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Abstract

Priebe et al. (2001) introduced the class cover catch digraphs and computed the distribution of the
domination number of such digraphs for one dimensional data. In higher dimensions these calculations
are extremely difficult due to the geometry of the proximity regions; and only upper-bounds are available.
In this article, we introduce a new type of data-random proximity map and the associated (di)graph in
Rd. We find the asymptotic distribution of the domination number and use it for testing spatial point
patterns of segregation and association.
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1 Introduction

In a digraph D = (V ,A) with vertex set V and arc (directed edge) set A, a vertex v dominates itself and
all vertices of the form {u : vu ∈ A}. A dominating set, SD, for the digraph D is a subset of V such that
each vertex v ∈ V is dominated by a vertex in SD. A minimum dominating set, S∗

D, is a dominating set
of minimum cardinality; and the domination number, γ(D), is defined as γ(D) := |S∗

D|, where | · | is the
cardinality functional ([West, 2001]). If a minimum dominating set is of size one, we call it a dominating

point.

Let (Ω,M) be a measurable space and consider a function N : Ω × 2Ω → 2Ω, where 2Ω represents the
power set of Ω. Then given Y ⊆ Ω, the proximity map NY(·) = N(·,Y) : Ω → 2Ω associates with each point
x ∈ Ω a proximity region NY(x) ⊂ Ω. The region NY(x) depends on the distance between x and Y. For
B ⊆ Ω, the Γ1-region, Γ1(·) = Γ1(·, NY) : Ω → 2Ω associates the region Γ1(B) := {z ∈ Ω : B ⊆ NY(z)} with
each set B ⊆ Ω. For x ∈ Ω, we denote Γ1({x}) as Γ1(x).

If Xn = {X1, X2, · · · , Xn} is a set of Ω-valued random variables, then the NY(Xi) (and Γ1(Xi)), i =
1, · · · , n are random sets. If the Xi are independent and identically distributed, then so are the random
sets NY(Xi) (and Γ1(Xi)). Furthermore, Γ1(Xn) is a random set. Notice that Γ1(Xn) = ∩n

j=1Γ1(Xj), since
x ∈ Γ1(Xn) iff Xn ⊆ NY(x) iff Xj ∈ NY(x) for all j = 1, . . . , n iff x ∈ Γ1(Xj) for all j = 1, . . . , n iff
x ∈ ∩n

j=1Γ1(Xj).

Consider the data-random proximity catch digraph D with vertex set V = Xn and arc set A defined by
(Xi, Xj) ∈ A ⇐⇒ Xj ∈ NY(Xi). The random digraph D depends on the (joint) distribution of the Xi and
on the map NY (see Priebe et al. (2001) and Priebe et al. (2003)). The adjective proximity — for the catch
digraph D and for the map NY — comes from thinking of the region NY(x) as representing those points in
Ω “close” to x (see, e.g., Toussaint (1980) and Jaromczyk and Toussaint (1992)).

For X1, · · · , Xn
iid∼ F the domination number of the associated data-random proximity catch digraph

D, denoted γ(Xn; F, NY), is the minimum number of points that dominate all points in Xn. Note that,
γ(Xn; F, NY) = 1 iff Xn ∩ Γ1(Xn) 6= ∅.

The random variable γn := γ(Xn; F, NY) depends on Xn explicitly, and on F and NY implicitly. In
general, the expectation E [γn], depends on n, F , and NY ; 1 ≤ E [γn] ≤ n; and the variance of γn satisfies,
0 ≤ Var [γn] ≤ n2/4.

We can also define the regions associated with γn = k for k ≤ n. For instance, the Γ2-region for proximity
map NY(·) and set B ⊂ Ω is Γ2(B) = {(x, y) ∈ [Ω \ Γ1(B)]2 : B ⊆ NY(x) ∪ NY(y)}. In general,

Γk(B) = {(x1, x2, . . . , xk) ∈ Ωk : B ⊆ ∪k
j=1NY(xj) and all possible m-permutations (u1, u2, . . . , um)

of (x1, x2, . . . , xk) satisfy (u1, u2, . . . , um) 6∈ Γm(B) for each m = 1, 2, . . . , k − 1}.

2 A Class of Proximity Maps and the Corresponding Γ1-Regions

Let Ω = R2 and let Y = {y1, y2, y3} ⊂ R2 be three non-collinear points. Denote by T (Y) the triangle
—including the interior— formed by these three points. The most straightforward extension of the data
random proximity catch digraph introduced by Priebe et al. (2001) is the spherical proximity map NS(x) =
B(x, r(x)) which is the ball centered at x with radius r(x) = miny∈Y d(x, y) or the arc-slice proximity map
NAS(x) = B(x, r(x)) ∩ T (Y). However, both cases suffer from the intractability of the Γ1-region and hence
the intractability of the finite and asymptotic distribution of γn. We propose a new class of proximity regions
which does not suffer from this drawback.

For r ∈ [1,∞] define N r
Y to be the r-factor proximity map and Γr

1 to be the corresponding Γ1-region
as follows; see also Figures 1 and 2. Let “vertex regions” R(y1), R(y2), R(y3) partition T (Y) using seg-
ments from the center of mass of T (Y) to the edge midpoints. For x ∈ T (Y) \ Y, let v(x) ∈ Y be the



vertex whose region contains x; x ∈ R(v(x)). If x falls on the boundary of two vertex regions, we assign
v(x) arbitrarily. Let e(x) be the edge of T (Y) opposite v(x). Let ℓ(v(x), x) be the line parallel to e(x)
through x. Let d(v(x), ℓ(v(x), x)) be the Euclidean (perpendicular) distance from v(x) to ℓ(v(x), x). For
r ∈ [1,∞) let ℓr(v(x), x) be the line parallel to e(x) such that d(v(x), ℓr(v(x), x)) = rd(v(x), ℓ(v(x), x)) and
d(ℓ(v(x), x), ℓr(v(x), x)) < d(v(x), ℓr(v(x), x)). Let Tr(x) be the triangle similar to and with the same ori-
entation as T (Y) having v(x) as a vertex and ℓr(v(x), x) as the opposite edge. Then the r-factor proximity
region N r

Y(x) is defined to be Tr(x) ∩ T (Y).

To define the Γ1-region, let ξj(x) be the line such that ξj(x)∩T (Y) 6= ∅ and r d(yj , ξj(x)) = d(yj , ℓ(yj , x))
for j = 1, 2, 3. Then Γr

1(x) = ∪3
j=1

(
Γr

1(x) ∩ R(yj)
)

where Γr
1(x) ∩ R(yj) = {z ∈ R(yj) : d(yj , ℓ(yj , z)) ≥

d(yj , ξj(x)}, for j = 1, 2, 3. Notice that r ≥ 1 implies x ∈ N r
Y(x) and x ∈ Γr

1(x). Furthermore, limr→∞ N r
Y(x) =

T (Y) and limr→∞ Γr
1(x) = T (Y) for all x ∈ T (Y) \ Y, and so we define N∞

Y (x) = T (Y) and Γ∞
1 (x) = T (Y)

for all such x. For x ∈ Y, we define N r
Y(x) = {x} for all r ∈ [1,∞].

Notice that Xi
iid∼ F , with the additional assumption that the non-degenerate two-dimensional probability

density function f exists with support(f) ⊆ T (Y), implies that the special case in the construction of N r
Y

— X falls on the boundary of two vertex regions — occurs with probability zero. Note that for such an F ,
N r

Y(x) is a triangle a.s. and Γr
1(x) is a star-shaped polygon (not necessarily convex).
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Figure 1: Construction of r-factor proximity region, N2
Y(x) (shaded region).

Let Xe := argminX∈Xn
d(X, e) be the (closest) edge extremum for edge e. Then Γr

1(Xn) = ∩3
j=1Γ

r
1(Xej

),
where ej is the edge opposite vertex yj , for j = 1, 2, 3. So Γr

1(Xn) ∩ R(yj) = {z ∈ R(yj) : d(yj , ℓ(yj , z) ≥
d(yj , ξj(Xej

))}, for j = 1, 2, 3.

Let the domination number be γn(r) := γn(Xn; F, N r
Y) and X[j] := argminX∈Xn∩R(yj) d(X, ej). Then

γn(r) ≤ 3 with probability 1, since Xn ∩ R(yj) ⊂ N r
Y(X[j]) for each j = 1, 2, 3. Thus

1 ≤ E [γn(r)] ≤ 3 and 0 ≤ Var [γn(r)] ≤ 9/4.
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3 Null Distribution of Domination Number

The null hypothesis for spatial patterns have been a contraversial topic in ecology from the early days.
[Gotelli and Graves, 1996] have collected a voluminous literature to present a comprehensive analysis of the
use and misuse of null models in ecology community. They also define and attempt to clarify the null model
concept as “a pattern-generating model that is based on randomization of ecological data or random sampling
from a known or imagined distribution. . . . The randomization is designed to produce a pattern that would
be expected in the absence of a particular ecological mechanism.” In other words, the hypothesized null
models can be viewed as “thought experiments,” which is conventially used in the physical sciences, and
these models provide a statistical baseline for the analysis of the patterns. For statistical testing, the null
hypothesis we consider is a type of complete spatial randomness; that is,

H0 : Xi
iid∼ U(T (Y))

where U(T (Y)) is the uniform distribution on T (Y). If it is desired to have the sample size be a random
variable, we may consider a spatial Poisson point process on T (Y) as our null hypothesis.

We first present a “geometry invariance” result which allows us to assume T (Y) is the standard equilateral
triangle, T

(
(0, 0), (1, 0),

(
1/2,

√
3/2

))
, thereby simplifying our subsequent analysis.

Theorem 1: Let Y = {y1, y2, y3} ⊂ R2 be three non-collinear points. For i = 1, · · · , n, let Xi
iid∼

F = U(T (Y)), the uniform distribution on the triangle T (Y). Then for any r ∈ [1,∞] the distribution of
γ(Xn;U(T (Y)), N r

Y) is independent of Y, and hence the geometry of T (Y).

Proof: A composition of translation, rotation, reflections, and scaling will take any given triangle To =
T ({y1, y2, y3}) to the “basic” triangle Tb = T ({(0, 0), (1, 0), (c1, c2)}) with 0 < c1 ≤ 1/2, c2 > 0 and (1−c1)

2+

c2
2 ≤ 1, preserving uniformity. The transformation φe : R2 → R2 given by φe(u, v) =

(
u + 1−2 c1√

3
v,

√
3

2 c2

v
)

takes Tb to the equilateral triangle Te = T ({(0, 0), (1, 0), (1/2,
√

3/2)}). Investigation of the Jacobian shows
that φe also preserves uniformity. Furthermore, the composition of φe with the rigid motion transformations
maps the boundary of the original triangle, To, to the boundary of the equilateral triangle, Te, the median
lines of To to the median lines of Te, and lines parallel to the edges of To to lines parallel to the edges of Te.



k�n 10 20 30 40 50 60 70 80 90 100 200 300
1 151 82 61 67 50 24 29 21 15 27 10 7
2 602 636 688 670 693 714 739 708 723 718 715 730
3 247 282 251 263 257 262 232 271 262 255 275 263

Table 1: The number of γn(3/2) = k out of N = 1000 replicates.

Since the distribution of γ(Xn;U(T (Y)), N r
Y) involves only probability content of unions and intersections

of regions bounded by precisely such lines, and the probability content of such regions is preserved since
uniformity is preserved, the desired result follows. �

Based on Theorem 1 and our uniform null hypothesis, we may assume that T (Y) is a standard equilateral
triangle with Y = {(0, 0), (1, 0), (1/2,

√
3/2)} henceforth.

For our r-factor proximity map and uniform null hypothesis, the asymptotic null distribution of γn(r) :=
γ(Xn;U(T (Y)), N r

Y) can be derived as a function of r. We denote by ςr
Y := {z ∈ T (Y) : N r

Y(z) = T (Y)} the
superset region associated with N r

Y in T (Y). Notice that ςr
Y ⊆ Γr

1(Xn) for all r and Xn ∩ ςr
Y 6= ∅ implies that

γn(r) = 1.

Proposition 1: The expected area of the the Γ1-region, E [A(Γr
1(Xn))], converges to the area of the

superset region, A(ςr
Y), as n → ∞. In particular, E [A(Γ

3/2
1 (Xn))], goes to zero at rate O(n−2) as n → ∞.

Proof: See Appendix. �

As a corollary to the above proposition, we have that E [A(Γr
1(Xn))] → A(ςr

Y) = 0 for r ∈ [1, 3/2] as

n → ∞. Additionally, E [A(Γr
1(Xn))] → A(ςr

Y) = (1 − 3/(2 r))2
√

3 for r ∈ (3/2, 2], and E [A(Γr
1(Xn))] →

A(ςr
Y) =

√
3/4 (1 − 3/r2) for r ∈ (2,∞], as n → ∞.

Theorem 2: The domination number γn(r) = γ(Xn;U(T (Y)), N r
Y) is degenerate in the limit for r ∈

[1,∞] \ {3/2} as n → ∞.

Proof: For r ∈ [1, 3/2), ςr
Y = ∅ and T (Y) \ N r

Y(X[j]) has positive area for all j = 1, 2, 3. Furthermore,
T (Y) \ (N r

Y(X[j]) ∪ N r
Y(X[k])) has positive area for all pairs {j, k} ⊂ {1, 2, 3}. Recall that γn(r) ≤ 3 with

probability 1 for all n and r. Hence γn(r) → 3 in probability as n → ∞.

For r ∈ (3/2,∞], ςr
Y has positive area, so γn(r) → 1 in probability as n → ∞. �

Theorem 3: For r = 3/2, limn→∞ γn(r) > 1 a.s. In particular

lim
n→∞

γn(3/2) =

{
2 wp ≈ .7413,

3 wp ≈ .2487.

Thus E [γn(3/2)] → µ ≈ 2.2587 as n → ∞, and Var [γn(3/2)] → σ2 ≈ .1918 as n → ∞.

Proof: See Appendix. �

The finite sample distribution of γn(3/2), and hence the finite sample mean and variance, can be obtained
by numerical methods. We estimate the distribution of γn(3/2) for various fixed n empirically. In Table 1,
we present empirical estimates for n = 10, 20, . . . , 100, 200, 300 with 1000 Monte Carlo replicates. See also
Figure 3.

Theorem 4 Let γn(r) = γ(Xn;U(T (Y)), N r
Y). Then r1 < r2 implies γn(r2) <ST γn(r1).

Proof: Suppose r1 < r2. Then P (γn(r2) = 1) > P (γn(r1) = 1) and P (γn(r2) = 2) > P (γn(r1) = 2) and
P (γn(r2) = 3) < P (γn(r1) = 3). Hence the desired result follows. �
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Figure 3: Plotted are the empirical estimates of P (γn(3/2) = k) versus various n values.

4 The Null Distribution of the Mean Domination Number in the

Multiple Triangle Case

Suppose Y is a finite collection of points in R2 with |Y| ≥ 3. Consider the Delaunay triangulation (assumed
to exist) of Y, where Tj denotes the jth Delaunay triangle, J denotes the number of triangles, and CH(Y)
denotes the convex hull of Y (Okabe et al. (2000)). We wish to investigate

H0 : Xi
iid∼ U(CH(Y))

against segregation and association alternatives (see Section 5).

Figure 4 presents a realization of 1000 observations independent and identically distributed according to
U(CH(Y)) for |Y| = 10 and J = 13.
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Figure 4: A realization of H0 for |Y| = 10, J = 13, and n = 1000.

The digraph D is constructed using N r
Yj

(·) as described above, where for Xi ∈ Tj the three points in Y
defining the Delaunay triangle Tj are used as Yj . Let γnj

(r) be the domination number of the component
of the digraph in Tj , where nj = |Xn ∩ Tj|.



Theorem 5: (Asymptotic Normality) Suppose nj ≫ 1 and J is sufficiently large. Then the null

distribution of the mean domination number GJ := 1
J

∑J
j=1 γnj

(3/2) is given by

GJ
approx∼ N (µ, σ2/J)

where µ and σ2 are given in Theorem 3 above.

Proof: For fixed J sufficiently large and each nj sufficiently large, γnj
(3/2) are approximately indepen-

dent identically distributed as in Theorem 3. �

Figure 5 indicates that, for J = 13 with the realization of Y given in Figure 4 and n = 100 the normal
approximation is not appropriate, even though the distribution looks symmetric, since not all nj are suf-
ficiently large, but for n = 1000 the histogram and the corresponding normal curve are similar indicating
that this sample size is large enough to allow the use of the asymptotic normal approximation, since all nj

are sufficiently large. However, larger J values require larger sample sizes in order to obtain approximate
normality.
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Figure 5: Depicted are GJ
approx∼ N (µ ≈ 2.2587, σ2/J ≈ .1917/J) for J = 13 and n = 100 (left) n = 1000

(right). Histograms are based on 1000 Monte Carlo replicates and the curves are the associated approximating
normal curves.

For finite n, let GJ(r) be the mean domination number associated with the digraph based on N r
Y . Then

as a corollary to Theorem 4 it follows that for r1 < r2, we have GJ(r2) <ST GJ(r1).

5 Alternatives: Segregation and Association

In a two class setting, the phenomenon known as segregation occurs when members of one class have a
tendency to repel members of the other class. For instance, it may be the case that one type of plant does
not grow well in the vicinity of another type of plant, and vice versa. This implies, in our notation, that Xi

are unlikely to be located near any elements of Y. Alternatively, association occurs when members of one
class have a tendency to attract members of the other class, as in symbiotic species, so that the Xi will tend
to cluster around the elements of Y, for example. See, for instance, [Dixon, 1994], [Coomes et al., 1999].

We define two simple classes of alternatives, HS
ε and HA

ε with ε ∈ (0,
√

3/3), for segregation and asso-
ciation, respectively. Let Ye = {(0, 0), (0, 1), (1/2,

√
3/2)} and Te = T (Ye). For y ∈ Ye, let e(y) denote the

edge of Te opposite vertex y, and for x ∈ Te let ℓy(x) denote the line parallel to e(y) through x. Then define

T (y, ε) = {x ∈ Te : d(y, ℓy(x)) ≤ ε}. Let HS
ε be the model under which Xi

iid∼ U(Te \∪y∈YT (y, ε)) and HA
ε be

the model under which Xi
iid∼ U(∪y∈YT (y,

√
3/3 − ε)). Thus the segregation model excludes the possibility

of any Xi occurring near a yj , and the association model requires that all Xi occur near yj ’s. The
√

3/3− ε
in the definition of the association alternative is so that ε = 0 yields H0 under both classes of alternatives.



Remark: These definitions of the alternatives are given for the standard equilateral triangle. The
geometry invariance result of Theorem 1 still holds under the alternatives, in the following sense. If, in an
arbitrary triangle, a small percentage δ · 100% where δ ∈ (0, 4/9) of the area is carved away as forbidden
from each vertex using line segments parallel to the opposite edge, then under the transformation to the
standard equilateral triangle this will result in the alternative HS√

3δ/4
. This argument is for segregation; a

similar construction is available for association.

Theorem 6: (Stochastic Ordering) Let γn,ε(r) be the domination number under the segregation alter-
native with ε > 0. Then with εj ∈ (0,

√
3/3), j = 1, 2, ε1 > ε2 implies that γn,ε1

(3/2) <ST γn,ε2
(3/2).

Proof: Note that P (γn,ε1
(3/2) = 1) > P (γn,ε2

(3/2) = 1) and P (γn,ε1
(3/2) = 2) > P (γn,ε2

(3/2) = 2),
hence the desired result follows. �

Note that for Theorem 6 to hold in the limiting case, ε1 ∈ (0,
√

3/4] and ε2 ∈ (
√

3/4,
√

3/3) should hold.
For ε ∈ (0,

√
3/4], γn,ε(3/2) → 2 in probability as n → ∞, and for ε ∈ (

√
3/4,

√
3/3), γn,ε(3/2) → 1 in

probability as n → ∞.

Similarly, the stochastic ordering result of Theorem 6 holds for association for all ε and n < ∞, with the
inequalities being reversed.

Notice that under segregation with ε ∈ (0,
√

3/4), γn,ε(r) is degenerate in the limit except for r =
(3 −

√
3 ε)/2. With ε ∈ (

√
3/4,

√
3/3), γn,ε(r) is degenerate in the limit except for r =

√
3/ε − 2. Under

association with ε ∈ (0,
√

3/4), γn,ε(r) is degenerate in the limit except for r = 3
2 (1−

√
3 ε)

.

The mean domination number of the proximity catch digraph, GJ := 1
J

∑J
j=1 γnj

(3/2), is a test statistic

for the segregation/association alternative; rejecting for extreme values of GJ is appropriate, since under
segregation we expect GJ to be small, while under association we expect GJ to be large. Using the equivalent
test statistic

S =
√

J(GJ − µ)/σ, (1)

the asymptotic critical value for the one-sided level α test against segregation is given by

z1−α = Φ−1(α) (2)

where Φ(·) is the standard normal distribution function. The test rejects for S < z1−α. Against association,
the test rejects for S > zα.

Depicted in Figure 6 are the segregation with δ = 1/16 and association with δ = 1/4 realizations for
|Y| = 10 and J = 13, and n = 1000. The associated mean domination numbers are 2.308, 1.923, and 3.000,
for the null realization in Figure 4 and the segregation and association alternatives in Figure 6, respectively,
yielding p-values .660, .003 and 0.000. We also present a Monte Carlo power investigation in Section 6 for
these cases.

Theorem 7: (Consistency) Let J∗(α, ε) :=

⌈(
σ·zα

µ−GJ

)2
⌉

where ⌈·⌉ is the ceiling function and ε-dependence

is through GJ under a given alternative. Then the test against HS
ε which rejects for S < z1−α is consistent

for all ε ∈ (0,
√

3/3) and J ≥ J∗(1−α, ε), and the test against HA
ε which rejects for S > zα is consistent for

all ε ∈ (0,
√

3/3) and J ≥ J∗(α, ε).

Proof: Let ε > 0. Under HS
ε , γn,ε(3/2) is degenerate in the limit as n → ∞, which implies GJ is a

constant a.s. In particular, for ε ∈ (0,
√

3/4], GJ = 2 and for ε ∈ (
√

3/4,
√

3/3), GJ = 1 a.s. as n → ∞.
Then the test statistic S =

√
J(GJ −µ)/σ is a constant a.s. and J ≥ J∗(1−α, ε) implies that S < z1−α a.s.

Hence consistency follows for segregation.

Under HA
ε , as n → ∞, GJ = 3 for all ε ∈ (0,

√
3/3), a.s. Then J ≥ J∗(α, ε) implies that S > zα a.s.,

hence consistency follows for association. �
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Figure 6: A realization of segregation (left) and association (right) for |Y| = 10, J = 13, and n = 1000.

6 Monte Carlo Power Analysis

In Figure 7, we observe empirically that even under mild segregation we obtain considerable separation
between the kernel density estimates under null and segregation cases for moderate J and n values suggesting
high power at α = .05. A similar result is observed for association. With J = 13 and n = 1000, under H0,
the estimated significance level is α̂ = .09 relative to segregation, and α̂ = .07 relative to association. Under
HS√

3/8
, the empirical power (using the asymptotic critical value) is β̂ = .97, and under HA√

3/21
, β̂ = 1.00.

With J = 30 and n = 5000, under H0, the estimated significance level is α̂ = .06 relative to segregation, and
α̂ = .04 relative to association. The empirical power is β̂ = 1.00 for both alternatives.

We also estimate the empirical power by using the empirical critical values. With J = 13 and n = 1000,
under HS√

3/8
, the empirical power is β̂mc = .72 at empirical level α̂mc = .033 and under HA√

3/21
the empirical

power is β̂mc = 1.00 at empirical level α̂mc = .03. With J = 30 and n = 5000, under HS√
3/8

, the empirical

power is β̂mc = 1.00 at empirical level α̂mc = .034 and under HA√
3/21

the empirical power is β̂mc = 1.00 at

empirical level α̂mc = .04.
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Figure 7: Two Monte Carlo experiments against the segregation alternatives HS√
3/8

with δ = 1/16. Depicted

are kernel density estimates of GJ for J = 13 and n = 1000 with 1000 replicates (left) and J = 30 and
n = 5000 with 1000 replicates (right) under the null (solid) and alternative (dashed).



7 Extension to Higher Dimensions

The extension to Rd for d > 2 is straightforward. Let Y = {y1, y2, · · · , yd+1} be d + 1 non-coplanar points.
Denote the simplex formed by these d + 1 points as S(Y). (A simplex is the simplest polytope in Rd having
d + 1 vertices, d (d + 1)/2 edges, and d + 1 faces of dimension (d − 1).) For r ∈ [1,∞], define the r-factor
proximity map as follows. Given a point x in S(Y), let y := arg miny∈Y volume(Qy(x)) where Qy(x) is
the polytope with vertices being the d (d + 1)/2 midpoints of the edges, the vertex y and x. That is, the
vertex region for vertex v is the polytope with vertices given by v and the midpoints of the edges. Let
v(x) be the vertex in whose region x falls. If x falls on the boundary of two vertex regions, we assign
v(x) arbitrarily. Let ϕ(x) be the face opposite to vertex v(x), and η(v(x), x) be the hyperplane parallel
to ϕ(x) which contains x. Let d(v(x), η(v(x), x)) be the (perpendicular) Euclidean distance from v(x) to
η(v(x), x). For r ∈ [1,∞), let ηr(v(x), x) be the hyperplane parallel to ϕ(x) such that d(v(x), ηr(v(x), x)) =
r d(v(x), η(v(x), x)) and d(η(v(x), x), ηr(v(x), x)) < d(v(x), ηr(v(x), x)). Let Sr(x) be the polytope similar to
and with the same orientation as S having v(x) as a vertex and ηr(v(x), x) as the opposite face. Then the r-
factor proximity region N r

Y(x) := Sr(x)∩S(Y). Also, let ζj(x) be the hyperplane such that ζj(x)∩S(Y) 6=
∅ and r d(yj , ζj(x)) = d(yj , η(yj , x)) for j = 1, 2, . . . , d + 1. Then Γr

1(x) = ∪d+1
j=1(Γr

1(x) ∩ R(yj)) where
Γr

1(x) ∩ R(yj) = {z ∈ R(yj) : d(yj , η(yj , z)) ≥ d(yj , ζj(x)}, for j = 1, 2, 3.

Theorem 1 generalizes, so that any simplex S in Rd can be transformed into a regular polytope (with
egdes being equal in length and faces being equal in volume) preserving uniformity. Delaunay triangulation
becomes Delaunay tessellation in Rd, provided that no more than d + 1 points being cospherical (lying on
the boundary of the same sphere). In particular, with d = 3, the general simplex is a tetrahedron (4 vertices,
4 triangular faces and 6 edges), which can be mapped into a regular tetrahedron (4 faces are equilateral
triangles) with vertices (0, 0, 0), (1, 0, 0) (1/2,

√
3/2, 0), (1/2,

√
3/6,

√
6/3). Let γn(r, d) be the domination

number for the extension to Rd. Then it is easy to see that γn(r, 3) is nondegenerate as n → ∞ for
r = 4/3, and otherwise degenerate. In Rd, it can be seen that γn(r, d) is nondegenerate in the limit only
for r = (d + 1)/d. Moreover, it can be shown that limn→∞ P (2 ≤ γn((d + 1)/d, d) ≤ d + 1) = 1, and we
conjecture that

lim
n→∞

P (d ≤ γn((d + 1)/d, d) ≤ d + 1) = 1.

7.1 Discussion

In this article we investigate the mathematical properties of a domination number method for the analysis
of spatial point patterns.

The first proximity map related to r-factor proximity map, N r
Y , in literature is the spherical proximity

map, NS(x) := B(x, r(x)), (which is called CCCD in the literature, see [Priebe et al., 2001], [DeVinney et al., 2002],
[Marchette and Priebe, 2003], [Priebe et al., 2003a], and [Priebe et al., 2003b]). A slight variation of NS is
the arc-slice proximity map NAS(x) := B(x, r(x))∩T (x) where T (x) is the Delaunay cell that contains x (see
[Ceyhan and Priebe, 2003a]). Furthermore, Ceyhan and Priebe introduced the central similarity proximity
map, NCS , in [Ceyhan and Priebe, 2003a]. The r-factor proximity map, when compared to the others, has
the advantages that the asymptotic distribution of the domination number γn(r) is tractable (see Theorem
3). The distribution of the domination number of the proximity catch digraphs based on NS or NAS is not
tractable, and that of NCS is an open problem. Furthermore, NCS and N r

Y enjoy the geometry invariance
property over triangles for uniform data. Moreover, while finding the exact minimum dominating sets is an
NP-Hard problem for NS , NAS , and N τ

CS , the exact minimum dominating sets can be found in polynomial
time for N r

Y . Additionally, NAS(x), N r
Y(x), and N τ

CS(x) are well defined only for x ∈ CH(Y), the convex
hull of Y, whereas NS(x) is well defined for all x ∈ Rd.

The NS (the proximity map associated with CCCD) is used in classification in the literature, but not
for testing spatial patterns between two or more classes. We develop a technique to test the patterns
of segregation or association. There are many tests available for segregation and association in ecology
literature. See [Dixon, 1994] for a survey on these tests and relevant references. Two of the most commonly



used tests are Pielou’s χ2 test of independence and Ripley’s test based on K(t) and L(t) functions. However,
the test we introduce here is not comparable to either of them. Our method deals with a slightly different
type of data than most methods to examine spatial patterns. The sample size for one type of point (type X
points) is much larger compared to the the other (type Y points).

The null hypothesis we consider is considerably more restrictive than current approaches, which can be
used much more generally. The null hypothesis for testing segregation or association can be described in two
slightly different forms ([Dixon, 1994]):

(i) complete spatial randomness, that is, each class is distributed randomly throughout the area of interest.
It describes both the arrangement of the locations and the association between classes.

(ii) random labeling of locations, which is less restrictive than spatial randomness, in the sense that ar-
rangement of the locations can either be random or non-random.

Our test is closer to the former in this regard.
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8 Appendix

Proof of Proposition 1

To prove Proposition 1, we show that the expected locus of the boundary of the Γ1-region, ∂(Γr
1(Xn)), goes to

∂(ςr
Y) as n → ∞ by showing that the expected loci of Xej

are ej for j = 1, 2, 3. See [Ceyhan and Priebe, 2003b]
for the details.

For sufficiently large n and given Xej
= (xj , yj) for j = 1, 2, 3,

A(Γ
3/2
1 (Xn)) =

√
3/9(3 x2

2 − 6 x2 + 2
√

3y2 x2 − 2
√

3y2 + y2
2 + 3 + y3

2 − 2
√

3y3 x3 + 3 x3
2 + 4 y1

2).

The asymptotically accurate joint pdf of Xej
’s is

f3(ζ) = n(n − 1)(n − 2)
(√

3/36(−2
√

3y1 +
√

3y3 − 3 x3 +
√

3y2 + 3 x2)
2
)n−3

/(
√

3/4)n

with the support DS = {ζ = (x1, y1, x2, y2, x3, y3) ∈ R6 : (xj , yj)’s are distinct}. Then for sufficiently

large n, E [A(Γ
3/2
1 (Xn))] ≈

∫
DS

A(Γ
3/2
1 (Xn))f3(ζ)dζ, which goes to 0 as n → ∞ at the rate O(n−2). See

[Ceyhan and Priebe, 2003b] for the details.

Proof of Theorem 3

We know that γn(r) ≤ 3 a.s. for all r ∈ [1,∞] and all n. First we show that limn→∞ P (γn(3/2) > 1) = 1.

Note that P (γn(3/2) > 1) = P (Xn ∩ Γ
3/2
1 (Xn) = ∅). Then we find P (Xn ∩ Γ

3/2
1 (Xn) = ∅, E2(n, ε))

where E2(n, ε) is the event such that 2ε√
3
≤ X1 ≤ 1 − 2ε√

3
and 0 ≤ Z1 ≤ ε, and 1/2 ≤ X2 ≤ 1 − 2ε√

3
,√

3(1 − X2) − ε ≤ Z2 ≤
√

3(1 − X2), and 2ε√
3
≤ X3 ≤ 1/2, and

√
3X3 − ε ≤ Z3 ≤

√
3X3. First letting

n → ∞, then ε → 0, yields the desired result. See [Ceyhan and Priebe, 2003b] for the details.

Next, limn→∞ P (γn(3/2) ≤ 2) = limn→∞ P (γn(3/2) = 2), since limn→∞ P (γn(3/2) = 1) = 0. Let

Qj := argminx∈Xn∩R(yj) d(x, ej) = argmaxx∈Xn∩R(yj) d(ℓ(yj , x), ej)

where ej is the edge opposite vertex yj for j = 1, 2, 3 and let qj = (xj , yj) be the realization of Qj for

j = 1, 2, 3. Then γn(3/2) ≤ 2 iff Xn ⊂ N
3/2
Y (Q1) ∪ N

3/2
Y (Q2) or Xn ⊂ N

3/2
Y (Q1) ∪ N

3/2
Y (Q3) or Xn ⊂

N
3/2
Y (Q2) ∪ N

3/2
Y (Q3).

Let the events Ei,j := Xn ⊂ N
3/2
Y (Qi) ∪ N

3/2
Y (Qj) for (i, j) = {(1, 2), (1, 3), (2, 3)}. Then

P (γn(3/2) ≤ 2) = P (E1,2)+P (E1,3)+P (E2,3)−P (E1,2∩E1,3)−P (E1,2∩E2,3)−P (E1,3∩E2,3)+P (E1,2∩E1,3∩E2,3).

By symmetry, P (E1,2) = P (E1,3) = P (E2,3) and P (E1,2 ∩ E1,3) = P (E1,2 ∩ E2,3) = P (E1,3 ∩ E2,3). Hence

P (γn(3/2) ≤ 2) = 3
[
P (E1,2) − P (E1,2 ∩ E1,3)

]
+ P (E1,2 ∩ E1,3 ∩ E2,3).

We find P (E1,2), by finding the asymptotically accurate joint pdf of Q1, Q2. Let T (Qj) be the triangle
formed by the median lines at yk and yl for k, l 6= j and ℓ(yj , Qj), and let ε > 0 be small enough such that
T (Qj) ⊂ R(yj), for j = 1, 2, 3. Then the asymptotically accurate joint pdf of Q1, Q2 is

f1,2(x1, y1, x2, y2) = n (n − 1)
1

A(T (Y))2

(
A(T (Y)) − A(T (q1)) − A(T (q2))

A(T (Y))

)n−2

where A(T (q1)) =
√

3/36
(
−2

√
3 + 3 y1 + 3

√
3x1

)2
and A(T (q2)) =

√
3/36

(
−3 y2 −

√
3 + 3

√
3x2

)2
with

domain DI = {(x1, y1) ∈ R(y1) : y1 ≥ −
√

3
3 +

√
3x1 +

√
3ε, (x2, y2) ∈ R(y2) : y2 ≤ −

√
3

3 +
√

3x2 −
√

3 ε}
with ε > 0 be small enough such that T (Qj) ⊂ R(yj), for j = 1, 2, 3.



Then P (E1,2) ≈ .4126 (which is found numerically). See [Ceyhan and Priebe, 2003b] for the details.

Similarly we find P (E1,2 ∩ E1,3), by finding the joint pdf of Q1, Q2, Q3, where T (q3) is the triangle
with vertices 1

3 (
√

3 − 3 y3)
√

3, y3), (1/2,
√

3/6), (
√

3y3, y3). Then the asymptotically accurate joint pdf of
Q1, Q2, Q3 is

f123(x1, y1, x2, y2, x3, y3) = n (n − 1) (n − 2)
1

A(T (Y))3

(
A(T (Y)) − A(T (q1)) − A(T (q2)) − A(T (q3))

A(T (Y))

)n−3

where A(T (q3)) =
√

3
36 (−

√
3 + 6 y3)

2 with domain DI = {(x1, y1) ∈ R(y1) : y1 ≥ −
√

3
3 +

√
3x1 +√

3 ε, (x2, y2) ∈ R(y2) : y2 ≥ −
√

3
3 +

√
3x2 −

√
3 ε, (x3, y3) ∈ R(y3) : y3 ≤

√
3

6 + ε}.
Then P (E1,2 ∩ E1,3) ≈ .2009 (see [Ceyhan and Priebe, 2003b] for the details.)

Likewise, we find P (E1,2 ∩ E1,3 ∩ E2,3) ≈ .1062 (see [Ceyhan and Priebe, 2003b] for the details.)

Hence we get limn→∞ P (γ(Xn, N
3/2
Y ) = 2) ≈ .7413, and limn→∞ P (γ(Xn, N

3/2
Y ) = 3) ≈ .2587.
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