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Abstract: The authors discuss a graph-based approach for testing spatial point patterns. This approach
falls under the category of data-random graphs, which have been introduced and used for statistical pattern
recognition in recent years. The authors address specifically the problem of testing complete spatial ran-
domness against spatial patterns of segregation or association between two or more classes of points on the
plane. To this end, they use a particular type of parameterized random digraph called a proximity catch
digraph (PCD) which is based on relative positions of the data points from various classes. The statistic
employed is the relative density of the PCD, which is aU -statistic when scaled properly. The authors de-
rive the limiting distribution of the relative density, using the standard asymptotic theory ofU -statistics.
They evaluate the finite-sample performance of their test statistic by Monte Carlo simulations and assess
its asymptotic performance via Pitman’s asymptotic efficiency, thereby yielding the optimal parameters for
testing. They further stress that their methodology remains valid for data in higher dimensions.

Une nouvelle famille de graphes aléatoires utile pour tester la ségrégation spatiale
Résuḿe : Les auteurs montrent comment on peut détecter des configurations de points dans l’espaceà l’ai-
de de graphes. Leur approche s’appuie sur la notion de graphe aléatoire observ́e, ŕecemment introduite et
utilisée en statistique pour la reconnaissance de formes. Les auteurs cherchent plus préciśementà d́etecter
la pŕesence de ségŕegation ou d’association entre deux ou plusieurs ensembles de points du plan en testant
l’hypothèse d’absence complète de structure. Dans ce but, ils font appelà une classe paramétrique parti-
culière de digraphes aléatoires appelés digraphes “̀a captation proximale” (DCP) qui tiennent compte de la
disposition relative deśeléments des diverses classes. Le test s’appuie sur la densité relative du DCP qui,
une fois proprement normalisée, est uneU -statistique. Les auteurs en déterminent la loi limite en invoquant
la théorie asymptotique desU -statistiques. Ils eńevaluent la performancèa taille finie au moyen de simula-
tions de Monte-Carlo et eńetudient aussi le comportement limite sous l’angle de l’efficacité asymptotique
de Pitman, dont d́ecoulent des choix optimaux de paramètres aux fins de test. Ils soulignent de plus que
leur méthodologie reste valide en dimensions supérieures.

1. INTRODUCTION

In this article, a graph-based approach for testing spatial point patterns is discussed. In the statis-
tical literature, the analysis of spatial point patterns in natural populations has been extensively
studied and has important implications in epidemiology, population biology, and ecology. The
pattern of points from one class with respect to points from other classes, rather than the pattern
of points from one class with respect to the ground, is investigated. The spatial relationships
among two or more classes have important implications especially for plant species. See, for
example, Pielou (1961) and Dixon (1994, 2002).

The goal of this article is to test the spatial pattern of complete spatial randomness against
spatial segregation or association. Complete spatial randomness (CSR) is roughly defined as the
lack of spatial interaction between the points in a given study area. Segregation is the pattern
in which points of one class tend to cluster together, i.e., form one-class clumps. In association,
the points of one class tend to occur more frequently around points from the other class. For
convenience and generality, we call the different types of points “classes”, but the class can be
replaced by any characteristic of an observation at a particular location. For example, the pat-
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tern of spatial segregation has been investigated for species (Diggle 1983), age classes of plants
(Hamill & Wright 1986) and sexes of dioecious plants (Nanami, Kawaguchi & Yamakura 1999).

Data random digraphs are directed graphs in which each vertex corresponds to a data point,
and directed edges (arcs) are defined in terms of some bivariate function on the data. For example,
nearest neighbour graphs are defined by placing an arc between each vertex and its nearest neigh-
bour. Priebe, DeVinney & Marchette (2001) introduced a data random digraph (called class cover
catch digraphs (CCCD)) in IR and extended it to multiple dimensions. In this model, the vertices
correspond to data from a single classX and the definition of the arcs utilizes the other classY.
For eachxi ∈ X a radius is defined byri = min d(xi, y) where the minimum is taken over all
y ∈ Y. There is an arc fromxi to xj if d(xi, xj) < ri, that is, if the sphere of radiusri centered at
xi “catches”xj . DeVinney, Priebe, Marchette & Socolinsky (2002), Marchette & Priebe (2003),
Priebe, Marchette, DeVinney & Socolinsky (2003), and Priebe, Solka, Marchette & Clark (2003)
demonstrated relatively good performance of CCCD’s classification.

We define a new class of random digraphs (proximity catch digraphs or PCDs) and apply
it in testing against segregation or association. By construction, in our PCDs, the farther anX
point is fromY, the more arcs to otherX points it will be likely to have. We will use the relative
density (number of arcs divided by the total number of possible arcs) as a statistic for testing
against segregation or association.

To illustrate our methods, we provide three artificial data sets, one for each pattern. These
data sets are plotted in Figure 1, whereY points are at the vertices of the triangles, andX points
are depicted as squares. The triangles are from the Delaunay triangulation of theY points. These
triangles will be used to define the proximity function that will in turn define the PCD. Under
the segregation pattern (left) the relative density of the PCD will be larger compared to the CSR
pattern (middle), while under the association pattern (right) the relative density will be smaller
compared to the CSR case.

The statistical tool utilized is the asymptotic theory ofU -statistics. When the relative density
of our PCDs is properly scaled, we demonstrate that it is aU -statistic, which has asymptotic
normality by the general central limit theory ofU -statistics. For the digraphs introduced by
Priebe, DeVinney & Marchette (2001), whose relative density is also of theU -statistic form, the
asymptotic mean and variance of the relative density are not analytically tractable in multiple
dimensions, due to geometric difficulties encountered. However, the PCD we introduce is a
parameterized family of random digraphs, whose relative density has tractable asymptotic mean
and variance.
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FIGURE 1: Realizations of segregation (left), CSR (middle), and association (right) patterns for|Y| = 10
and|X | = 1000. TheY points are at the vertices of the triangles and theX points are squares.

Ceyhan & Priebe (2003) introduced an (unparameterized) version of the PCD we discuss in
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this article; Ceyhan & Priebe (2005) also introduced another parameterized family of PCDs and
used the domination number (which is another statistic based on the number of arcs from the
vertices) of this latter parameterized family for testing segregation and association. The domina-
tion number approach is appropriate when both classes are comparably large. Ceyhan, Priebe &
Wierman (2006) used the relative density of the same PCD for testing the spatial patterns. Our
new parameterized family of PCDs has more geometric appeal, is simpler in distributional para-
meters in the asymptotics, and the range of the parameters is bounded.

Using the Delaunay triangulation of theY observations, in Section 3.1 we will define the
parameterized version of the proximity maps of Ceyhan & Priebe (2003) for which the calcula-
tions (regarding the distribution of the relative density) are tractable. We then can use the relative
density of the digraph to construct a test of complete spatial randomness against the alternatives
of segregation or association which are defined explicitly in Sections 2 and 4.1. We will calculate
the asymptotic distribution of the relative density for these digraphs, under both the null and al-
ternative patterns in Sections 4.2 and 4.3, respectively. This procedure results in a consistent test,
as will be shown in Section 5.1. The finite sample performance (in terms of power) is analyzed
using Monte Carlo simulations in Section 5.2. The Pitman asymptotic efficiency is analyzed in
Section 5.3. The multiple-triangle case and the extension to higher dimensions are presented in
Sections 5.4 and 5.5, respectively. All proofs are provided in the Appendix.

2. SPATIAL POINT PATTERNS

For simplicity, we describe the spatial point patterns for two-class populations. The null hypoth-
esis for spatial patterns has been a controversial topic in ecology from the early days (Gotelli &
Graves 1996). But in general, the null hypothesis consists of two random pattern types: complete
spatial randomness or random labelling.

Undercomplete spatial randomness(CSR) for a spatial point pattern{Xi(D), i = 1, . . . , n :
D ⊂ IR2}, whereXi(D) is the Bernoulli random variable denoting the event that pointi is in
regionD, we have

(i) given n points in domainD, the points are an independent random sample from the uni-
form distribution onD;

(ii) there is no spatial interaction, i.e., the locations of these points have no influence on one
another.

Note that condition (ii) is implied by (i). Furthermore, when the reference regionD is large,
the number of points in any planar region with areaA(D) follows (approximately) a Poisson
distribution with intensityλ and meanλ · A(D).

Given a fixed set of points in a region, under random labelling, class labels are assigned to
these fixed points randomly so that the labels are independent of the locations. Thus, random
labelling is less restrictive than CSR. We only consider a special case of CSR as our null hypoth-
esis. More specifically, onlyX points are assumed to be uniformly distributed over the convex
hull of Y points.

The alternative patterns fall under two major categories calledassociationandsegregation.
Association occurs if the points from the two classes together form clumps or clusters. That
is, association occurs when members of one class have a tendency to attract members of the
other class, as in symbiotic species, so that theXi will tend to cluster around the members ofY.
For example, in plant biology,X points might be the geometric coordinates of parasitic plants
exploiting another plant whose coordinates areY points. As another example,X andY points
might represent the coordinates of mutualistic plant species, so they depend on each other to
survive. In epidemiology,Y points might be the geographic coordinates of contaminant sources,
such as a nuclear reactor, or a factory emitting toxic waste, andX points might be the coordinates
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of the residences of cases (incidences) of certain diseases caused by the contaminant, e.g., some
type of cancer.

Segregation occurs if the members of the same class tend to be clumped or clustered together
(see, e.g., Pielou 1961). Many different forms of segregation are possible. Our methods will
be useful only for the segregation patterns in which the two classes more or less share the same
support (habitat), and members of one class have a tendency to repel members of the other class.
For instance, it may be the case that one type of plant does not grow well in the vicinity of another
type of plant, and vice versa. This implies, in our notation, that theXi are unlikely to be located
near any elements ofY. See, for instance, (Dixon 1994; Coomes, Rees & Turnbull 1999). In
plant biology,Y points might represent the coordinates of trees from a species with large canopy,
so that other plants (whose coordinates areX points) that need light cannot grow around these
trees. As another interesting but contrived example, consider the arsonist who wishes to start fires
with maximum duration time (hence maximum damage), so that he starts the fires at the furthest
points possible from fire houses in a city. ThenY points could be the geographic coordinates of
the fire houses, whileX points will be the coordinates of the locations of the arson cases.

We consider completely mapped data, i.e., the locations of all events in a defined space are
observed rather than sparsely sampled data (i.e., only a random subset of locations is observed).

3. DATA-RANDOM PROXIMITY CATCH DIGRAPHS

In general, in arandom digraph, there is an arc between two vertices, with a fixed probability,
independent of other arcs and vertex pairs. However, in our approach, arcs with a shared vertex
will be dependent. Hence the namedata-random digraphs.

Let (Ω,M) be a measurable space and consider a functionN : Ω × 2Ω → 2Ω, where2Ω

represents the power set ofΩ. Then givenY ⊆ Ω, the proximity mapNY( · ) = N( · ,Y) :
Ω → 2Ω associates aproximity regionNY(x) ⊆ Ω with each pointx ∈ Ω. The regionNY(x) is
defined in terms of the distance betweenx andY.

If Xn := {X1,X2, . . . ,Xn} is a set ofΩ-valued random variables, then theNY(Xi), i =
1, . . . , n, are random sets. If theXi are independent and identically distributed, then so are the
random sets,NY(Xi).

Define the data-random proximity catch digraphD with vertex setV = {X1, . . . ,Xn} and
arc setA by (Xi,Xj) ∈ A ⇐⇒ Xj ∈ NY(Xi) where pointXi catches the pointXj . The
random digraphD depends on the (joint) distribution of theXi and on the mapNY . The adjective
proximity(for the catch digraphD and for the mapNY ) comes from thinking of the regionNY(x)
as representing those points inΩ close tox (Toussaint 1980; and Jaromczyk & Toussaint 1992).

The relative density of a digraphD = (V,A) of order|V| = n (i.e., number of vertices isn),
denotedρ(D), is defined as

ρ(D) =
|A|

n(n − 1)

where| · | stands for the set cardinality (Janson, Łuczak & Rucinński 2000). Thusρ(D) rep-
resents the ratio of the number of arcs in the digraphD to the number of arcs in the complete
symmetric digraph of ordern, namelyn(n − 1).

If X1, . . . ,Xn
iid∼ F , then the relative density of the associated data-random proximity catch

digraphD, denotedρ(Xn;h,NY), is a U-statistic:

ρ(Xn;h,NY) =
1

n(n − 1)

∑ ∑

i<j

h(Xi,Xj ;NY)

where

h(Xi,Xj ;NY) = I{(Xi,Xj) ∈ A} + I{(Xj ,Xi) ∈ A}
= I{Xj ∈ NY(Xi)} + I{Xi ∈ NY(Xj)}
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FIGURE 2: Construction ofτ -factor central similarity proximity regionN1/2

CS
(x) (shaded region).

with I( · ) being the indicator function. We denoteh(Xi,Xj ;NY) ashij henceforth for brevity
of notation. Although the digraph is not symmetric (since(x, y) ∈ A does not necessarily imply
(y, x) ∈ A), hij is defined as the number of arcs inD between verticesXi andXj , in order to
produce a symmetric kernel with finite variance (Lehmann 1988).

The random variableρn := ρ(Xn;h,NY) depends onn andNY explicitly and onF implic-
itly. The expectationE [ρn], however, is independent ofn and depends only onF andNY :

0 ≤ E [ρn] =
1

2
E [h12] ≤ 1 for all n ≥ 2.

The variancevar [ρn] simplifies to

var [ρn] =
1

2n(n − 1)
var [h12] +

n − 2

n(n − 1)
cov [h12, h13] ≤ 1/4.

A central limit theorem forU -statistics (Lehmann (1988)) yields

√
n (ρn − E [ρn])

L−→ N(0, cov [h12, h13])

provided thatcov [h12, h13] > 0. The asymptotic variance ofρn, namelycov [h12, h13], depends
only onF andNY . Thus, we need to determine onlyE [h12] andcov [h12, h13] in order to obtain
the normal approximation forρn.

3.1. The τ -factor central similarity proximity catch digraphs.

We define theτ -factor central similarity proximity map briefly. LetΩ = IR2 and letY =
{y1, y2, y3} ⊂ IR2 be three non-collinear points. Denote the triangle (including the interior)
formed by the points inY asT (Y). Forτ ∈ [0, 1], defineNτ

Y to be theτ -factor central similarity
proximity map as follows; see also Figure 2. Letej be the edge opposite vertexyj for j = 1, 2, 3,
and let “edge regions”R(e1), R(e2), R(e3) partitionT (Y) using segments from the centre of
mass ofT (Y), MC , to the vertices. Forx ∈ T (Y) \ Y, let e(x) be the edge in whose regionx
falls; x ∈ R(e(x)). If x falls on the boundary of two edge regions we assigne(x) arbitrarily. For
τ ∈ (0, 1], theτ -factor central similarity proximity regionNτ

CS
(x) = Nτ

Y(x) is defined to be the
triangleTτ (x) with the following properties:

(i) Tτ (x) has an edgeeτ (x) parallel to e(x) such thatd(x, eτ (x)) = τ d(x, e(x)) and
d(eτ (x), e(x)) ≤ d(x, e(x)) whered(x, e(x)) is the Euclidean (perpendicular) distance
from x to e(x),

(ii) Tτ (x) has the same orientation as and is similar toT (Y),
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FIGURE 3: Realizations of segregation (left), CSR (middle), and association (right) for|Y| = 3 and
|X | = 20. Y points are at the vertices of the triangle, andX points are circles.

(iii) x is at the centre of mass ofTτ (x).

Note that (i) implies theτ -factor, (ii) implies similarity, and (iii) implies central in the name
τ -factor central similarity proximity map. Notice thatτ > 0 implies thatx ∈ Nτ

CS
(x) andτ ≤ 1

implies thatNτ
CS

(x) ⊆ T (Y) for all x ∈ T (Y). For x ∈ ∂(T (Y)) andτ ∈ [0, 1], we define
Nτ

CS
(x) = {x}; for τ = 0 andx ∈ T (Y) we also defineNτ

CS
(x) = {x}. Let T (Y)o be the

interior of the triangleT (Y). Then for allx ∈ T (Y)o the edgeseτ (x) ande(x) are coincident iff
τ = 1. Note that the central similarity proximity map of Ceyhan & Priebe (2003) isNτ

CS
( · ) with

τ = 1. Hence by definition,(x, y) is an arc of theτ -factor central similarity PCD iffy ∈ Nτ
CS

(x).

Notice thatXi
iid∼ F , with the additional assumption that the non-degenerate two-dimensional

probability density functionf exists with support inT (Y), implies that the special case (X falls
on the boundary of two edge regions) in the construction ofNτ

CS
occurs with probability zero.

For a fixedτ ∈ (0, 1], Nτ
CS

(x) gets larger (in area) asx gets farther away from the edges (or
equivalently gets closer to the centre of massMC) in thatd(x, e(x)) increases, or equivalently
d(MC , eτ (x)) decreases. Hence for points inT (Y), the farther the points away from the ver-
ticesY (or closer the points toMC as above), the larger the area ofNτ

CS
(x). Hence, it is more

likely for such points to catch other points, i.e., have more arcs directed to other points. There-
fore, if moreX points are clustered around the centre of mass, then the digraph is more likely to
have more arcs, hence larger relative density. So, under segregation, relative density is expected
to be larger than that in CSR or association. On the other hand, in the case of association, i.e.,
whenX points are clustered aroundY points, the regionsNτ

CS
(x) tend to be smaller in area,

hence, catch fewer points, thereby resulting in a small number of arcs, or a smaller relative den-
sity compared to CSR or segregation. See, for example, Figure 3 with threeY points, and 20X
points for segregation (top left), CSR (top middle) and association (top right). The corresponding
arcs in theτ -factor central similarity PCD withτ = 1 are plotted in the bottom row in Figure 3.
The corresponding relative density values (forτ = 1) are .2579, .1395, and .0974, respectively.

Furthermore, for a fixedx ∈ T (Y)o, Nτ
CS

(x) gets larger (in area) asτ increases. So asτ
increases, it is more likely to have more arcs, hence larger relative density for a given realization
of X points inT (Y).
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4. ASYMPTOTIC DISTRIBUTION OF THE RELATIVE DENSITY

There are two major types of asymptotic structures for spatial data (Lahiri 1996). In the first, any
two points are required to be at least a fixed distance apart, hence as the number of points increase,
the region on which the process (or pattern) is observed eventually becomes unbounded. This
type of sampling structure is calledincreasing domain asymptotics. In the second type, the region
of interest is a fixed bounded region and more and more points are observed in this region. Hence
the minimum distance between data points tends to zero as the sample size tends to infinity. This
type of structure is calledinfill asymptotics, due to Cressie (1991).

The sampling structure for our asymptotic analysis is infill, for only the size of the typeX
points tends to infinity, while the support, the convex hullCH(Y) of a given set of points from
typeY points is a fixed bounded region.

Next, we describe the null pattern of CSR and parameterize the alternative patterns of segre-
gation and association briefly, and then provide the asymptotic distribution of the relative density
for these patterns.

4.1. Null and alternative patterns.

For statistical testing against segregation and association, the null hypothesis is generally some
form of complete spatial randomness; thus we consider

H0 : Xi
iid∼ U(T (Y)).

If it is desired to have the sample size be a random variable, we may consider a spatial Poisson
point process onT (Y) as our null hypothesis.

We first present a geometry-invariance result that will simplify our calculations by allowing
us to consider the special case of the equilateral triangle.

THEOREM 1 (Geometry invariance property).LetY = {y1, y2, y3} ⊂ IR2 be three non-collinear

points. Fori = 1, . . . , n, let X1

iid∼ U(T (Y)), the uniform distribution on the triangleT (Y).
Then for anyτ ∈ [0, 1] the distribution ofρn(τ) := ρ(Xn;h,Nτ

CS
) is independent ofY, hence

the geometry ofT (Y).

Based on Theorem 1 and our uniform null hypothesis, we may henceforth assume thatT (Y)
is the standard equilateral triangle withY =

{

(0, 0), (1, 0),
(

1/2,
√

3 /2
)}

. For ourτ -factor
central similarity proximity map and uniform null hypothesis, the asymptotic null distribution of
ρn(τ) = ρ(Xn;h,Nτ

CS
) as a function ofτ can be derived. Letµ(τ) := E [ρn], then

µ(τ) = E [h12]/2 = P(X2 ∈ Nτ
CS

(X1))

is the probability of an arc occurring between any two vertices, and letν(τ) := cov [h12, h13].
We define two simple classes of alternatives,HS

ε andHA
ε with ε ∈

(

0,
√

3 /3
)

, for segre-
gation and association, respectively. See also Figure 4. Fory ∈ Y, let e(y) denote the edge
of T (Y) opposite vertexy, and forx ∈ T (Y) let ℓy(x) denote thee(y) throughx. Then de-

fine T (y, ε) =
{

x ∈ T (Y) : d(y, ℓy(x)) ≤ ε
}

. Let HS
ε be the model under whichX1

iid∼
U

(

T (Y) \⋃

y∈Y T (y, ε)
)

andHA
ε be the model under whichX1

iid∼ U
(
⋃

y∈Y T
(

y,
√

3 /3− ε
))

.
The shaded region in Figure 4 is the support for segregation for a particularε value; and its
complement is the support for the association alternative with

√
3 /3 − ε. Thus the segregation

model excludes the possibility of anyX1 occurring near ayj and the association model requires
that X1 occur near ayj . The

√
3 /3 − ε in the definition of the association alternative is so

thatε = 0 yieldsH0 under both classes of alternatives. We consider these types of alternatives
among many other possibilities, since relative density is geometry invariant for these alternatives
as the alternatives are defined with parallel lines to the edges.
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FIGURE 4: An example of the segregation alternative for a particularε (shaded region); its complement is
for the association alternative (unshaded region) on the standard equilateral triangle.

Remark.These definitions of the alternatives are given for the standard equilateral triangle. The
geometry-invariance result of Theorem 1 still holds under the alternatives as follows: if, in an
arbitrary triangle, a small percentageδ · 100% whereδ ∈ (0, 4/9) of the area is carved away
as forbidden from each vertex using line segments parallel to the opposite edge, then under the
transformation to the standard equilateral triangle this will result in the alternativeHS√

3 δ/4
. This

argument is for segregation withδ < 1/4; a similar construction is available for the other cases.

4.2. Asymptotic normality under thenull hypothesis.

By detailed geometric probability calculations provided in the Appendix and in Ceyhan, Priebe &
Marchette (2004), the mean and the asymptotic variance of the relative density of our proximity
catch digraph can be calculated explicitly. The central limit theorem forU -statistics then estab-
lishes the asymptotic normality under the null hypothesis. These results are summarized in the
following theorem.

THEOREM 2. For τ ∈ (0, 1], the relative density of theτ -factor central similarity proximity
digraph converges in law to the normal distribution; i.e., asn → ∞,

√
n (ρn(τ) − µ(τ))

√

ν(τ)

L−→ N(0, 1)

where

µ(τ) = τ2/6 (1)

and

ν(τ) =
τ4(6 τ5 − 3 τ4 − 25 τ3 + τ2 + 49 τ + 14)

45 (τ + 1)(2 τ + 1)(τ + 2)
. (2)

For τ = 0, ρn(τ) is degenerate for alln > 1.

The mean and the variance functions are plotted in Figure 5. Note thatµ(τ) is strictly increas-
ing in τ , sinceNτ

CS
(x) increases withτ for all x ∈ T (Y)o. Note also thatµ(τ) is continuous in

τ with µ(τ = 1) = 1/6 andµ(τ = 0) = 0. Regarding the asymptotic variance, note thatν(τ) is
strictly increasing and continuous inτ andν(τ = 1) = 7/135 andν(τ = 0) = 0 (there are no
arcs whenτ = 0 a.s.) which explains whyρn(τ = 0) is degenerate.

As an example of the limiting distribution,τ = 1/2 yields
√

n
(

ρn(1/2) − µ(1/2)
)

√

ν(1/2)
=

√

2880n

19

(

ρn(1/2) − 1/24
) L−→ N(0, 1),
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FIGURE 5: Result of Theorem 2: asymptotic null meanµ(τ) = µ(τ) (left) and varianceν(τ) = ν(τ)
(right), from Equations (1) and (2), respectively.

or equivalently,

ρn(1/2)
approx∼ N

(

1

24
,

19

2880n

)

.

The finite sample variance may be derived analytically in much the same way as
cov [h12, h13] for the asymptotic variance. In fact, the exact distribution ofρn(τ) is available, in
principle, by successively conditioning on the values of theXi. Alas, while the joint distribution
of h12, h13 is available, the joint distribution of{hij}1≤i<j≤n, and hence the calculation for the
exact distribution ofρn(τ), is extraordinarily tedious and lengthy for even small values ofn.

0.00 0.05 0.10 0.15 0.20

0
5

10
15

20

de
ns

it
y

−0.05 0.00 0.05 0.10 0.15 0.20

0
5

10
15

20

de
ns

it
y

0.00 0.02 0.04 0.06 0.08 0.10

0
10

20
30

40
50

de
ns

it
y

FIGURE 6: Depicted areρn(1/2)
approx
∼ N

“

1

24
, 19

2880 n

”

for n = 10, 20, 100 (left to right). Histograms are

based on 1000 Monte Carlo replicates. Solid curves represent the approximating normal densities given in
Theorem 2. Note that the axes are differently scaled.

Figure 6 indicates that, forτ = 1/2, the normal approximation is accurate even for smalln
(although kurtosis and skewness may be indicated forn = 10, 20). Figure 7 demonstrates,
however, that the smaller the value ofτ the more severe the skewness of the probability density.
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FIGURE 7: Depicted are the histograms for 10000 Monte Carlo replicates ofρ10(1/4) (left), ρ10(3/4)
(middle), andρ10(1) (right) indicating severe small sample skewness for small values ofτ .

4.3. Asymptotic normality under thealternatives.

Asymptotic normality of the relative density of the proximity catch digraph under the alternative
hypotheses of segregation and association can be established by the same method as under the
null hypothesis. LetEε[ · ] be the expectation with respect to the uniform distribution under the
segregation and association alternatives withε ∈

(

0,
√

3 /3
)

.

THEOREM 3. LetµS(τ, ε) (µA(τ, ε)) be the mean and letνS(τ, ε) (νA(τ, ε)) be the covariance,
cov [h12, h13] for τ ∈ (0, 1] and ε ∈

(

0,
√

3 /3
)

under segregation (association). Then under
HS

ε ,
√

n
(

ρn(τ) − µS(τ, ε)
) L−→ N

(

0, νS(τ, ε)
)

for the values of the pair(τ, ε) for whichνS(τ, ε) > 0. ρn(τ) is degenerate whenνS(τ, ε) = 0.

Likewise, underHA
ε ,

√
n

(

ρn(τ)−µA(τ, ε)
) L−→ N

(

0, νA(τ, ε)
)

for the values of the pair(τ, ε)
for whichνA(τ, ε) > 0. ρn(τ) is degenerate whenνA(τ, ε) = 0.

5. THE TEST AND ANALYSIS

The relative density of the central similarity proximity catch digraph is a test statistic for the
segregation/association alternative; rejecting for extreme values ofρn(τ) is appropriate since
under segregation we expectρn(τ) to be large, while under association we expectρn(τ) to be
small. Using the test statistic

R(τ) =

√
n

(

ρn(τ) − µ(τ)
)

√

ν(τ)
,

which is the normalized relative density, the asymptotic critical value for the one-sided levelα
test against segregation is given by

zα = Φ−1(1 − α).

Against segregation, the test rejects forR(τ) > zα and against association, the test rejects for
R(τ) < z1−α.

5.1. Consistency of the testsunder thealternatives.

In this section, we provide the consistency of the tests under segregation and association alterna-
tives.
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THEOREM 4. The test againstHS
ε which rejects forR(τ) > zα and the test againstHA

ε which
rejects forR(τ) < z1−α are consistent forτ ∈ (0, 1] andε ∈

(

0,
√

3 /3
)

.

In fact, the analysis of the means under the alternatives reveals more than what is required for
consistency. Under segregation, the analysis indicates thatµS(τ, ε1) < µS(τ, ε2) for ε1 < ε2.
On the other hand, under association, the analysis indicates thatµA(τ, ε1) > µA(τ, ε2) for
ε1 < ε2.

5.2. MonteCarlo power analysis.

In this section, we asses the finite sample behaviour of the relative density using Monte Carlo
simulations for testing CSR against segregation or association. We provide the kernel density
estimates, empirical significance levels, and empirical power estimates under the null case and
various segregation and association alternatives.
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FIGURE 8: Kernel density estimates for the null (solid) and the segregation alternativeH
S
ε (dashed) with

τ = 1/2, n = 10, N = 10000, andε =
√

3 /8 (left), ε =
√

3 /4 (middle), andε = 2
√

3 /7 (right).

5.2.1. Monte Carlo power analysis for segregation alternatives.
In Figure 8, we present the kernel density estimates underH0 and HS

ε with ε =√
3 /8,

√
3 /4, 2

√
3 /7. Observe that withn = 10, andε =

√
3 /8, the density estimates are

very similar implying small power; and asε gets larger, the separation between the null and
alternative curves gets larger, hence the power gets larger. Withn = 10, 10000 Monte Carlo
replicates yield power estimateŝβS

mc
(ε) = .0994, .9777, 1.000, respectively. Withn = 100

(figures not presented), there is more separation between the null and alternative curves at each
ε, which implies that power increases asε or n increases. Withn = 100, 1000 Monte Carlo
replicates yield̂βS

mc
(ε) = .544, 1.000, 1.000.

For a given alternative and sample size, we may consider analyzing the power of the test—
using the asymptotic critical value (i.e., the normal approximation)—as a function ofτ . The
empirical significance levels and power estimates againstHS√

3 /8
, HS√

3 /4
as a function ofτ for

n = 10 are presented in Table 1. The empirical significance levels,α̂n=10, are all greater than.05
with the smallest being.0868 at τ = 1.0 which have the empirical power̂β10

(√
3 /8

)

= .2289,

β̂10

(√
3 /4

)

= .9969. However, the empirical significance levels imply thatn = 10 is not large
enough for normal approximation. Notice that asn gets larger, the empirical significance levels
get closer to.05 (except forτ = 0.1), but still are all greater than.05, which indicates that for
n ≤ 100, the test is liberal in rejectingH0 against segregation. Furthermore, asn increases,
for fixed ε the empirical power estimates increase, the empirical significance levels get closer
to .05; and for fixedn asτ increases power estimates get larger. Therefore, for segregation, we
recommend the use of largeτ values (τ . 1.0).
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TABLE 1: The empirical significance levels and empirical power values underHS
ε for ε =

√

3 /8,
√

3 /4

atα = .05.

τ .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

n = 10, N = 10000

α̂S(n) .0932 .1916 .1740 .1533 .1101 .0979 .1035 .0945 .0883 .0868

β̂S
n (τ,

√

3 /8) .1286 .2630 .2917 .2811 .2305 .2342 .2526 .2405 .2334 .2289

β̂S
n (τ,

√

3 /4) .5821 .9011 .9824 .9945 .9967 .9979 .9990 .9985 .9983 .9969

n = 100, N = 1000

α̂S(n) .155 .101 .080 .077 .075 .066 .065 .063 .066 .069

β̂S
n (τ,

√

3/8) .574 .574 .612 .655 .709 .742 .774 .786 .793 .793

5.2.2. Monte Carlo power analysis for association alternatives.

In Figure 9, we present the kernel density estimates underH0 and HA
ε with ε =√

3 /21,
√

3 /12, 5
√

3 /24 and τ = 0.5. Observe that withn = 10, the density estimates
are very similar for allε values (with slightly more separation for largerε) which implies small
power. Ten thousand Monte Carlo replicates yield power estimatesβ̂A

mc
≈ 0. With n = 100

(figures not presented), there is more separation between the null and alternative curves at each
ε, which implies that power increases asε increases. One thousand Monte Carlo replicates yield
β̂A

mc
= .324, .634, .634, respectively.
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FIGURE 9: Kernel density estimates for the null (solid) and the association alternativeH
A
ε (dashed) for

τ = 1/2 with n = 10, N = 10000 andε =
√

3 /21 (left), ε =
√

3 /12 (middle),ε = 5
√

3 /24 (right).

For a given alternative and sample size, we may consider analyzing the power of the test —
using the asymptotic critical value—as a function ofτ .

The empirical significance levels and power estimates againstHA
ε , with ε =√

3 /12, 5
√

3 /24 as a function ofτ for n = 10, are presented in Table 2. The empirical signif-
icance level closest to.05 occurs atτ = .6 (much smaller for otherτ values), which have the
empirical powerβ̂10

(√
3 /12

)

= .1181, andβ̂10

(

5
√

3 /24
)

= .1187. However, the empirical
significance levels imply thatn = 10 is not large enough for the normal approximation. With
n = 100, the empirical significance levels are approximately.05 for τ ≥ .3 and the highest
empirical power is.997 at τ = 1.0. Note that asn increases, the empirical power estimates in-
crease forτ ≥ .2 and the empirical significance levels get closer to.05 for τ ≥ .5. This analysis
indicates that in the one triangle case, the sample size should be large (n ≥ 100) for the normal
approximation to be appropriate. Moreover, the smaller theτ value, the larger the sample needed
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for the normal approximation to be appropriate. Therefore, we recommend the use of largeτ
values (τ . 1.0) for association.

TABLE 2: The empirical significance level and empirical power values underH
A
ε for ε = 5

√

3 /24,
√

3 /12,
√

3 /21 with N = 10000, andn = 10 atα = .05.

τ .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

n = 10, N = 10000

α̂A(n) 0 0 0 0 0 .0465 .0164 .0223 .0209 .0339

β̂A
n (τ,

√

3/12) 0 0 0 0 0 .1181 .0569 .0831 .0882 .1490

β̂A
n (τ, 5

√

3/24) 0 0 0 0 0 .1187 .0581 .0863 .0985 .1771

n = 100, N = 1000

α̂A(n) .169 .075 .053 .047 .049 .044 .040 .044 .049 .049

β̂A
n (τ,

√

3 /12) .433 .399 .460 .559 .687 .789 .887 .938 .977 .997

5.3. Pitman asymptotic efficiency under the alternatives.
The Pitman asymptotic efficiency (PAE) provides for an investigation of local asymptotic power
aroundH0. This involves the limit asn → ∞, as well as the limit asε → 0. See the proof of
Theorem 3 for the ranges ofτ andε for which relative density is continuous asn goes to∞. A
detailed discussion of PAE can be found in Kendall & Stuart (1979) and van Eeden (1963). For
segregation or association alternatives the PAE is given by

PAE(ρn(τ)) =
(µ(k)(τ, ε = 0))2

ν(τ)
,

wherek is the minimum order of the derivative with respect toε for which µ(k)(τ, ε = 0) 6= 0.
That is,µ(k)(r, ε = 0) 6= 0 butµ(l)(τ, ε = 0) = 0 for l = 1, 2, . . . , k−1. Then under segregation
alternativeHS

ε and association alternativeHA
ε , the PAE ofρn(τ) is given by

PAES(τ) =
(µ′′

S(τ, ε = 0))2

ν(τ)
and PAEA(τ) =

(µ′′
A(τ, ε = 0))2

ν(τ)
,

respectively, sinceµ′
S(τ, ε = 0) = µ′

A(τ, ε = 0) = 0. Equation (2) provides the denomi-
nator; the numerator requiresµS(τ, ε) andµA(τ, ε) which are provided in Ceyhan, Priebe &
Marchette (2004) where we only use the intervals ofτ that do not vanish asε → 0.

In Figure 10, we present the PAE as a function ofτ for both segregation and association.
Notice thatlimτ→0 PAES(τ) = 320/7 ≈ 45.7, argsupτ∈(0,1]PAES(τ) = 1.0, and PAES(τ =
1) = 960/7 ≈ 137.1. Based on the PAE analysis, we suggest, for largen and smallε, choosing
τ large (i.e.,τ = 1) for testing against segregation.

Notice thatlimτ→0 PAEA(τ) = 72000/7 ≈ 10285.7, PAEA(τ = 1) = 61440/7 ≈ 8777.1,
arginfτ∈(0,1]PAEA(τ) ≈ .46 with PAEA(τ ≈ .46) ≈ 6191.1. Based on the asymptotic efficiency
analysis, we suggest, for largen and smallε, choosingτ small for testing against association.
However, for small and moderate values ofn the normal approximation is not appropriate due to
the skewness in the density ofρn(τ). Therefore, for small and moderaten, we suggest largeτ
values (τ . 1.0).

5.4. Thecasewith multipleDelaunay triangles.

SupposeY is a finite collection of points in IR2 with |Y| ≥ 3. Consider the Delaunay tri-
angulation (assumed to exist) ofY, whereTj denotes thejth Delaunay triangle,J denotes
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FIGURE 10: Pitman asymptotic efficiency curves against segregation (left) and association (right) as a
function ofτ . Notice that the axes of the plots are scaled differently.

the number of triangles, andCH(Y) denotes the convex hull ofY. We wish to investigate

H0 : Xi
iid∼ U(CH(Y)) against segregation and association alternatives.

Figure 1 is the graph of realizations ofn = 1000 observations which are independent and
identically distributed according toU(CH(Y)) for |Y| = 10 andJ = 13 and under segregation
and association for the sameY.

The digraphD is constructed usingNτ
CS

(j, · ) = Nτ
Yj

( · ) as described in Section 3.1, where
for Xi ∈ Tj the three points inY defining the Delaunay triangleTj are used asYj . Letting
wj = A(Tj)/A(CH(Y)) with A( · ) being the area functional, we obtain the following as a
corollary to Theorem 2.

COROLLARY 1. The asymptotic null distribution forρn(τ, J) conditional onW = {w1, . . . , wJ}
for τ ∈ (0, 1] is given byN(µ(τ, J), ν(τ, J)/n) provided thatν(τ, J) > 0 with

µ(τ, J) := µ(τ)

J
∑

j=1

w2

j and ν(τ, J) := ν(τ)

J
∑

j=1

w3

j + 4µ(τ)2
[ J
∑

j=1

w3

j −
( J

∑

j=1

w2

j

)2]

,

whereµ(τ) andν(τ) are given by Equations (1) and (2), respectively.

By an appropriate application of Jensen’s inequality, we see that
∑J

j=1
w3

j ≥
(
∑J

j=1
w2

j

)2
.

Therefore the covarianceν(τ, J) = 0 if and only if bothν(τ) = 0 and
∑J

j=1
w3

j =
(
∑J

j=1
w2

j

)2

hold.
Similarly, for the segregation (association) alternatives where4 ε2/3 × 100% of the area

around the vertices of each triangle is forbidden (allowed), we obtain the above asymptotic dis-
tribution ofρn(τ, J) with µ(τ, J) being replaced byµS(τ, J, ε), ν(τ, J) by νS(τ, J, ε), µ(τ) by
µS(τ, ε), andν(τ) by νS(τ, ε). Likewise for association.

The segregation (withδ = 1/16, i.e.,ε =
√

3 /8), null, and association (withδ = 1/4, i.e.,
ε =

√
3 /12) realizations (from left to right) are depicted in Figure 1 withn = 1000. For the

null realization, thep-valuep ≥ .34 for all τ values relative to the segregation alternative, also
p ≥ .32 for all τ values relative to the association alternative. For the segregation realization, we
obtainp ≤ .021 for all τ ≥ .2. For the association realization, we obtainp ≤ .02 for all τ ≥ .2
andp = .07 at τ = 0.1. Note that this is only for one realization ofXn.

We repeat the null and alternative realizations1000 times with n = 100 and n = 500
and estimate the significance levels and empirical power. The estimated values are presented in
Table 3. Withn = 100, the empirical significance levels are all greater than .05 and less than
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.10 forτ ≥ .6 against both alternatives, much larger for other values. This analysis suggests that
n = 100 is not large enough for normal approximation. Withn = 500, the empirical significance
levels are around .1 for.3 ≤ τ < .5 for segregation, and around (but slightly larger than).05 for
τ ≥ .5. Based on this analysis, we see that, against segregation, our test is liberal (less liberal
for largerτ ) in rejectingH0 for small and moderaten, against association it is slightly liberal for
small and moderaten, and largeτ values. For both alternatives, we suggest the use of largeτ
values. Observe that the poor performance of relative density in one-triangle case for association
does not persist in multiple triangle case. In fact, for the multiple triangle case,R(τ) gets to be
more appropriate for testing against association compared to testing against segregation.

The conditional test presented here is appropriate whenwj ∈ W are fixed quantities. An
unconditional version requires the joint distribution of the number and relative size of Delaunay
triangles whenY is, for instance, from a Poisson point process. Alas, this joint distribution is not
available (Okabe, Boots & Sugihara 2000).

TABLE 3: The empirical significance levels and empirical power values underHS
√

3/8
andHA

√

3/12
,

N = 1000, n = 100, andJ = 13, atα = .05 for the realization ofY in Figure 1.

τ .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

n = 100, N = 1000, J = 13

α̂S(n, J) .496 .366 .302 .242 .190 .103 .102 .092 .095 .091

β̂S
n (τ,

√

3 /8, J) .393 .429 .464 .512 .551 .578 .608 .613 .611 .604

α̂A(n, J) .726 .452 .322 .310 .194 .097 .081 .072 .063 .067

β̂A
n (r,

√

3 /12, J) .452 .426 .443 .555 .567 .667 .721 .809 .857 .906

n = 500, N = 1000, J = 13

α̂S(n, J) 0.246 0.162 0.114 0.103 0.097 0.092 0.095 0.093 0.095 0.090

β̂S
n (r,

√

3 /8, J) 0.829 0.947 0.982 0.988 0.995 0.995 0.997 0.998 0.997 0.997

α̂A(n, J) 0.255 0.117 0.077 0.067 0.052 0.059 0.061 0.054 0.056 0.058

β̂A
n (τ,

√

3/12, J) 0.684 0.872 0.953 0.991 0.999 1.000 1.000 1.000 1.000 1.000

5.4.1. Pitman asymptotic efficiency for multiple triangle case.

The PAE analysis is given forJ = 1 in Section 5.3. ForJ > 1, the analysis will depend on both
the number of triangles as well as the sizes of the triangles. So the optimalτ values with respect
to these efficiency criteria forJ = 1 are not necessarily optimal forJ > 1, so the analyses need
to be updated, conditional on the values ofJ andW.

Under the segregation alternativeHS
ε , the PAE ofρn(τ) is given by

PAES
J (τ) =

(µ′′
S(τ, J, ε = 0))2

ν(τ, J)
=

(

µ′′
S(τ, ε = 0)

J
∑

j=1

w2

j

)2

ν(τ)

J
∑

j=1

w3

j + 4µS(τ)2
( J

∑

j=1

w3

j −
( J

∑

j=1

w2

j

)2)
.

Under association alternativeHA
ε the PAE ofρn(τ) is similar.

The PAE curves forJ = 13 (as in Figure 1) are similar to the ones for theJ = 1 case (see
Figure 10), hence are omitted. Based on the Pitman asymptotic efficiency analysis, we suggest,
for largen and smallε, choosing largeτ for testing against segregation and smallτ against
association. However, for moderate and smalln, we suggest largeτ values for association due
to the skewness of the density ofρn(τ).
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5.5. Extension to higher dimensions.

The extension ofNτ
CS

to IRd for d > 2 is straightforward. LetY = {y1, y2, . . . , yd+1} be
d + 1 points in general position. Denote the simplex formed by thesed + 1 points asS(Y). (A
simplex is the simplest polytope in IRd havingd + 1 vertices,d (d + 1)/2 edges andd + 1 faces
of dimension(d − 1).) For τ ∈ [0, 1], define theτ -factor central similarity proximity regions
as follows. Letϕj be the face opposite vertexyj for j = 1, 2, . . . , d + 1, and face regions
R(ϕ1), . . . , R(ϕd+1) partitionS(Y) into d+1 regions, namely thed+1 polytopes with vertices
being the centre of mass together withd vertices chosen fromd + 1 vertices. Forx ∈ S(Y) \ Y,
let ϕ(x) be the face in whose regionx falls; x ∈ R(ϕ(x)). (If x falls on the boundary of two
face regions, we assignϕ(x) arbitrarily.) Forτ ∈ (0, 1], theτ -factor central similarity proximity
regionNτ

CS
(x) = Nτ

Y(x) is defined to be the simplexSτ (x) with the following properties:

(i) Sτ (x) has a faceϕτ (x) parallel toϕ(x) such thatτ d(x, ϕ(x)) = d(ϕτ (x), x), where
d(x, ϕ(x)) is the Euclidean (perpendicular) distance fromx to ϕ(x),

(ii) Sτ (x) has the same orientation as and is similar toS(Y),

(iii) x is at the centre of mass ofSτ (x). Note thatτ > 0 implies thatx ∈ Nτ
CS

(x).

For τ = 0, defineNτ
CS

(x) = {x} for all x ∈ S(Y).
Theorem 1 generalizes, so that any simplexS in IRd can be transformed into a regular

polytope (with edges being equal in length and faces being equal in area) preserving unifor-
mity. Delaunay triangulation becomes Delaunay tessellation in IRd, provided no more than
d + 1 points are cospherical (lying on the boundary of the same sphere). In particular, with
d = 3, the general simplex is a tetrahedron (4 vertices, 4 triangular faces and 6 edges),
which can be mapped into a regular tetrahedron (4 faces are equilateral triangles) with vertices
(0, 0, 0) (1, 0, 0) (1/2,

√
3 /2, 0), (1/2,

√
3 /6,

√
6 /3).

Asymptotic normality of theU -statistic and consistency of the tests also hold ford > 2.

6. DISCUSSION AND CONCLUSIONS

In this article, we investigate the mathematical and statistical properties of a new proximity catch
digraph (PCD) and its use in the analysis of spatial point patterns. The mathematical results
are the detailed computations of means and variances of theU -statistics under the null and al-
ternative hypotheses. These statistics require keeping good track of the geometry of the rele-
vant neighbourhoods, and the complicated computations of integrals are done in the symbolic
computation package MAPLE. The methodology is similar to that given by Ceyhan, Priebe &
Wierman (2006). However, the results are simplified by the deliberate choices we make. For
example, among many possibilities, the proximity map is defined in such a way that the distri-
bution of the domination number and relative density is geometry invariant for uniform data in
triangles, which allows the calculations on the standard equilateral triangle, rather than for each
triangle separately.

We develop a technique for testing the patterns of segregation or association. There are many
tests available for segregation and association in ecology literature. See (Dixon 1994) for a survey
on these tests and relevant references. Two of the most commonly used tests are Pielou’sχ2 test
of independence (Pielou 1961) and Ripley’s test based onK(t) andL(t) functions (Ripley 1981).
However, the test we introduce here is not comparable to either of them. Our test is a conditional
test (conditional on a realization ofJ , the number of Delaunay triangles, andW, the set of
relative areas of the Delaunay triangles), and we require that the number of trianglesJ be fixed
and relatively small compared ton = |Xn|. Furthermore, our method deals with a slightly
different type of data than most methods for examining spatial patterns. The sample size for one
type of point (typeX points) is much larger compared to the other (typeY points). This implies
that in practice,Y could be stationary or have a much longer life span than members ofX . For
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example, the geometric coordinates of a special type of fungi might constituteX points, while
the geometric coordinates of trees from a species around which the fungi grow might be viewed
as theY points.

Based on the asymptotic analysis and finite sample performance of relative density ofτ -factor
central similarity PCD, we recommend large values ofτ (τ . 1), regardless of the sample size
for segregation. For association, we recommend large values ofτ (τ . 1) for small to moderate
sample sizes, and small values ofτ (τ & 0) for large sample sizes. However, in a practical
situation, we will not know the pattern in advance. So as an automatic data-based selection of
τ to test CSR against segregation or association, one can start withτ = 1, and if the relative
density is found to be smaller than that under CSR (which is suggestive of association), use any
τ ∈ [.8, 1.0] for small to moderate sample sizes (n . 200), and useτ & 0 (sayτ = 0.1) for large
sample sizesn > 200. If the relative density is found to be larger than that under CSR (which
is suggestive of segregation), then use largeτ (anyτ ∈ [.8, 1.0]) regardless of the sample size.
However, for largeτ values,τ = 1 has more geometric appeal than the rest, so it can be used
when largeτ is recommended.

Although the statistical analysis and the mathematical properties related to theτ -factor cen-
tral similarity proximity catch digraph are done in IR2, the extension to IRd with d > 2 is straight-
forward. Moreover, the geometry invariance, asymptotic normality of theU -statistic and consis-
tency of the tests hold ford > 2.

APPENDIX

Proof of Theorem 1.SupposeX ∼ U(T (Y)). A composition of translation, rotation, re-
flections, and scaling will take any given triangleT (Y) = T (y1, y2, y3) to the basic triangle
Tb = T

(

(0, 0), (1, 0), (c1, c2)
)

with 0 < c1 ≤ 1/2, c2 > 0 and(1 − c1)
2 + c2

2
≤ 1. Further-

more, whenX is also transformed in the same manner, say toX ′, thenX ′ is uniform onTb, i.e.,
X ′ ∼ U(Tb). The transformationφe: IR2 → IR2 given by

φe(u, v) =

(

u +
1 − 2 c1√

3
v,

√
3

2 c2

v

)

takesTb to the equilateral triangleTe = T
(

(0, 0), (1, 0),
(

1/2,
√

3 /2
))

. Investigation of the
Jacobian shows thatφe also preserves uniformity. That is,φe(X

′) ∼ U(Te). Furthermore,
the composition ofφe with the rigid motion transformations maps the boundary of the original
triangleT (Y) to the boundary of the equilateral triangleTe, the median lines ofT (Y) to the
median lines ofTe, and lines parallel to the edges ofT (Y) to lines parallel to the edges ofTe and
straight lines that crossT (Y) to the straight lines that crossTe. Since the joint distribution of
any collection of thehij involves only probability content of unions and intersections of regions
bounded by precisely such lines, and the probability content of such regions is preserved since
uniformity is preserved, the desired result follows. �

Derivation ofµ(τ) and ν(τ). Let Mj be the midpoint of edgeej for j = 1, 2, 3, let MC be
the centre of mass, andTs := T (y1,M3,MC). Let Xi = (Xi, Yi) for i = 1, 2, 3 be three
random points fromU(T (Y)), and letxi = (xi, yi) be their realizations. Notice that the bivariate
variables are denoted in boldface, random variables are denoted in upper case, and realizations
of random variables are denoted in lower case characters. By symmetry,µ(τ) = P

(

X2 ∈
Nτ

CS
(X1)

)

= 6P
(

X2 ∈ Nτ
CS

(X1), X1 ∈ Ts

)

. Then

P
(

X2 ∈ Nτ
CS

(X1), X1 ∈ Ts

)

=

∫

1/2

0

∫ x1/
√

3

0

A(Nτ
CS

(x1))

A(T (Y))2
dy1 dx1 = τ2/36,

whereA
(

Nτ
CS

(x1)
)

= 3
√

3 τ2 y2

1
andA(T (Y)) =

√
3 /4. Henceµ(τ) = τ2/6.
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Next, we find the asymptotic variance. Let

P τ
2N := P

(

{X2,X3} ⊂ Nτ
CS

(X1)
)

,

P τ
2G := P

(

{X2,X3} ⊂ Γτ
1
(X1)

)

and

P τ
M := P

(

X2 ∈ Nτ
CS

(X1),X3 ∈ Γτ
1
(X1)

)

,

whereΓτ
1
(x) is theΓ1-region of x based onNτ

CS
and defined asΓτ

1
(x) := {y ∈ T (Y) : x ⊂

Nτ
CS

(y)}. (See Ceyhan, Priebe & Wierman 2006 for more onΓ1-regions.)
Thencov [h12, h13] = E [h12 h13] − E [h12]E [h13] where

E [h12 h13] = P
(

{X2,X3} ⊂ Nτ
CS

(X1)
)

+ 2P
(

X2 ∈ Nτ
CS

(X1),X3 ∈ Γτ
1
(X1)

)

+ P
(

{X2,X3} ⊂ Γτ
1
(X1)

)

= P τ
2N + 2P τ

M + P τ
2G.

Henceν(τ) = cov [h12, h13] =
(

P τ
2N + 2P τ

M + P τ
2G

)

− [2µ(τ)]2.
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FIGURE 11: The prototypes of the four cases ofΓτ
1(x1) for x1 ∈ T (y1, M3, MC) with τ = 1/2.

To find the covariance, we need to find the possible types ofΓτ
1
(x1) andNτ

CS
(x1) for τ ∈

(0, 1]. There are four cases regardingΓτ
1
(x1) and one case forNτ

CS
(x1). See Figure 11 for the

prototypes of these four cases ofΓτ
1
(x1) where, forx1 = (x1, y1) ∈ T (Y), the explicit forms of

ζj(τ, x) are

ζ1(τ, x) =
y1 +

√
3 (x1 − x)

(1 + 2 τ)
, ζ2(τ, x) =

y1 −
√

3 (x1 − x)

(1 + 2 τ)
,

ζ3(τ, x) =

√
3 x(τ + 1) + y1 −

√
3 (x1 + τ)

(1 − τ)
, ζ4(τ, x) =

√
3 τ(x − 1) − 2 y1

2 + τ
,

ζ5(τ, x) =
τ
√

3 x + 2 y1

2 + τ
, ζ6(τ, x) =

√
3 [(x1 + y1) − x(1 + τ)]

(1 − τ)
,

ζ7(τ, x) =
y1

1 − τ
.

Each casej corresponds to the regionRj in Figure 12, where

q1(x) =
1 − τ

2
√

3
, q2(x) =

(1 − x)(1 − τ)√
3 (1 + τ)

, q3(x) =
(1 − τ)x√
3 (1 + τ)

, and s1 = (1 − τ)/2.
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FIGURE 12: The regions corresponding to the prototypes of the four cases withτ = 1/2.

The explicit forms ofRj , j = 1, . . . , 4 are as follows:

R1 = {(x, y) ∈ [0, 1/2] × [0, q3(x)]},
R2 = {(x, y) ∈ [0, s1] ×

[

q3(x), x/
√

3
]

∪ [s1, 1/2] × [q3(x), q2(x)]},
R3 = {(x, y) ∈ [s1, 1/2] × [q2(x), q1(x)]},
R4 =

{

(x, y) ∈ [s1, 1/2] ×
[

q1(x), x/
√

3
]}

.

By symmetry,

P
(

{X2,X3} ⊂ Nτ
CS

(X1)
)

= 6P
(

{X2,X3} ⊂ Nτ
CS

(X1), X1 ∈ Ts

)

,

and

P
(

{X2,X3} ⊂ Nτ
CS

(X1), X1 ∈ Ts

)

=

∫

1/2

0

∫ x1/
√

3

0

A(Nτ
CS

(x1))2

A(T (Y))3
dy1 dx1 = τ4/90,

whereA(Nτ
CS

(x1)) = 3
√

3 τ2 y2

1
. Hence,

P
(

{X2,X3} ⊂ Nτ
CS

(X1)
)

= τ4/15.

Next, by symmetry,

P
(

{X2,X3} ⊂ Γτ
1
(X1)

)

= 6P
(

{X2,X3} ⊂ Γτ
1
(X1),X1 ∈ Ts

)

,

and

P
(

{X2,X3} ⊂ Γτ
1
(X1),X1 ∈ Ts

)

=

4
∑

j=1

P
(

{X2,X3} ⊂ Γτ
1
(X1),X1 ∈ Rj

)

.

Forx1 = (x1, y1) ∈ R1,

P
(

{X2,X3} ⊂ Γτ
1
(X1),X1 ∈ R1

)

=

∫

1/2

0

∫ q3(x)

0

A(Γτ
1
(x1))2

A(T (Y))3
dy1 dx1

=
τ4(1 − τ)

90 (1 + 2 τ)2(1 + τ)5
,
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where

A
(

Γτ
1
(x1)

)

= 3
τ2
√

3 y2

(τ − 1)2(2 τ + 1)
.

Forx1 = (x1, y1) ∈ R2,

P
(

{X2,X3} ⊂ Γτ
1
(X1), X1 ∈ R2

)

=

∫ s1

0

∫ x1/
√

3

q3(x1)

A(Γτ
1
(x1))2

A(T (Y))3
dy1 dx1 +

∫

1/2

s1

∫ q2(x1)

q3(x1)

A(Γτ
1
(x1))2

A(T (Y))3
dy1 dx1

=
τ5(4 τ6 + 6 τ5 − 12 τ4 − 21 τ3 + 14 τ2 + 40 τ + 20)(1 − τ)

45 (2 τ + 1)2(τ + 2)2(τ + 1)5
,

where

A
(

Γτ
1
(x1)

)

=
3
√

3 (x2

1
τ + 2

√
3 x1y1τ − y2

1
τ − x2

1
+ 2

√
3 x1y1 − 3 y2

1
)τ

4 (1 − τ)(2 τ + 1)(τ + 2)
.

Forx1 = (x1, y1) ∈ R3,

P
(

{X2,X3} ⊂ Γτ
1
(X1),X1 ∈ R3

)

=

∫

1/2

s1

∫ q1(x1)

q2(x1)

A(Γτ
1
(x1))2

A(T (Y))3
dy1 dx1

=
τ6(1 − τ)(6 τ6 − 35 τ4 + 130 τ2 + 160 τ + 60)

90(2 τ + 1)2(τ + 2)2(τ + 1)5
,

where

A
(

Γτ
1
(x1)

)

=
−3

√
3τ(2x2

1
τ2 + 2y2

1
τ2 − 4x2

1
τ − 2x1 τ2 + 4 y2

1
τ + 2

√
3 y1 τ2

4 (2 τ + 1)(τ − 1)2(τ + 2)

+
2x2

1
+ 4x τ + 6 y2

1
+ τ2 − 2x1 − 2

√
3 y1 − 2 τ + 1)

4 (2 τ + 1)(τ − 1)2(τ + 2)
.

Forx1 = (x1, y1) ∈ R4,

P
(

{X2,X3} ⊂ Γτ
1
(X1),X1 ∈ R4

)

=

∫

1/2

s1

∫ x1/
√

3

q1(x1)

A(Γτ
1
(x1))2

A(T (Y))3
dy1 dx1

+

∫ s5

s4

∫ x1/
√

3

q3(x1)

A(Γτ
1
(x1))2

A(T (Y))3
dy1 dx1

+

∫

1/2

s5

∫ q12(x1)

q3(x1)

A(Γτ
1
(x1))2

A(T (Y))3
dy1 dx1

=
τ6(τ2 − 5 τ + 10)

15 (2 τ + 1)2(τ + 2)2
,

where

A
(

Γτ
1
(x1)

)

=
−
√

3 τ(3x2

1
+ 3 y2

1
− 3x1 −

√
3 y1 − τ + 1)

2 (2 τ + 1)(τ + 2)
.

So

P
(

{X2,X3} ⊂ Γτ
1
(X1)

)

= 6

( −(τ2 − 7 τ − 2)τ4

90 (τ + 1)(2 τ + 1)(τ + 2)

)

=
−(τ2 − 7 τ − 2)τ4

15 (τ + 1)(2 τ + 1)(τ + 2)
.
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Furthermore, by symmetry,

P
(

X2 ∈ Nτ
CS

(X1),X3 ∈ Γτ
1
(X1)

)

= 6

( 4
∑

j=1

P
(

X2 ∈ Nτ
CS

(X1),X3 ∈ Γτ
1
(X1),X1 ∈ Rj

)

)

,

whereP
(

X2 ∈ Nτ
CS

(X1),X3 ∈ Γτ
1
(X1),X1 ∈ Rj

)

can be calculated with the same regions
of integration with integrand being replaced by

A(Nτ
CS

(x1))A(Γτ
1
(x1))

A(T (Y))3
.

Then

P
(

X2 ∈ Nτ
CS

(X1),X3 ∈ Γτ
1
(X1)

)

= 6

(

(2 τ4 − 3 τ3 − 4 τ2 + 10 τ + 4)τ4

180 (2 τ + 1)(τ + 2)

)

=
(2 τ4 − 3 τ3 − 4 τ2 + 10 τ + 4)τ4

30 (2 τ + 1)(τ + 2)
.

Hence

E [h12 h13] =
τ4(2 τ5 − τ4 − 5 τ3 + 12 τ2 + 28 τ + 8)

15 (τ + 1)(2 τ + 1)(τ + 2)
.

Therefore,

ν(τ) =
τ4(6 τ5 − 3 τ4 − 25 τ3 + τ2 + 49 τ + 14)

45 (τ + 1)(2 τ + 1)(τ + 2)
.

Sketch of the Proof of Theorem 3.Under the alternatives, i.e.,ε > 0, ρn(τ) is aU -statistic with
the same symmetric kernelhij as in the null case. The meanµS(τ, ε) = E ε[ρn(τ)] = E ε[h12]/2
(andµA(τ, ε)), now a function of bothτ andε, is again in[0, 1]. νS(τ, ε) = cov ε[h12, h13] (and
νA(τ, ε)), also a function of bothτ andε, is bounded above by1/4, as before. Thus asymptotic
normality obtains provided thatνS(τ, ε) > 0 (νA(τ, ε) > 0); otherwiseρn(τ) is degenerate.
The explicit forms ofµS(τ, ε) andµA(τ, ε) are given, defined piecewise, in Ceyhan, Priebe &
Marchette (2004). Note that underHS

ε ,

νS(τ, ε) > 0

for

(τ, ε) ∈
(

(0, 1] ×
(

0, 3
√

3 /10
]

)

⋃

((

2
(√

3 − 3 ε
)

4 ε −
√

3
, 1

]

×
(

3
√

3 /10,
√

3 /3
)

)

,

and underHA
ε ,

νA(τ, ε) > 0 for (τ, ε) ∈ (0, 1] ×
(

0,
√

3 /3
)

.

Sketch of Proof of Theorem 4.Since the variance of the asymptotically normal test statistic, under
both the null and the alternative cases, converges to 0 asn → ∞ (or is degenerate), it remains to
show that the mean under the null,µ(τ) = E [ρn(τ)], is less than (greater than) the mean under
the alternative,µS(τ, ε) = E ε[ρn(τ)] (µA(τ, ε)) against segregation (association) forε > 0.
Whence it will follow that power converges to 1 asn → ∞.

It is possible, albeit tedious, to computeµS(τ, ε) andµA(τ, ε) under the two alternatives.
The calculations are deferred to the technical report by Ceyhan, Priebe & Marchette (2004) due
to its extreme length and technicality, and the resulting explicit forms are provided in the Ap-
pendix of that report. Detailed analysis ofµS(τ, ε) andµA(τ, ε) indicates that under segregation
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µS(τ, ε) > µ(τ) for all ε > 0 andτ ∈ (0, 1]. Likewise, detailed analysis ofµA(τ, ε) indicates
that under associationµA(τ, ε) < µ(τ) for all ε > 0 andτ ∈ (0, 1]. We direct the reader to
the technical report for the details of the calculations. Hence the desired result follows for both
alternatives.

Notice that under the association alternatives anyτ ∈ (0, 1] yields asymptotic normality for
all ε ∈

(

0,
√

3 /3
)

, while under the segregation alternatives onlyτ = 1 yields this universal
asymptotic normality.

Proof of Corollary 1.In the multiple triangle case,

µ(τ, J) = E [ρn(τ, J)] =
1

n (n − 1)

∑ ∑

i<j

E [hij ]

=
1

2
E [h12] = E [I(X1,X2) ∈ A)]

= P
(

X2 ∈ Nτ
CS

(X1)
)

.

But, by definition ofNτ
CS

( · ), X2 /∈ Nτ
CS

(X1) a.s. ifX1 andX2 are in different triangles. So
by the law of total probability

µ(τ, J) := P
(

X2 ∈ Nτ
CS

(X1)
)

=
J

∑

j=1

P
(

X2 ∈ Nτ
CS

(X1) | {X1,X2} ⊂ Tj

)

P
(

{X1,X2} ⊂ Tj

)

=
J

∑

j=1

µ(τ)P
(

{X1,X2} ⊂ Tj

)

(sinceP
(

X2 ∈ Nτ
CS

(X1) | {X1,X2} ⊂ Tj

)

= µ(τ))

= µ(τ)

J
∑

j=1

(

A(Tj)/A(CH(Y))
)2

(sinceP
(

{X1,X2} ⊂ Tj

)

=
(

A(Tj)/A(CH(Y))
)2

).

Letting wj := A(Tj)/A(CH(Y)), we getµ(τ, J) = µ(τ) ·
(
∑J

j=1
w2

j

)

whereµ(τ) is given by
Equation (1).

Furthermore, the asymptotic variance is

ν(τ, J) = E [h12 h13] − E [h12]E [h13]

= P
(

{X2,X3} ⊂ Nτ
CS

(X1)
)

+ 2P
(

X2 ∈ Nτ
CS

(X1),X3 ∈ Γτ
1
(X1)

)

+ P
(

{X2,X3} ⊂ Γτ
1
(X1)

)

− 4(µ(τ, J))2.

Then forJ > 1, we have

P
(

{X2,X3} ⊂ Nτ
CS

(X1)
)

=
J

∑

j=1

P
(

{X2,X3} ⊂ Nτ
CS

(X1) | {X1,X2,X3} ⊂ Tj

)

P
(

{X1,X2,X3} ⊂ Tj

)

=

J
∑

j=1

P τ
2N

(

A(Tj)/A(CH(Y))
)3

= P τ
2N

( J
∑

j=1

w3

j

)

.
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Similarly, P
(

X2 ∈ Nτ
CS

(X1),X3 ∈ Γτ
1
(X1)

)

= P τ
M

(
∑J

j=1
w3

j

)

and P
(

{X2,X3} ⊂
Γτ

1
(X1)

)

= P τ
2G

(
∑J

j=1
w3

j

)

, hence,ν(τ, J) =
(

P τ
2N +2P τ

M +P τ
2G

)(
∑J

j=1
w3

j

)

−4µ(τ, J)2 =

ν(τ)
(
∑J

j=1
w3

j

)

+4µ(τ)2
(
∑J

j=1
w3

j −
(
∑J

j=1
w2

j

)2)

, so conditional onW, if ν(τ, J) > 0 then
√

n
(

ρn(τ) − µ̃(τ)
) L−→ N(0, ν(τ, J)).
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