCCDs generalize statistically
significantly better than linear SVMs. For Gaussian SVMs, CCCDsappear to
generalize slightly worse, but it is unclear whether this difference is significant.
The difference appears to be more significant with quadratic SVMs, although
once again the confidence intervals are wide enough as to make this unclear.

The clear advantage of CCCDs over SVMs comes when we consider the
computational cost of applying the classifier. Table 3 shows the number of sup-
port vectors for each of the three tested support vector machines. In each case,
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Figure 14. Performance of CCCDversusseveral SVMs. The same training and testing data are
used for both. Since the CCCD training algorithm is non-deterministic,95% confidence intervals
are shown. Insert shows a magnification. SVM performance is best with Gaussian kernels,
followed by polynomial and linear kernels.

all support vectors must be evaluated in order to obtain a classification. For
the boosted CCCD classifiers, we noted that the average numberof sub-stages
evaluated when processing a non-target (the driving component of the run-time
cost) is about1.4, which would result in an average of2.4 prototype compar-
isons per non-target sample. (One for the face class, and an average of 1.4 non
faces.) Since the computational cost of processing a supportvector is the same
as that of processing a CCCD prototype, this is about450 times fewer compar-
isons than the various SVMs, and hence about 450 times faster.A number of
authors have proposed methods for reducing the complexity of SVMs (Burgess
1996; Scḧolkopf, Burgess, Knirsch, M̈uller, Rätsch, and Smola 1999). Using
the algorithm in Scḧolkopf et al. (1999), and the Gaussian SVM whose perfor-
mance is displayed in Figure 14, we created a reduced SVM with computational
complexity comparable to a boosted CCCD tree. Figure 18 showsROC curves
for the full Gaussian SVM, the reduced one, and a boosted CCCD tree. We
can now see that for the same computational cost, the boostedCCCD tree is
superior to the Gaussian SVM.
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Figure 15. The generalization capability of an SVM with a linear kernelversusa CCCD classifier.
Testing is on lateral illumination (top) and severe lateral illumination (bottom). In both cases,
the training data was frontal or near frontal illumination. Error bars showthe95% confidence
intervals after25 random restarts for the CCCD classifier. Insert shows a magnification.
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Figure 16. The generalization capability of a SVM with a degree-2 polynomial versusa CCCD
classifier. Testing is on lateral illumination (top) and severe lateral illumination(bottom). In both
cases, the training data was frontal or near frontal illumination. Error bars show the95% confi-
dence intervals after25 random restarts for the CCCD classifier. Insert shows a magnification.
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Figure 17. The generalization capability of a SVM with a Gaussian kernelversusa CCCD classi-
fier. Testing is on lateral illumination (top) and severe lateral illumination (bottom). In both cases,
the training data was frontal or near frontal illumination. Error bars showthe95% confidence
intervals after25 random restarts for the CCCD classifier. Insert shows a magnification.



46 C.K. Eveland, D.A. Socolinsky, C.E. Priebe, and D.J. Marchette

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-05  0.0001  0.001  0.01  0.1  1

C
or

re
ct

 C
la

ss
ifi

ca
tio

n 
R

at
e

False Alarm Rate

Full SVM
Reduced SVM
Boosted Tree

Figure 18. ROC curves for a full Gaussian SVM, reduced Gaussian SVM and boosted CCCD
tree, all trained on the same data. The CCCD tree’s accuracy lies betweenthat of the full SVM
and the reduced set SVM. The reduced set SVM and CCCD tree have thesame computational
cost, while the full SVM is considerably more expensive.

7. Conclusion

We introduced a novel extension to the CCCD family of classifiers. The
proposed methods are specifically designed for the one-class, or detection, prob-
lem where the natural abundance of one class is overwhelmingly larger than
that of the other. In this context, processing speed for the classifier is primarily
driven by the cost of evaluating a sample from the non-targetclass. As a result,
we structured the new classifiers in such a way as to minimize the cost of eval-
uating such samples. This allowed us to reduce the average cost of evaluating
a sample more than tenfold with no degradation in classification performance.
The key insight was to structure the classifiers as either cascades or trees with a
maximal rejection bias.

Due to the large amount of data needed to train the proposed classifiers,
it was necessary to introduce a fast training method based ona bagging tech-
nique. Fast training makes it possible to use millions of training observations
(for the non-target class) in a manageable period of time. Previous CCCD train-
ing implementations were limited to a few thousand trainingobservations.

Comparisons with support vector machines were provided both for accu-
racy and speed. While the classification performance of certain SVMs appears
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Table 3. Number of support vectors used in various experiments.

Support
Name Kernel Vectors

Linear K(x,y) ∝ x · y 887
Polynomial K(x,y) ∝ (x · y)2 1306

Gaussian K(x,y) ∝ exp −
(x−y)2

2
922

to be higher on the sample problem, their computational costis several hundred
times higher, thus making them unsuitable for applicationsrequiring very high
processing throughput. As the proposed CCCD classifiers weredesigned for
use in real-time applications, we find this comparison to be a positive one.

The most valuable contribution of this paper, in the authors’view, is the
adaptive CCCD tree. The combination of an early rejection option with what
amounts to adaptive classifier selection is a powerful tool for fast and accurate
classification. An effort is currently underway to constructa similar classifier
based on SVMs instead of CCCDs, the results of which will be reported else-
where.
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