The Canadian Journal of Statistics 27
Vol. 35, No. 1, 2007, Pages 27-50
La revue canadienne de statistique

A new family of random graphs
for testing spatial segregation

Elvan CEYHAN, Carey E. PRIEBE and David J. MARCHETTE

Key words and phrasesAssociation; complete spatial randomness; Delaunay triangulation; proximity
catch digraph; random graph; relative density; segregation.

MSC 2000:Primary 05C20; secondary 62M30.

Abstract: The authors discuss a graph-based approach for testing spatial point patterns. This approach
falls under the category of data-random graphs, which have been introduced and used for statistical pattern
recognition in recent years. The authors address specifically the problem of testing complete spatial ran-
domness against spatial patterns of segregation or association between two or more classes of points on the
plane. To this end, they use a particular type of parameterized random digraph called a proximity catch
digraph (PCD) which is based on relative positions of the data points from various classes. The statistic
employed is the relative density of the PCD, which & atatistic when scaled properly. The authors de-

rive the limiting distribution of the relative density, using the standard asymptotic thedrystétistics.

They evaluate the finite-sample performance of their test statistic by Monte Carlo simulations and assess
its asymptotic performance via Pitman’s asymptotic efficiency, thereby yielding the optimal parameters for
testing. They further stress that their methodology remains valid for data in higher dimensions.

Une nouvelle famille de graphes aléatoires utile pour tester la ségrégation spatiale

Résuné : Les auteurs montrent comment on pegtatter des configurations de points dans I'espat-

de de graphes. Leur approche s’appuie sur la notion de gragamiaé obse®, recemment introduite et
utilisée en statistique pour la reconnaissance de formes. Les auteurs chercheréqiempnta cetecter

la presence de&giegation ou d’association entre deux ou plusieurs ensembles de points du plan en testant
I'hypothese d’absence congik de structure. Dans ce but, ils font appelne classe pardrique parti-
culiere de digraphes@htoires appék digraphesd captation proximale” (DCP) qui tiennent compte de la
disposition relative deslements des diverses classes. Le test s'appuie sur la&@eglsitive du DCP qui,
une fois proprement normadie, est uné/-statistique. Les auteurs eatérminent la loi limite en invoquant
la theorie asymptotique dds-statistiques. lls eBvaluent la performancetaille finie au moyen de simula-
tions de Monte-Carlo et egtudient aussi le comportement limite sous I'angle de I'effiéaagtymptotique
de Pitman, dont &coulent des choix optimaux de partnes aux fins de test. lls soulignent de plus que
leur méthodologie reste valide en dimensionséigures.

1. INTRODUCTION

In this article, a graph-based approach for testing spatial point patterns is discussed. In the statis-
tical literature, the analysis of spatial point patterns in natural populations has been extensively
studied and has important implications in epidemiology, population biology, and ecology. The
pattern of points from one class with respect to points from other classes, rather than the pattern
of points from one class with respect to the ground, is investigated. The spatial relationships
among two or more classes have important implications especially for plant species. See, for
example, Pielou (1961) and Dixon (1994, 2002).

The goal of this article is to test the spatial pattern of complete spatial randomness against
spatial segregation or association. Complete spatial randomness (CSR) is roughly defined as the
lack of spatial interaction between the points in a given study area. Segregation is the pattern
in which points of one class tend to cluster together, i.e., form one-class clumps. In association,
the points of one class tend to occur more frequently around points from the other class. For
convenience and generality, we call the different types of points “classes”, but the class can be
replaced by any characteristic of an observation at a particular location. For example, the pat-
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tern of spatial segregation has been investigated for species (Diggle 1983), age classes of plants
(Hamill & Wright 1986) and sexes of dioecious plants (Nanami, Kawaguchi & Yamakura 1999).

Data random digraphs are directed graphs in which each vertex corresponds to a data point,
and directed edges (arcs) are defined in terms of some bivariate function on the data. For example,
nearest neighbour graphs are defined by placing an arc between each vertex and its nearest neigh-
bour. Priebe, DeVinney & Marchette (2001) introduced a data random digraph (called class cover
catch digraphs (CCCD)) in R and extended it to multiple dimensions. In this model, the vertices
correspond to data from a single clagsand the definition of the arcs utilizes the other cl@ss
For eachr; € X aradius is defined by, = mind(x;,y) where the minimum is taken over all
y € Y. Thereis an arc from; to z; if d(x;, z;) < r;, thatis, if the sphere of radius centered at
x; “catches”z;. DeVinney, Priebe, Marchette & Socolinsky (2002), Marchette & Priebe (2003),
Priebe, Marchette, DeVinney & Socolinsky (2003), and Priebe, Solka, Marchette & Clark (2003)
demonstrated relatively good performance of CCCD’s classification.

We define a new class of random digraphs (proximity catch digraphs or PCDs) and apply
it in testing against segregation or association. By construction, in our PCDs, the fartiver an
point is fromY)’, the more arcs to otheY¥ points it will be likely to have. We will use the relative
density (number of arcs divided by the total number of possible arcs) as a statistic for testing
against segregation or association.

To illustrate our methods, we provide three artificial data sets, one for each pattern. These
data sets are plotted in Figure 1, whei@oints are at the vertices of the triangles, angoints
are depicted as squares. The triangles are from the Delaunay triangulatio/gbdigs. These
triangles will be used to define the proximity function that will in turn define the PCD. Under
the segregation pattern (left) the relative density of the PCD will be larger compared to the CSR
pattern (middle), while under the association pattern (right) the relative density will be smaller
compared to the CSR case.

The statistical tool utilized is the asymptotic theoryloftatistics. When the relative density
of our PCDs is properly scaled, we demonstrate that it i&-statistic, which has asymptotic
normality by the general central limit theory 6f-statistics. For the digraphs introduced by
Priebe, DeVinney & Marchette (2001), whose relative density is also dits&tistic form, the
asymptotic mean and variance of the relative density are not analytically tractable in multiple
dimensions, due to geometric difficulties encountered. However, the PCD we introduce is a
parameterized family of random digraphs, whose relative density has tractable asymptotic mean
and variance.
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FIGURE 1: Realizations of segregation (left), CSR (middle), and association (right) patterg for10
and|X| = 1000. TheY points are at the vertices of the triangles andahpoints are squares.

Ceyhan & Priebe (2003) introduced an (unparameterized) version of the PCD we discuss in
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this article; Ceyhan & Priebe (2005) also introduced another parameterized family of PCDs and
used the domination number (which is another statistic based on the number of arcs from the
vertices) of this latter parameterized family for testing segregation and association. The domina-
tion number approach is appropriate when both classes are comparably large. Ceyhan, Priebe &
Wierman (2006) used the relative density of the same PCD for testing the spatial patterns. Our
new parameterized family of PCDs has more geometric appeal, is simpler in distributional para-
meters in the asymptotics, and the range of the parameters is bounded.

Using the Delaunay triangulation of thé observations, in Section 3.1 we will define the
parameterized version of the proximity maps of Ceyhan & Priebe (2003) for which the calcula-
tions (regarding the distribution of the relative density) are tractable. We then can use the relative
density of the digraph to construct a test of complete spatial randomness against the alternatives
of segregation or association which are defined explicitly in Sections 2 and 4.1. We will calculate
the asymptotic distribution of the relative density for these digraphs, under both the null and al-
ternative patterns in Sections 4.2 and 4.3, respectively. This procedure results in a consistent test,
as will be shown in Section 5.1. The finite sample performance (in terms of power) is analyzed
using Monte Carlo simulations in Section 5.2. The Pitman asymptotic efficiency is analyzed in
Section 5.3. The multiple-triangle case and the extension to higher dimensions are presented in
Sections 5.4 and 5.5, respectively. All proofs are provided in the Appendix.

2. SPATIAL POINT PATTERNS

For simplicity, we describe the spatial point patterns for two-class populations. The null hypoth-
esis for spatial patterns has been a controversial topic in ecology from the early days (Gotelli &
Graves 1996). But in general, the null hypothesis consists of two random pattern types: complete
spatial randomness or random labelling.

Undercomplete spatial randomne@SSR) for a spatial point pattegnX; (D), i = 1,...,n:
D c R?*}, whereX;(D) is the Bernoulli random variable denoting the event that poiatin
regionD, we have

(i) givenn points in domainD, the points are an independent random sample from the uni-
form distribution onD;

(i) there is no spatial interaction, i.e., the locations of these points have no influence on one
another.

Note that condition (ii) is implied by (i). Furthermore, when the reference rebiamlarge,
the number of points in any planar region with arééD) follows (approximately) a Poisson
distribution with intensity\ and meam\ - A(D).

Given a fixed set of points in a region, under random labelling, class labels are assigned to
these fixed points randomly so that the labels are independent of the locations. Thus, random
labelling is less restrictive than CSR. We only consider a special case of CSR as our null hypoth-
esis. More specifically, onlyt’ points are assumed to be uniformly distributed over the convex
hull of ) points.

The alternative patterns fall under two major categories calgstciationand segregation
Association occurs if the points from the two classes together form clumps or clusters. That
is, association occurs when members of one class have a tendency to attract members of the
other class, as in symbiotic species, so thatthevill tend to cluster around the members)f
For example, in plant biology} points might be the geometric coordinates of parasitic plants
exploiting another plant whose coordinates #rpoints. As another examplg; and) points
might represent the coordinates of mutualistic plant species, so they depend on each other to
survive. In epidemiology) points might be the geographic coordinates of contaminant sources,
such as a nuclear reactor, or a factory emitting toxic wasteiapdints might be the coordinates
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of the residences of cases (incidences) of certain diseases caused by the contaminant, e.g., some
type of cancer.

Segregation occurs if the members of the same class tend to be clumped or clustered together
(see, e.g., Pielou 1961). Many different forms of segregation are possible. Our methods will
be useful only for the segregation patterns in which the two classes more or less share the same
support (habitat), and members of one class have a tendency to repel members of the other class.
For instance, it may be the case that one type of plant does not grow well in the vicinity of another
type of plant, and vice versa. This implies, in our notation, that¥hare unlikely to be located
near any elements @f. See, for instance, (Dixon 1994; Coomes, Rees & Turnbull 1999). In
plant biology,) points might represent the coordinates of trees from a species with large canopy,
so that other plants (whose coordinates &rpoints) that need light cannot grow around these
trees. As another interesting but contrived example, consider the arsonist who wishes to start fires
with maximum duration time (hence maximum damage), so that he starts the fires at the furthest
points possible from fire houses in a city. THEmpoints could be the geographic coordinates of
the fire houses, whil&’ points will be the coordinates of the locations of the arson cases.

We consider completely mapped data, i.e., the locations of all events in a defined space are
observed rather than sparsely sampled data (i.e., only a random subset of locations is observed).

3. DATA-RANDOM PROXIMITY CATCH DIGRAPHS

In general, in aandom digraphthere is an arc between two vertices, with a fixed probability,
independent of other arcs and vertex pairs. However, in our approach, arcs with a shared vertex
will be dependent. Hence the namiata-random digraphs

Let (©2, M) be a measurable space and consider a fungiiof? x 2% — 2%, where2
represents the power set @f Then given) C (9, the proximity mapNy(-) = N(-,)) :

Q) — 2% associates proximity regionNy (z) C Q with each pointr € Q. The regionNy (z) is
defined in terms of the distance betweeand) .

If X, = {X1,Xa,...,X,} is a set of2-valued random variables, then thg,(X;), i =
1,...,n, are random sets. If th&,; are independent and identically distributed, then so are the
random setsNy (X;).

Define the data-random proximity catch digraPptwith vertex set = {X;,..., X, } and
arc setAd by (X;, X;) € A < X, € Ny(X;) where pointX; catches the poink;. The
random digraptD depends on the (joint) distribution of tt and on the magp/y,. The adjective
proximity (for the catch digrap® and for the mapVy,) comes from thinking of the regiaNy, (z)
as representing those pointstinclose tox (Toussaint 1980; and Jaromczyk & Toussaint 1992).

The relative density of a digragh = (V, .A) of order|V| = n (i.e., number of vertices is),
denotedp(D), is defined as

_ A

where| - | stands for the set cardinality (Janson, tuczak & Raski 2000). Thus(D) rep-
resents the ratio of the number of arcs in the digrapto the number of arcs in the complete
symmetric digraph of order, namelyn(n — 1).

If Xq1,...,X, i F, then the relative density of the associated data-random proximity catch
digraphD, denotedh(X,,; h, Ny), is a U-statistic:

i Ny) = s 30 3T BN X Ny)

where
h(Xi,Xj;Ny) I{(X,“X]) GA}‘FI{(XJ,XZ) GA}
I{X; € Ny(Xi)} + I{X; € Ny(X;)}
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FIGURE 2: Construction ofr-factor central similarity proximity regiorNé/SQ(;r) (shaded region).

with I(-) being the indicator function. We dendt¢X;, X;; Ny) ash;; henceforth for brevity
of notation. Although the digraph is not symmetric (siticey) € A does not necessarily imply
(y,z) € A), h;; is defined as the number of arcslinbetween vertices(; and X ;, in order to
produce a symmetric kernel with finite variance (Lehmann 1988).

The random variableg,, := p(X,,; h, Ny) depends om and Ny, explicitly and onF' implic-
itly. The expectatior® [p,,], however, is independent efand depends only oA’ and Ny:

1
0<E[p,] = 5E[hu] <1 foralln>2.

The variancesar [p,,] simplifies to

-2
var [pn] = var [hia] + nnicov [h12, hi3] < 1/4.

2n(n —1) (n—1)

A central limit theorem foiU-statistics (Lehmann (1988)) yields

Vi (pn — E [pa]) -5 N(0, cov [, b))

provided thatov [h12, h13] > 0. The asymptotic variance @f,, namelycov [h2, h13], depends
only on F' andNy. Thus, we need to determine ofl\{/15] andcov [h12, h13] in order to obtain
the normal approximation faf,,.

3.1. The r-factor central similarity proximity catch digraphs.

We define ther-factor central similarity proximity map briefly. Le? = R? and let) =
{y1,y2,y3} C R? be three non-collinear points. Denote the triangle (including the interior)
formed by the points i0) asT'(Y). For € [0, 1], defineN3, to be ther-factor central similarity
proximity map as follows; see also Figure 2. kebe the edge opposite vertexfor j = 1,2, 3,

and let “edge regionsR(e;), R(e2), R(es) partitionT()) using segments from the centre of
mass ofT’()’), M¢, to the vertices. For € T'()) \ ), lete(x) be the edge in whose regian
falls; z € R(e(x)). If « falls on the boundary of two edge regions we assigr) arbitrarily. For

7 € (0, 1], ther-factor central similarity proximity regionViq(x) = N3,() is defined to be the
triangleT’- (x) with the following properties:

() T,(z) has an edge.(x) parallel toe(x) such thatd(z,e,(z)) = 7d(z,e(z)) and
d(er(x),e(x)) < d(z,e(x)) whered(z, e(z)) is the Euclidean (perpendicular) distance
from z to e(x),

(i) T-(x) has the same orientation as and is similaf'ty’),
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FIGURE 3: Realizations of segregation (left), CSR (middle), and association (righfyfce 3 and
|X| = 20. Y points are at the vertices of the triangle, aXighoints are circles.

(iii) « is at the centre of mass @f. ().

Note that (i) implies the--factor, (ii) implies similarity, and (i) implies central in the name
t-factor central similarity proximity mapNotice thatr > 0 implies thatr € Nig(z) andr <1
implies thatN(ig(z) € T(Y) forall z € T(Y). Forz € 9(T(Y)) andr € [0, 1], we define
Nig(z) = {z}; for 7 = 0 andz € T'(Y) we also defineViq(z) = {z}. LetT())° be the
interior of the triangler’(Y). Then for allz € T(Y)° the edgeg. («) ande(x) are coincident iff
7 = 1. Note that the central similarity proximity map of Ceyhan & Priebe (2003)ds( - ) with
T = 1. Hence by definition(z, y) is an arc of the--factor central similarity PCD iff) € Nig(z).

Notice thatX; id F, with the additional assumption that the non-degenerate two-dimensional
probability density functiory exists with support iff’()), implies that the special cas# (falls
on the boundary of two edge regions) in the constructioWg§ occurs with probability zero.

For a fixedr € (0,1], Nig(x) gets larger (in area) asgets farther away from the edges (or
equivalently gets closer to the centre of magdg) in thatd(z, e(x)) increases, or equivalently
d(Me, e, (x)) decreases. Hence for pointsdi{)), the farther the points away from the ver-
tices) (or closer the points td/- as above), the larger the area/6f,(z). Hence, it is more
likely for such points to catch other points, i.e., have more arcs directed to other points. There-
fore, if moreX’ points are clustered around the centre of mass, then the digraph is more likely to
have more arcs, hence larger relative density. So, under segregation, relative density is expected
to be larger than that in CSR or association. On the other hand, in the case of association, i.e.,
when X' points are clustered arourdd points, the regionsVis(z) tend to be smaller in area,
hence, catch fewer points, thereby resulting in a small number of arcs, or a smaller relative den-
sity compared to CSR or segregation. See, for example, Figure 3 with)hpeats, and 20Y
points for segregation (top left), CSR (top middle) and association (top right). The corresponding
arcs in ther-factor central similarity PCD withr = 1 are plotted in the bottom row in Figure 3.

The corresponding relative density values (foe 1) are .2579, .1395, and .0974, respectively.

Furthermore, for a fixed € T'())°, Nig(x) gets larger (in area) asincreases. So as
increases, it is more likely to have more arcs, hence larger relative density for a given realization
of X pointsinT'()).
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4. ASYMPTOTIC DISTRIBUTION OF THE RELATIVE DENSITY

There are two major types of asymptotic structures for spatial data (Lahiri 1996). In the first, any
two points are required to be at least a fixed distance apart, hence as the number of points increase,
the region on which the process (or pattern) is observed eventually becomes unbounded. This
type of sampling structure is calléttreasing domain asymptotick the second type, the region

of interest is a fixed bounded region and more and more points are observed in this region. Hence
the minimum distance between data points tends to zero as the sample size tends to infinity. This
type of structure is callethfill asymptoticsdue to Cressie (1991).

The sampling structure for our asymptotic analysis is infill, for only the size of theAype
points tends to infinity, while the support, the convex ij} ()’) of a given set of points from
type ) points is a fixed bounded region.

Next, we describe the null pattern of CSR and parameterize the alternative patterns of segre-
gation and association briefly, and then provide the asymptotic distribution of the relative density
for these patterns.

4.1. Null and alternative patterns.

For statistical testing against segregation and association, the null hypothesis is generally some
form of complete spatial randomness; thus we consider
iid
Ho: X; ~ U(T())).
If it is desired to have the sample size be a random variable, we may consider a spatial Poisson
point process off’()) as our null hypothesis.

We first present a geometry-invariance result that will simplify our calculations by allowing
us to consider the special case of the equilateral triangle.

THEOREM 1 (Geometry invariance propertyet) = {y1,y2,y3} C R? be three non-collinear
points. Fori = 1,...,n, let X, % U(T'(Y)), the uniform distribution on the triangl&()).
Then for anyr € [0, 1] the distribution ofp,,(7) := p(X,; h, Nlg) is independent of’, hence

the geometry of’()).

Based on Theorem 1 and our uniform null hypothesis, we may henceforth assufi€)hat
is the standard equilateral triangle wh = {(0,0), (1,0), (1/2,v/3/2)}. For ourr-factor
central similarity proximity map and uniform null hypothesis, the asymptotic null distribution of
pn(T) = p(X,; h, NZg) as a function of- can be derived. Let(7) := E [p,,], then

w(7) = Elhi2]/2 = P(X2 € Nig(X1))

is the probability of an arc occurring between any two vertices, andfet:= cov [h12, h13].

We define two simple classes of alternativé& andHZ with e € (0,+/3 /3), for segre-
gation and association, respectively. See also Figure 4.y For), let e(y) denote the edge
of T'(Y) opposite vertex, and forx € T(Y) let {,(x) denote the(y) throughz. Then de-
fine T(y,e) = {z € T(Y) : d(y,{,(z)) < £}. Let HS be the model under whick i
U(T(P)\Uyey T(y,2)) andHZ be the model under whick, by U(Uyey T(y, V3 /3 —¢)).

The shaded region in Figure 4 is the support for segregation for a particviue; and its
complement is the support for the association alternative with'3 — . Thus the segregation
model excludes the possibility of ai;; occurring near &; and the association model requires
that X; occur near a;. Thev/3/3 — ¢ in the definition of the association alternative is so
thate = 0 yields H, under both classes of alternatives. We consider these types of alternatives
among many other possibilities, since relative density is geometry invariant for these alternatives
as the alternatives are defined with parallel lines to the edges.



34 CEYHAN, PRIEBE & MARCHETTE Vol. 35, No. 1

s = (1/2,v/3/2)

Mc

Vi 0,07 Y2 =(10)

FIGURE 4: An example of the segregation alternative for a partical@haded region); its complement is
for the association alternative (unshaded region) on the standard equilateral triangle.

Remark.These definitions of the alternatives are given for the standard equilateral triangle. The
geometry-invariance result of Theorem 1 still holds under the alternatives as follows: if, in an
arbitrary triangle, a small percentage 100% whered € (0,4/9) of the area is carved away

as forbidden from each vertex using line segments parallel to the opposite edge, then under the
transformation to the standard equilateral triangle this will result in the alterrf4ff TS This

argument is for segregation with< 1/4; a similar construction is available for the other cases.

4.2. Asymptotic normality under the null hypothesis.

By detailed geometric probability calculations provided in the Appendix and in Ceyhan, Priebe &
Marchette (2004), the mean and the asymptotic variance of the relative density of our proximity
catch digraph can be calculated explicitly. The central limit theoreni/fstatistics then estab-
lishes the asymptotic normality under the null hypothesis. These results are summarized in the
following theorem.

THEOREM 2. For 7 € (0,1], the relative density of the-factor central similarity proximity
digraph converges in law to the normal distribution; i.e.,;as~ oo,

v(7) ’

where
u(r) =7°/6 1)
and

o(r) = TH675 — 371 — 2573 + 72 4+ 497 + 14)
o 45(r+ )27+ 1)(7+2)

For 7 = 0, p,,(7) is degenerate for alh > 1.

)

The mean and the variance functions are plotted in Figure 5. Note thais strictly increas-
ing in 7, sinceNZq(z) increases withr for all z € T())°. Note also thaj(7) is continuous in
T with u(7 = 1) = 1/6 andu(r = 0) = 0. Regarding the asymptotic variance, note that) is
strictly increasing and continuous inandv(r = 1) = 7/135 andv(r = 0) = 0 (there are no
arcs whernr = 0 a.s.) which explains why,, (7 = 0) is degenerate.

As an example of the limiting distribution, = 1/2 yields

Vi (pn(1/2) — pu(1/2)) 28807

V(1/2) = 19 (pn(1/2) - 1/24) i) N(O’ 1)»
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FIGURE 5: Result of Theorem 2: asymptotic null meatr) = u(7) (left) and variance/(7) = v(7)
(right), from Equations (1) and (2), respectively.

or equivalently,
1 19

n(1/2) N =, ——— ).

pn(1/2) (24’288071)

The finite sample variance may be derived analytically in much the same way as
cov [h12, h13] for the asymptotic variance. In fact, the exact distributiop,0fr) is available, in
principle, by successively conditioning on the values ofXheAlas, while the joint distribution
of hi2, hi3 is available, the joint distribution dff;; }1<i<;<n, and hence the calculation for the
exact distribution op,,(7), is extraordinarily tedious and lengthy for even small values.of

density
density
0 15
1
density

-005 000

FIGURE 6: Depicted are, (1/2) X7 N( 2, 5e=2— ) for n = 10, 20, 100 (left to right). Histograms are

based on 1000 Monte Carlo replicates. Solid curves represent the approximating normal densities given in
Theorem 2. Note that the axes are differently scaled.

Figure 6 indicates that, for = 1/2, the normal approximation is accurate even for small
(although kurtosis and skewness may be indicated»for 10, 20). Figure 7 demonstrates,
however, that the smaller the valuerothe more severe the skewness of the probability density.
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FIGURE 7: Depicted are the histograms for 10000 Monte Carlo replicatpsodl /4) (left), p10(3/4)
(middle), andp10(1) (right) indicating severe small sample skewness for small values of

4.3. Asymptotic normality under the alternatives.

Asymptotic normality of the relative density of the proximity catch digraph under the alternative
hypotheses of segregation and association can be established by the same method as under the
null hypothesis. LeE.[-] be the expectation with respect to the uniform distribution under the
segregation and association alternatives with (O, V3 /3).

THEOREM 3. Let ug(7,€) (11a(T,€)) be the mean and lets (7, <) (va(T, €)) be the covariance,

cov [h12, his] for 7 € (0,1] ande € (0,v/3/3) under segregation (association). Then under

HE,
Vi (pa(r) = ps(r,2)) = N(0,vs(7.2))

for the values of the paifr, ) for whichvg(7,e) > 0. p,,(7) is degenerate whems(7,¢) = 0.

Likewise, undeMZ, \/n (pn (1) — pa(7,)) LN (0,v4(7,€)) for the values of the paifr, )
for whichv 4 (7,¢) > 0. p,(7) is degenerate whemy (1, ) = 0.

5. THE TEST AND ANALYSIS

The relative density of the central similarity proximity catch digraph is a test statistic for the
segregation/association alternative; rejecting for extreme valueg(ef) is appropriate since
under segregation we expegi(7) to be large, while under association we expegtr) to be
small. Using the test statistic

which is the normalized relative density, the asymptotic critical value for the one-sidedhlevel
test against segregation is given by

Za =711 - 0).

Against segregation, the test rejects ffr) > z, and against association, the test rejects for
R(7) < z1—a-
5.1. Consistency of the tests under the alternatives.

In this section, we provide the consistency of the tests under segregation and association alterna-
tives.
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THEOREM 4. The test againstts which rejects forR(7) > z, and the test againsti2* which
rejects forR(r) < z1_, are consistent for € (0,1] ande € (0,/3 /3).

In fact, the analysis of the means under the alternatives reveals more than what is required for
consistency. Under segregation, the analysis indicatesithat e1) < us(7,e2) fore; < es.
On the other hand, under association, the analysis indicategiffate1) > pa(7,e2) for
g1 < €o.

5.2. Monte Carlo power analysis.

In this section, we asses the finite sample behaviour of the relative density using Monte Carlo
simulations for testing CSR against segregation or association. We provide the kernel density
estimates, empirical significance levels, and empirical power estimates under the null case and
various segregation and association alternatives.

kernel density estimate
1 15
kernel density estimate
10 15

kernel density estimate

s 10 15
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FIGURE 8: Kernel density estimates for the null (solid) and the segregation alterftatieashed) with
T =1/2,n =10, N = 10000, ande = /3 /8 (left), e = /3 /4 (middle), anct = 2+/3 /7 (right).

5.2.1. Monte Carlo power analysis for segregation alternatives.
In Figure 8, we present the kernel density estimates urfdgrand HS with ¢ =
V3 /8, V3 /4, 2+/3 /7. Observe that witm = 10, ande = /3 /8, the density estimates are
very similar implying small power; and asgets larger, the separation between the null and
alternative curves gets larger, hence the power gets larger. /WM4th10, 10000 Monte Carlo
replicates yield power estimatﬁc(s) = .0994, .9777, 1.000, respectively. Withn = 100
(figures not presented), there is more separation between the null and alternative curves at each
¢, which implies that power increases a®r n increases. Witlm = 100, 1000 Monte Carlo
replicates yield33 () = .544, 1.000, 1.000.

For a given alternative and sample size, we may consider analyzing the power of the test—
using the asymptotic critical value (i.e., the normal approximation)—as a functien dhe
empirical significance levels and power estimates ag&'@%t/s, Hf/g /4 as a function ofr for

n = 10 are presented in Table 1. The empirical significance levgls;, are all greater tham5

with the smallest being)868 at = 1.0 which have the empirical powéw(\/ﬁ/S) = .2289,
310(\/3/4) = .9969. However, the empirical significance levels imply that 10 is not large
enough for normal approximation. Notice thatragets larger, the empirical significance levels
get closer ta05 (except forr = 0.1), but still are all greater thar®d5, which indicates that for

n < 100, the test is liberal in rejecting{, against segregation. Furthermore,ragcreases,

for fixed ¢ the empirical power estimates increase, the empirical significance levels get closer
to .05; and for fixedn ast increases power estimates get larger. Therefore, for segregation, we
recommend the use of largevalues ¢ < 1.0).
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TABLE 1: The empirical significance levels and empirical power values uHdefor ¢ = /3 /8, v/3 /4
ata = .05.

T 1 2 3 A4 5 .6 e .8 9 1.0

n = 10, N = 10000

as(n) .0932 .1916 .1740 .1533 .1101 .0979 .1035 .0945 .0883 .0868
BS(T, V3/8) .1286 .2630 .2917 .2811 .2305 .2342 .2526 .2405 .2334 .2289
B3 (r, V3 /4) 5821 .9011 .9824 .9945 .9967 .9979 .9990 .9985 .9983 .9969

n = 100, N = 1000

s(n) 155 101 .080 .077 .075 .066 .065 .063 .066 .069
B5(r,v/3/8) 574 574 612 655 .709 742 774 786 .793 .793

5.2.2. Monte Carlo power analysis for association alternatives.

In Figure 9, we present the kernel density estimates uridgrand HZ2 with ¢ =

V3 /21,13 /12,53 /24 andT = 0.5. Observe that witm = 10, the density estimates

are very similar for alk values (with slightly more separation for larggrwhich implies small

power. Ten thousand Monte Carlo replicates yield power estim%i@sw 0. With n = 100

(figures not presented), there is more separation between the null and alternative curves at each
e, which implies that power increasesamcreases. One thousand Monte Carlo replicates yield

34 = 324, 634, .634, respectively.
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FIGURE 9: Kernel density estimates for the null (solid) and the association alterridfivelashed) for
T =1/2withn = 10, N = 10000 ande = /3 /21 (left), ¢ = /3 /12 (middle),e = 5/3 /24 (right).

For a given alternative and sample size, we may consider analyzing the power of the test —
using the asymptotic critical value—as a functionrof

The empirical significance levels and power estimates agahidt with ¢ =
V3 /12, 5+/3 /24 as a function of- for n = 10, are presented in Table 2. The empirical signif-
icance level closest td)5 occurs atr = .6 (much smaller for other values), which have the
empirical powerﬁm(\/§/12) = .1181, andBw(5 V/3/24) = .1187. However, the empirical
significance levels imply that = 10 is not large enough for the normal approximation. With
n = 100, the empirical significance levels are approximaté®ly for - > .3 and the highest
empirical power is997 at7 = 1.0. Note that as: increases, the empirical power estimates in-
crease forr > .2 and the empirical significance levels get closefofor 7 > .5. This analysis
indicates that in the one triangle case, the sample size should bextarge{0) for the normal
approximation to be appropriate. Moreover, the smallerth@lue, the larger the sample needed
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for the normal approximation to be appropriate. Therefore, we recommend the use of large
values ¢ < 1.0) for association.

TABLE 2: The empirical significance level and empirical power values utifor ¢ = 5+/3 /24,
V3 /12,+/3 /21 with N = 10000, andn = 10 ata = .05.

T 1 2 3 4 .5 .6 7 .8 9 1.0

n = 10, N = 10000

aa(n) 0O 0O O O 0 .0465 .0164 .0223 .0209 .0339

BA(r,v/3/12) 0O 0O 0O 0 0 .1181 .0569 .0831 .0882 .1490

BA(r,54/3/24) 0O O O O 0 .1187 .0581 .0863 .0985 .1771
n =100, N = 1000

&a(n) 169 .075 .053 .047 .049 .044 040 .044 .049 .049

B2(r,v/3/12) 433 399 460 559 .687 .789 .887 .938 .977 .997

5.3. Pitman asymptotic efficiency under the alternatives.

The Pitman asymptotic efficiency (PAE) provides for an investigation of local asymptotic power
aroundH,. This involves the limit as — oo, as well as the limit as — 0. See the proof of
Theorem 3 for the ranges efande for which relative density is continuous agjoes toco. A
detailed discussion of PAE can be found in Kendall & Stuart (1979) and van Eeden (1963). For
segregation or association alternatives the PAE is given by

(M(k)(TaE = 0))2
PAE(p, (7)) = ~— 2 — 20
(pn(7)) e
wherek is the minimum order of the derivative with respectttor which (%) (7, = 0) # 0.
Thatis,u*)(r,e = 0) # 0 butu (1,6 = 0) = 0forl = 1,2,...,k—1. Then under segregation
alternative}2 and association alternativé’, the PAE ofp,, (7) is given by

and PAE!(r) = (Wa(re =0)?

S (1) = (1
PAE” (1) o) ,

respectively, since/s(r,e = 0) = p/4(7,e = 0) = 0. Equation (2) provides the denomi-
nator; the numerator requirgss(7,e) and p4 (7, €) which are provided in Ceyhan, Priebe &
Marchette (2004) where we only use the intervals tiiat do not vanish as — 0.

In Figure 10, we present the PAE as a functionrdbr both segregation and association.
Notice thatlim, o PAE® (1) = 320/7 ~ 45.7, argsup, ,;PAE (1) = 1.0, and PAE (7 =
1) =960/7 ~ 137.1. Based on the PAE analysis, we suggest, for larged smalk, choosing
7 large (i.e.,;m = 1) for testing against segregation.

Notice thatlim, o PAE* (1) = 72000/7 ~ 10285.7, PAE* (1 = 1) = 61440/7 ~ 8777.1,
arginf,. ., ;| PAE* (1) ~ .46 with PAE" (7 ~ .46) ~ 6191.1. Based on the asymptotic efficiency
analysis, we suggest, for largeand smalle, choosingr small for testing against association.
However, for small and moderate valuesiahe normal approximation is not appropriate due to
the skewness in the density pf (7). Therefore, for small and moderate we suggest large
values ¢ < 1.0).

5.4. The case with multiple Delaunay triangles.

Suppose) is a finite collection of points in Rwith |Y| > 3. Consider the Delaunay tri-
angulation (assumed to exist) 0f, whereT; denotes thejth Delaunay triangle,/ denotes
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FIGURE 10: Pitman asymptotic efficiency curves against segregation (left) and association (right) as a
function of 7. Notice that the axes of the plots are scaled differently.

the number of triangles, an@ () denotes the convex hull @f. We wish to investigate

Ho: X; U(Cr(Y)) against segregation and association alternatives.

Flgure 1 is the graph of realizations of= 1000 observations which are independent and
identically distributed according td(C ())) for || = 10 andJ = 13 and under segregation
and association for the sarpe

The digraphD is constructed using/Zg(j, - ) = N3, (-) as described in Section 3.1, where
for X; € T; the three points ir)) defining the Delaunay triangl€; are used a3/;. Letting
w; = A(T, )/A(CH( )) with A(-) being the area functional, we obtain the following as a
corollary to Theorem 2.

COROLLARY 1. The asymptotic null distribution for,, (, J) conditional onWW = {wy,...,w;}
for 7 € (0, 1] is given byN(u(, J), v(r, J)/n) provided that/(r, .J) > 0 with

J

(r J) = plr iw and v(r, J) Zw +ap(r {Zw <iw ﬂ

Jj=1 7=1 =1

wherep () andv(7) are given by Equations (1) and (2), respectively

By an appropriate application of Jensen’s inequality, we seeE‘j(@tl wf > (ijl wf)2

Therefore the covarianaedr, J) = 0 if and only if bothv(7) = 0 andz;.]:1 w? = (Z;.]:l wjz)2
hold.

Similarly, for the segregation (association) alternatives where/3 x 100% of the area
around the vertices of each triangle is forbidden (allowed), we obtain the above asymptotic dis-
tribution of p,, (7, J) with u(7, J) being replaced by.s (7, J, ), v(, J) by vg(r, J, &), u(T) by
us(t,e), andv(r) by vg (7, €). Likewise for association.

The segregation (with = 1/16, i.e.,e = /3 /8), null, and association (with = 1/4, i.e.,

e = /3 /12) realizations (from left to right) are depicted in Figure 1 with= 1000. For the

null realization, thep-valuep > .34 for all T values relative to the segregation alternative, also

p > .32 for all 7 values relative to the association alternative. For the segregation realization, we
obtainp < .021 for all 7 > .2. For the association realization, we obtair< .02 for all 7 > .2

andp = .07 at7 = 0.1. Note that this is only for one realization 4f,.

We repeat the null and alternative realizatid®0 times withn = 100 andn = 500
and estimate the significance levels and empirical power. The estimated values are presented in
Table 3. Withn = 100, the empirical significance levels are all greater than .05 and less than
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.10 forr > .6 against both alternatives, much larger for other values. This analysis suggests that
n = 100 is not large enough for normal approximation. With= 500, the empirical significance

levels are around .1 foB < 7 < .5 for segregation, and around (but slightly larger thas)for

7 > .5. Based on this analysis, we see that, against segregation, our test is liberal (less liberal
for largerr) in rejectingH, for small and moderate, against association it is slightly liberal for
small and moderate, and larger values. For both alternatives, we suggest the use of large
values. Observe that the poor performance of relative density in one-triangle case for association
does not persist in multiple triangle case. In fact, for the multiple triangle ¢&se,gets to be

more appropriate for testing against association compared to testing against segregation.

The conditional test presented here is appropriate wher )V are fixed quantities. An
unconditional version requires the joint distribution of the number and relative size of Delaunay
triangles wherd is, for instance, from a Poisson point process. Alas, this joint distribution is not
available (Okabe, Boots & Sugihara 2000).

TaBLE 3: The empirical significance levels and empirical power values uAd s andHQ‘g/m,
N = 1000, n = 100, andJ = 13, ata = .05 for the realization of) in Figure 1.

T A 2 3 4 5 .6 7 .8 .9 1.0

n = 100, N = 1000, J = 13

as(n, J) 496 366 .302 .242 .190 .103 .102 .092 .095 .091
BS(r,v/3/8,J) 393 .429 464 512 551 578 608 613 .611 .604
Aa(n, J) 726 452 322 310 .194 .097 .08l .072 .063 .067
3A(r,\/3/12,J) 452 426 443 555 567 667 .721 .809 .857 .906

n = 500, N = 1000, J = 13

s(n,J) 0.246 0.162 0.114 0.103 0.097 0.092 0.095 0.093 0.095 0.090
f(r,f/é% J) 0.829 0.947 0.982 0.988 0.995 0.995 0.997 0.998 0.997 0.997

va(n,J) 0.255 0.117 0.077 0.067 0.052 0.059 0.061 0.054 0.056 0.058
BA(r,v/3/12,J) 0.684 0.872 0.953 0.991 0.999 1.000 1.000 1.000 1.000 1.000

5.4.1. Pitman asymptotic efficiency for multiple triangle case.

The PAE analysis is given fof = 1 in Section 5.3. For > 1, the analysis will depend on both
the number of triangles as well as the sizes of the triangles. So the optivahles with respect
to these efficiency criteria fof = 1 are not necessarily optimal for > 1, so the analyses need
to be updated, conditional on the values/odnd V.

Under the segregation alternatit€’, the PAE ofp,, () is given by

(k5(re=0) Zw)

j=1

T ()

7=1

PAES (1) = (Wo(r, Jye = 0))2

Under association alternativé” the PAE Ofpn(T) is similar.

The PAE curves fo/ = 13 (as in Figure 1) are similar to the ones for thie= 1 case (see
Figure 10), hence are omitted. Based on the Pitman asymptotic efficiency analysis, we suggest,
for largen and smalle, choosing larger for testing against segregation and smakhgainst
association. However, for moderate and smalve suggest large values for association due
to the skewness of the density @f(7).
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5.5. Extension to higher dimensions.

The extension ofVig to R? for d > 2 is straightforward. Le®y = {yi,y2,...,ya+1} be
d + 1 points in general position. Denote the simplex formed by thiesel points asS()). (A
simplex is the simplest polytope inhavingd + 1 verticesd (d + 1) /2 edges and + 1 faces
of dimension(d — 1).) Forr € [0, 1], define ther-factor central similarity proximity regions
as follows. Lety; be the face opposite vertgy for j = 1,2,...,d + 1, and face regions
R(¢1),. .., R(pq+1) partitionS(Y) into d+ 1 regions, namely thé+ 1 polytopes with vertices
being the centre of mass together withertices chosen frord + 1 vertices. For: € S(Y)\ V,
let p(x) be the face in whose regionfalls; © € R(¢(x)). (If = falls on the boundary of two
face regions, we assign(z) arbitrarily.) Forr € (0, 1], ther-factor central similarity proximity
regionNig(x) = N3, () is defined to be the simpleX-(z) with the following properties:

(i) S-(x) has a facep,(x) parallel top(z) such thatr d(z, o(x))

= d(o,(z),x), where
d(x,p(x)) is the Euclidean (perpendicular) distance fromo ¢ (z),

(i) S-(z) has the same orientation as and is similafty’),

(i) « is at the centre of mass 6% (x). Note thatr > 0 implies thatz € Nig(x).

Forr = 0, defineNig(z) = {z} forall z € S().

Theorem 1 generalizes, so that any simpiin R? can be transformed into a regular
polytope (with edges being equal in length and faces being equal in area) preserving unifor-
mity. Delaunay triangulation becomes Delaunay tessellation 9n gRovided no more than
d + 1 points are cospherical (lying on the boundary of the same sphere). In particular, with
d = 3, the general simplex is a tetrahedron (4 vertices, 4 triangular faces and 6 edges),
which can be mapped into a regular tetrahedron (4 faces are equilateral triangles) with vertices
(0,0,0)(1,0,0) (1/2,v/3/2,0), (1/2,v/3 /6,6 /3).

Asymptotic normality of thd/-statistic and consistency of the tests also holdifor 2.

6. DISCUSSION AND CONCLUSIONS

In this article, we investigate the mathematical and statistical properties of a new proximity catch
digraph (PCD) and its use in the analysis of spatial point patterns. The mathematical results
are the detailed computations of means and variances @f tbtatistics under the null and al-
ternative hypotheses. These statistics require keeping good track of the geometry of the rele-
vant neighbourhoods, and the complicated computations of integrals are done in the symbolic
computation package MrLE. The methodology is similar to that given by Ceyhan, Priebe &
Wierman (2006). However, the results are simplified by the deliberate choices we make. For
example, among many possibilities, the proximity map is defined in such a way that the distri-
bution of the domination number and relative density is geometry invariant for uniform data in
triangles, which allows the calculations on the standard equilateral triangle, rather than for each
triangle separately.

We develop a technique for testing the patterns of segregation or association. There are many
tests available for segregation and association in ecology literature. See (Dixon 1994) for a survey
on these tests and relevant references. Two of the most commonly used tests are Pid&st's
of independence (Pielou 1961) and Ripley’s test baseld @ andL(¢) functions (Ripley 1981).
However, the test we introduce here is not comparable to either of them. Our test is a conditional
test (conditional on a realization of, the number of Delaunay triangles, aid, the set of
relative areas of the Delaunay triangles), and we require that the number of tridngtefixed
and relatively small compared to = |X,,|. Furthermore, our method deals with a slightly
different type of data than most methods for examining spatial patterns. The sample size for one
type of point (typeY points) is much larger compared to the other (typpoints). This implies
that in practice) could be stationary or have a much longer life span than membevrs Bbr
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example, the geometric coordinates of a special type of fungi might constitgints, while
the geometric coordinates of trees from a species around which the fungi grow might be viewed
as they points.

Based on the asymptotic analysis and finite sample performance of relative demsiactdr
central similarity PCD, we recommend large values ¢f < 1), regardless of the sample size
for segregation. For association, we recommend large value$ofS 1) for small to moderate
sample sizes, and small valuesofr = 0) for large sample sizes. However, in a practical
situation, we will not know the pattern in advance. So as an automatic data-based selection of
7 to test CSR against segregation or association, one can start with, and if the relative
density is found to be smaller than that under CSR (which is suggestive of association), use any
T € [.8,1.0] for small to moderate sample sizes{ 200), and use- 2 0 (sayr = 0.1) for large
sample sizes > 200. If the relative density is found to be larger than that under CSR (which
is suggestive of segregation), then use largany~ € [.8,1.0]) regardless of the sample size.
However, for larger values,r = 1 has more geometric appeal than the rest, so it can be used
when larger is recommended.

Although the statistical analysis and the mathematical properties relatedtefdltor cen-
tral similarity proximity catch digraph are done irfRhe extension to Rwith d > 2 is straight-
forward. Moreover, the geometry invariance, asymptotic normality ot tfetatistic and consis-
tency of the tests hold fat > 2.

APPENDIX

Proof of Theorem 1.SupposeX ~ U(T(Y)). A composition of translation, rotation, re-
flections, and scaling will take any given triandlg)) = T'(y1,y2,ys) to the basic triangle
T, = T((0,0),(1,0), (c1,c2)) With 0 < ¢; < 1/2, ¢ > 0and(l — ¢1)? + ¢3 < 1. Further-
more, whenX is also transformed in the same manner, sa¥ tothen X' is uniform onTy, i.e.,
X' ~ U(Ty). The transformation,.: R* — R? given by

1—201U \/§v>
\/§ ’202

takesT; to the equilateral triangld. = 7°((0,0), (1,0), (1/2,v/3/2)). Investigation of the
Jacobian shows that. also preserves uniformity. That ig.(X’) ~ U(T.). Furthermore,

the composition of. with the rigid motion transformations maps the boundary of the original
triangle T'()) to the boundary of the equilateral triandlg, the median lines of ()) to the
median lines of,, and lines parallel to the edgesBf)) to lines parallel to the edges ®f and
straight lines that crosg()) to the straight lines that cro§3. Since the joint distribution of

any collection of thé;; involves only probability content of unions and intersections of regions
bounded by precisely such lines, and the probability content of such regions is preserved since
uniformity is preserved, the desired result follows. |

oulu,0) = (ut

Derivation of u(7) and (7). Let M; be the midpoint of edge; for j = 1,2,3, let M¢ be

the centre of mass, arifl, := T'(y1, M3, M¢). LetX; = (X;,Y;) fori = 1,2,3 be three
random points fron(7°(Y)), and letx; = (x;, y;) be their realizations. Notice that the bivariate
variables are denoted in boldface, random variables are denoted in upper case, and realizations
of random variables are denoted in lower case characters. By symmétiy,= P(X2 €
Nig(X1)) = 6P (X3 € Nig(Xq), X1 € Ty). Then

1/2 3?1/\/§A NT.

whereA(Ngg(x1)) = 3v372yf andA(T()) = V3 /4. Hencey(r) = 7°/6.



44 CEYHAN, PRIEBE & MARCHETTE Vol. 35, No. 1

Next, we find the asymptotic variance. Let

PQTN = P({Xz,Xg} C NéS(X1)>7
PQTG = P({Xg, Xg} C F‘{(Xl)) and
Py o= P(X2 € Nig(X1),X35 € FI(Xl)),

whereI'] (x) is theT';-regionof = based onVlg and defined a7 (z) :== {y € T(Y) : = C
NZs(y)}. (See Ceyhan, Priebe & Wierman 2006 for mordgrregions.)
Thencov [hlg, hlg} =E [hlg hlg] —E [hlz]E [hlg} where
E [hlg hlg] = P({Xz, Xg} C NéS(Xl))
+ 2P(X2 € NéS(Xl),X,?, € F‘{(Xl))
+ P({X27X3} C FI(XI))
= Piy+2Py + Pl

Hencev(7) = cov [hg, hus] = (PIy + 2 P]; + Pi) — [2 u(7)]%

=@

FIGURE 11: The prototypes of the four casesldf(x1) for x1 € T'(y1, M3, Mc) with 7 = 1/2.

To find the covariance, we need to find the possible typds] ¢k, ) and Niq(x1) for 7 €
(0, 1]. There are four cases regardifig(x1) and one case faVig(x1). See Figure 11 for the
prototypes of these four casesldf(x;) where, forxy = (z1,y1) € T'()), the explicit forms of
¢j(r,z) are

oy V3 (2 —2) oy — V3 (z — )

C1(77x) - (1 + 27_) ) CQ(Tam) - (1 ¥ 27_) 3
CVBa(r+ 1) +y1 — V3 (w1 +7) Bz —1) -2y,

C3(T7 l‘) - (1 — 7_) ) C4(T’ .23) = 2+ 1 )
TV3a 42y V3w +yr) — a1+ 7))

C5(T,l') - ?7 CG(T7I) - (1 — 7_) ’

C7(T,l‘) = 11/_17_.

Each casg corresponds to the regidr; in Figure 12, where

-7 1-2)(1-71) (1-7)x

and sp=(1—-1)/2.

Ch(ﬂ?) 2\/3, Q2(35)— \/§(1+7_) > QS($)=m7
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FIGURE 12: The regions corresponding to the prototypes of the four cases-with /2.

The explicit forms ofR;, j = 1,...,4 are as follows:

Ry = {(z,y) €0,1/2] x [0, g3()]},
Ry = {(z,) € [0,51]  [g3(2),2/V3] U[s1,1/2] % [g3(2), ga()]},
Ry = {(z,9) € [51,1/2] X [g2(2), @1 ()]},
R, = {(z,y)e 51,1/2]x[q1(:1:),x/\/§}}.
By symmetry,

P({X2,X3} C Nig(X1)) = 6 P({X2,X35} C Nig(X1), X1 €Ty),

and

1/2 11/\/§A NT. 2
P({X2,X3} C Nig(X1), Xy € T) = /o /0 (A(%S(gf)l)z,) dyy dzy = 7/90,

whereA(Ngg(x1)) = 3v3 72 y3. Hence,
P({X2,X3} C Nig(Xq)) = 7*/15.
Next, by symmetry,
P({X2,X3} C T](X1)) = 6 P({X2,X3} C I](X1),X; € T),

and
4
P({X2,X3} CT7(X1),X1 € T) = Y P({X2, X5} CT7(X1), X1 € R)).
j=1
Forx; = (x1,31) € Ry,
1/2  prgs(z) A(FT(Xl))2
P({X3,X3} cI'T(X41),X1 € Ry) = L dyi d
({ 2 3} 1( 1) 1 1) /0 /0 A(T())) Y1 axy
(1 —-71)

90(1+2r)2(1+ 1)
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where
7_2\/§y2
(r—1)227+1)

Forx; = (x1,41) € Ra,

P({X2, X3} CT{(X1), X1 € Ry)

w1/V3 AFT AP (x1))? Y2 re(m) AT (xq))?
dyy dx +/ / lilfdy dx
/ /( W T ey AT))E T

(418 4+ 675 —127% — 2173 + 1472 +407 + 20)(1 — 7)
4527+ 1)2(1+2)2(r+1)° ’

where

3V3 (221 + 23zt — 3T — 23+ 2V3wy — 33T

AT (x1)) = 41 -7+ 1)(7+2)

FOI’Xl = (xl,yl) S Rg,

1/2 rqi(z1) AT Xl))
dyl del
/ /2($1) )

(1 —7)(67° —357’ +13072 4+ 160 7 + 60)
90(27 4+ 1)%(7 +2)2(7 + 1)° ’

P({X2,X3} CI'{(X1),X; € Rs)

where
—3\/37'(21‘%72+2y%72—4m%7—2x172+4y%7‘+2\/§y172
427+ 1)(r—1)%(1 + 2)
222 +4x7+ 6y + 72 flefzfy1f2¢+1)
427+ D)(r—1)2(r+2)

AT (1) =

Forx,; = (xl,yl) € Ry,

z1/V3 A l-vr X 2
)i)’) dyldl‘l

1/2
P({X2,X3} CI{(X41),X1 € Ry) = / /
q1(z1) y )

w1/fA FT (x1 ))2
dyy dxy
/84 ~/qa (z1) y)3

1/2 rqiz(z1) AT Xl))2
dyy dx
/ /qs(m ATY)? '
78(12 — 57+ 10)
1527+ 1)2(7 +2)2°

where

37323 4+39? — 321 — 3y, —7+1)

ATE ) = - 227+ 1)(r +2)

So

P({X2, X5} cT{(X0)) = 6 (90 _5:1)&7:4:1?2: T 2))

(t
—(r2 =77 -2)r*
15(r+ )27+ 1)(1+2)
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Furthermore, by symmetry,

4
P(Xz S NES(Xl),Xg S FI(XI)) =6 (Z P(X2 c NéS(X1)7X3 S FI(X1)7X1 S Rj)>7

j=1

whereP (X, € Nig(X1),Xs € I'[(X1), X3 € R;) can be calculated with the same regions
of integration with integrand being replaced by

A(NEs (1)) AT (x1)

A(T(Y))?
Then
- - B (274 =372 472 + 107 + 4)7*
P<X2 GNCS(X1)7X3 GI‘l(Xl)) = 6< 180(2T+1)(7’+2)
B (274 —-37 472 +107 + 4)7*
B 3027+ 1)(1+2)
Hence
4275 — 74 =573 + 1272 4+ 287 +8)
E [hi2 hi3] =
15(r+ 127+ 1) (7 +2)
Therefore,

() TH6 70 — 374 — 2573 + 72 + 497 + 14)
T ==
45(r+1)27+ 1) (7 +2)

Sketch of the Proof of Theorem Bnder the alternatives, i.ez,> 0, p,, () is aU-statistic with
the same symmetric kernk); as in the null case. The meag(7,¢) = E.[p,(7)] = Ec[h12]/2
(andp 4 (T, €)), now a function of both ande, is again in[0, 1]. vg(7, &) = cov .[h12, h13] (And
va(T,¢€)), also a function of both ande, is bounded above by/4, as before. Thus asymptotic
normality obtains provided thats(r,¢) > 0 (va(7,e) > 0); otherwisep,,(7) is degenerate.
The explicit forms ofug(7,¢) andua (7, ) are given, defined piecewise, in Ceyhan, Priebe &
Marchette (2004). Note that undgf®,

vg(r,e) >0

for

(r,e) € ((071] x (0,3\/§/10]) U((Q(Lf__\%g)l} x (3x/§/10,\/§/3)),

and undef{2,
va(r,e) >0 for (r,e) € (0,1] x (0,v3/3).

Sketch of Proof of Theorem 8ince the variance of the asymptotically normal test statistic, under
both the null and the alternative cases, converges ta0-asoo (or is degenerate), it remains to
show that the mean under the null;7) = E [p,,(7)], is less than (greater than) the mean under
the alternativeus(r,e) = E:[pn(7)] (1a(7,€)) against segregation (association) for> 0.
Whence it will follow that power converges to 1 as— cc.

It is possible, albeit tedious, to compytg (7, e) and 4 (7, ) under the two alternatives.
The calculations are deferred to the technical report by Ceyhan, Priebe & Marchette (2004) due
to its extreme length and technicality, and the resulting explicit forms are provided in the Ap-
pendix of that report. Detailed analysis o (7, ) andu 4 (7, €) indicates that under segregation
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us(7,e) > u(r) foralle > 0 andr € (0,1]. Likewise, detailed analysis @f4 (7, ¢) indicates
that under associationy (7,2) < u(7) foralle > 0 andr € (0,1]. We direct the reader to
the technical report for the details of the calculations. Hence the desired result follows for both
alternatives.

Notice that under the association alternatives amy (0, 1] yields asymptotic normality for
all e € (07 \/5/3), while under the segregation alternatives only= 1 yields this universal
asymptotic normality.

Proof of Corollary 1.In the multiple triangle case,

prd) = Blen(n D) = o YD E

1<j

_ %E [h1s] = E[I(Xq,X3) € A)]

= P(Xz € NéS(Xl))

But, by definition of NZq( ), X2 ¢ Nig(X1) a.s. if Xy andX, are in different triangles. So
by the law of total probability
/L(’T, J) = P(X2 S NES(Xl))
J

= Y P(Xp e N&s(Xq) | {X1, X2} C Tj) P({X1, X2} C T))
j—l

= Z“ P({X1,Xz} C Ty)

(sinceP(Xz € Ngs(X1) [ {X1, X2} € Tj) = p(r))
J
= () Y (AT)/ACHW))’

(sinceP({X1, Xz} C Tj) = (A(T})/A(CH(V)))”

).
Lettingw, := A(T})/A(Cu(Y)), we getu(r, J) = pu(r) - (Z'j , w3) wherey(7) is given by

Equation (1).
Furthermore, the asymptotic variance is

v(r,JJ) = Elhi2 hiz] — E[h12]E [h13]
= P({X2, X3} C N&s(Xa))
+2P(X3 € Nig(X1), X3 € T1(Xy))
+ P({X2,X3} C T](X1)) — 4(u(r, )%

Then forJ > 1, we have

P({X2,X3} C N&g(X4))
> P({X2,X3} C N5g(Xa) [ {X1, X2, X3} C 7)) P({X1, X2, X3} C T))

j—l

J
ZPQN T)/ACH D)) = Pix (Y ut ).

Jj=1
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Similarly, P(Xz € NZg(X1),Xs € T7(X1)) = Pf (X w?) and P({X2, X35} C
I{(X1)) = Pig (37, ws), hencey(r, J) = (Piy +2 Pf; + Pig) (-, w}) —4u(r, J)? =
() (7 w?) +4u(r)? (2, w? — (2], w?)?), so conditional onV, if v/(, .J) > 0 then

Vit (pa(T) — i()) 55 N(O, (7, ).
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