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We consider the problem of investigating the ‘‘structure’’ of a set of points in
Ž .high-dimensional space n points in d-dimensional Euclidean space when n < d.

The analysis of such data sets is a notoriously difficult problem in both combinato-
rial optimization and statistics due to an exponential explosion in d. A randomized
nonlinear projection method is presented that maps these observations to a
low-dimensional space, while approximately preserving salient features of the
original data. Classical statistical analyses can then be applied, and results from the
multiple lower-dimensional projected spaces are combined to yield information
about the high-dimensional structure. We apply our dimension reduction tech-
niques to a pattern recognition problem involving PET scan brain volumes.
Q 1997 Academic Press

THE PROBLEM. Let x , . . . , x be a collection of n observations in R d.1 n
The goal is to cluster the observations into g groups. We are concerned
with this problem in the unsupervised case, where nothing is known a
priori about the classification of any of the data, as well as in the
supervised case, where some of the x have associated with them a classi
label c . The extreme case of this is called the classification problem,i
where all observations x have associated with them a class label c , andi i
the goal is to use this training data to develop a discriminant rule which
then can be used to classify unlabeled observations. These problems have
been studied extensively in the probability, statistics, engineering, and

w xapplication-specific literature. See, for instance, 1, 2 and the references
contained therein.

w xApproximate distance. Linial, London, and Rabinovich 3 investigated
algorithmic constructions for embedding points from a high-dimensional
Euclidean space into a lower dimensional space while approximately
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preserving all the pairwise distances between points. Their work extended
w x w xresults of 4]7 from the realm of functional analysis. Bourgain 4 showed

that:

THEOREM. Let XX be a collection of n points in R d, with distances
computed under the L norm. Then there is a function c which maps XX to2
Ž .c XX , a set of points in r-dimensional Euclidean space, such that ; x , x g XX ,i j

1
5 5 5 5 5 5x y x G c x y c x G x y x .Ž . Ž .i j i j i jC log n

Furthermore, such a c can be found in randomized polynomial time.

w xThe work of 3 includes explicit constructions that are highly combina-
torial in nature, where the construction of c combines small random

w xsubsets of the sample points themselves. Our point of departure from 3 is
based on the observation that for pattern recognition purposes it is
necessary only to preserve class or cluster separability, rather than all
interpoint distances. If the intra-cluster distances collapse to near zero,
this will only magnify the ease of recognizing clustering behavior in the
lower-dimensional space. This idea is also the basis of a deterministic

w xmethod based on optimization techniques that appears in 8 .

OVERVIEW OF THE METHOD

Ž .The method we employ has three stages: 1 find a useful set of
Ž .projections to low-dimensional space, 2 explore the classification or

Ž .clustering properties of the data in the projections, and 3 use the
information obtained to determine structure in the high-dimensional space.

Ž .Here we focus mainly on 1 , since this has been the bottleneck in
successfully attacking pattern recognition problems for high-dimensional
data. The reasoning behind using low-dimensional projections is that there
are many classical pattern recognition methods that work well in low
dimensions. Therefore, while the statistical method needs to be tailored to

Ž .the problem at hand, stage 2 can be accomplished by standard statistical
Ž .techniques. How to combine and use the information from stage 2 will

also depend on the problem at hand; in this paper, we will investigate stage
Ž .3 in specific cases only.

The ADC maps. We now define the family of maps that result in the
nonlinear projections which are considered. We will call these the ADC
maps, for approximate distance clustering. The one-dimensional ADC map
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is defined in terms of a subset D of the original data. Each subset D
specifies a one-dimensional ADC map; later we will choose D of a small
fixed size randomly from the data.

� 4 dDEFINITION. Let XX s x be a collection of data in R . Let D ; XX .i
The associated one-dimensional ADC map is defined as the function that,

5 5; x g XX , maps x to the scalar quantity min x y d . An r-dimen-i i d g D i
sional ADC map is now defined in terms of subsets D , . . . , D , where1 r
each x g XX is mapped to the point in R r whose jth coordinate is itsi
value under the one-dimensional ADC map with associated subset D .j

Ž .Notice that specifying stage 1 now means simply choosing r and
determining how to choose sets of subsets D , . . . , D . In fact, we will be1 r

Žchoosing the D of a particular size k, dependent on characteristics the
.data, specified later in a randomized fashion and, as has been the case in

Ž w x.many algorithmic problems studied of late cf. 9 , it seems that the
randomness itself is what helps us to get over the main computational
bottleneck.

Before we can begin a theoretical examination of how good the ADC
projections are for finding candidate clusterings, however, we must be able
to define what a good clustering is. This has not been, in general, an easy

w xnotion 10 . However, it is fairly easy to write down a restrictive definition
of when data clusters into two clusters in one dimension as follows.

DEFINITION. Let x , . . . , x g R , so that x , . . . , x are the ordered1 n Ž1. Žn.
points s.t. x F x . Let y s x y x denote the spacings betweenŽ i. Ž j. i Ž iq1. Ž i.
points. Let y s y be the largest gap. If either x y x - y orj Žny1. Ž j. Ž1. Žny1.
x y x - y then x , . . . , x are said to cluster perfectly in 1-di-Žn. Ž jq1. Žny1. 1 n
mension. The clusters are x ??? x and x ??? x .Ž1. Ž j. Ž jq1. Žn.

Based on this and for expository purposes, we first present a randomized
algorithm based on ADC projections into just one dimension. In this
simple case we can describe completely our algorithm’s computational
complexity for finding clusters for a data set whose underlying distribution
falls into two clusters. We apply the method to a simulation and to a set of
PET data. The extension to multiple dimensions and multiple clusters is
then discussed in the following section.

MEASURES OF CLUSTERING

� 4In what follows, let C be a cluster, with C s x , . . . , x . Let E s1 n
� 4x , . . . , x , where C j E is a set of n q m points embedded in anq1 nqm

5 5 Žd-dimensional metric space with norm ? For the purposes of this paper,
.we will always consider the L norm . Here d 4 n.2
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DEFINITION. We say that C is k-clusterable if there exists a subset D
< <of C such that D s k and

5 5 5 52 max min c y d - min min e y d .
cgC dgD egE dgD

The set D is called a witness that C is k-clusterable.

For the purposes of this paper, k is constant, independent of n. More
generally, k could be allowed to be a function of n, so that the size of D
required will grow as n grows, for example, allowing log n-clusterable sets.

LEMMA. Let C and E be as abo¨e. If C is k-clusterable, then the mapping
5 5which sends each point u g C j E to min u y d , where D is a cluster-d g D

ability witness for C, clusters C perfectly in one-dimension.

Proof. Let D be the clusterability witness above and f the associated
5 5mapping. First notice that if x g C and y g E; then min x y d -d g D

5 5min y y d by the property of D. Thus f maps all the points of E tod g D
the right of all the points in C, on the real line. Let y be the gapŽ j.
between the rightmost point in C and the leftmost point in E; i.e., x g CŽ j.
and x g E. Then x y x s x , since f maps points in C which areŽ jq1. Ž j. Ž1. Ž j.
also in D to 0. Thus we need to show that x - x y x , or 2 x -Ž j. Ž jq1. Ž j. Ž j.

5 5 5 5x . But 2 x s2 max min cyd -min min eyd sŽ jq1. Ž j. cg C d g D eg E d g D
x .Ž jq1.

We introduce a weaker notion called k-separability as well, by dropping
the 2 in the definition above. In this case, instead of perfect clusters in
one-dimension, the weaker property holds that all the points of C appear
to the left of all the points of E in the image of f. This formulation is
generalized to higher dimensions and multiple clusters below.

DEFINITION. Let C and E be as above. Fix e ) 0. We say that C is
Ž .strongly k, e -clusterable, if for a random subset D of C of size k,

5 5 5 5Prob 2 max min c y d - min min e y d G e .
cgC dgD egE dgD

Ž .If there exists any e ) 0 such that C is strongly k, e -clusterable, we say
C is strongly k-clusterable.

i.i.d. i.i.d.
< <DEFINITION. Fix e ) 0. Let C ; F with C s n, and E ; F , withCC EE

< < Ž .E s m. We say C is strongly k, e -clusterable in distribution if
for a random subset D of size k drawn uniformly from C,

w 5 5 5 5xProb 2 max min c y d - min min e y d G e .cg C d g D eg E d g D

The same notions for this and the previous definitions are made for
k-separable clusters by dropping the factor of 2.
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THE ALGORITHM

Ž .Consider the following procedure. Suppose x , . . . , x are strongly k, e1 n
1clusterable into clusters C and C. We choose D of size k at random from

Žamong the data points if we have partial classification information avail-
able, choosing D either entirely or partially from data points known

.to lie within C speeds up the algorithm . We form the associated one-
dimensional ADC map and check whether the data clusters perfectly in

Žone dimension. In the case of partial classification information, we also
require that all points known to be within C lie to the left of the biggest
gap. In the case of total classification information, we remove the require-
ment of perfect clustering and simply require that the points in C lie to

. Ž .the left of the points in C. If this stage 2 analysis is successful in
uncovering two resultant clusters, our goal has been met. If not, we select
D at random again. How many times do we need to do this before we find
a ‘‘good’’ ADC map? The following theorem provides an answer to this,

Ž .the fundamental question of stage 1 .

THEOREM. Let d be a lower bound on the fraction of the data points that
lie within C. Then if the data is completely unclassified, the algorithm runs in

ŽŽ Ž . yk y1.Ž ..time O c a d e nk q n log n and reco¨ers C with probability ) 1 y
2ya , for any fixed a ) 0. In the case that the algorithm can sample from

ŽŽ Ž . y1 .Ž ..points know to be in C, the algorithm runs in time O c a e nk q n log n
and reco¨ers C with probability ) 1 y 2ya , for any fixed a ) 0.

Proof. We prove the second statement first. If x , . . . , x are strongly1 n
Ž .k, e clusterable into clusters C and C, checking 2re samples R eachi
chosen from points already classified as belonging to C gives probability

12r eŽ .- 1 y e - that no sample is a witness, and this can be increased to2

1 y 2ya , for any fixed a by simply multiplying the number of samples
chosen by a constant. For the first statement, the probability that a sample

k Ž yk .of k points lies entirely within C is at least d . Thus if we choose O d
samples, we expect to have chosen a sample entirely from within C.

For each sample R , taking the distances of n points to the k points ini
Ž .the sample takes O kn time. The cost of extracting the maximum gap is

Ž .linear and dominated by the O n log n cost of sorting the x .Ž j.

Notice that in the absence of any classification data there is an extra
factor of d k, which is exponential in k. Thus only for small constant k, and

1large constant d F , will this result in a feasible bound on the number of2

samples required before the clustering is found. However, if there is even

1In practice, k is not known; the algorithm is run by hypothesizing k and k is first set tomax
1 and increased incrementally.
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Ž .partial training data i.e., samples known to come within C , for reasonable
e the procedure will be nearly linear in k, and in practice we have indeed
found that an interesting structure is found, based on a small number of
ADC projections. In practice, for clusterable data, setting a tolerance on
running time and examining the ‘‘best’’ few projections produces dramatic
results. For separable data one may expect only that the best projections
order the data correctly; recognition of these projections requires addi-
tional information. In reality, of course, even separability is a strong
assumption. In the absence of fully classified training data one must ‘‘look
for clumps.’’ If an independent statistical test is on hand to check the
quality of each candidate projection, however, the algorithm above be-
comes a classification algorithm. Given a fully classified training sample,
each projection is evaluated for its utility in classification, using, for
example, a leave-one-cut cross-validation procedure. The few best projec-
tions can then be used to classify unlabeled observations.

EXAMPLES

The power of k. Performance of ADC in practice is fundamentally
dependent on the choice of k. For any fixed k, we could estimate e , i.e.

Ž .what percentage of ADC maps give perfect 100% correct clustering.
Once this percentage is nonnegligible, choosing samples uniformly at
random will decrease the percentage as k increases, since clustering
structure is typically observed when all k samples are drawn from the
same cluster, which decreases in probability exponentially in k. If we were
able to restrict our consideration to those ADC maps where samples were
all chosen from within the same cluster, the quality of the clusters found
and the percentage of the ADC maps that give perfect clustering would
increase since within-cluster points are more likely to have a small distance
to one of the within-cluster points in the sample. In the general case, we of
course are not able to do this, since we do not know which points lie in
each cluster. Note, however, that sometimes all k samples will lie in the
same cluster by chance. Thus when the percentage of ADC maps which

Žgive 100% correct clustering or above any fixed percentage p correct
.clustering is negligible or 0, increasing k can increase the percentage of

good ADC maps.
We remark that when the percentage of good ADC maps is below half,

the information we wish to retrieve lies only in a percentage of ‘‘best’’
Ž .ADC maps, and stage 3 comes into play. In the one-dimensional ADC

map, we have the ‘‘perfect clustering test’’ described above and we simply
discard the bad projections in favor of the good ones. More complicated

Ž .implementations of stage 3 can recover clustering structure that is more
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delicate. Also, since ADC is a randomized method, when deciding whether
to reject the hypothesis of ‘‘no clustering,’’ it is important to estimate and
correct for the percentage of correctly classified observations one would
expect to see by chance.

The following simulation example demonstrates the power of k. Con-
sider n s 100 observations in d s 10-dimensional Euclidean space com-
prising two classes with n s 50 observations per class, i s 1, 2. The classi
distributions N differ only in two of the 10 dimensions: for eight of thei

Ž .dimensions we have N s MultivartiateNormal 0, 1 . For the last twoi
dimensions, uncorrelated from the first 8, we take each cluster to be a
mixture of multivariate normals. Letting I 2 be the two-dimensional iden-
tity matrix, dimensions 9 and 10 are distributed

2.5 y2.52 21r2 N , I q 1r2 N , Iž / ž /ž / ž /3.5a 3.5a

for each cluster, where a s 1 for cluster 1 and y1 for cluster 2. These
Ždata are then rotated via a random orthogonal matrix so that the clusters

.cannot be found by one of the standard basis projections . One thousand
random one-dimensional ADC projections were calculated. The largest

Žgap between two projected points not including the points in the random
.sample was calculated, and the points were classified into two clusters

based on whether they were to the left or the right of the gap. The results
Ž .from this simulation Table I indicate that, when k s 2 there is a higher

percentage of projections that yield an 80% or higher correct classification
rate. As we demand a greater than 80% correct classification, the percent-
age gap between k s 2 and k s 1 widens: and only 0.5% of the k s 1
maps give a 100% classification, whereas 1.5% of the k s 2 maps do. The
table shows the percentage of ADC projections that correctly cluster the
given percentage of the data.

TABLE 1
The Simulation Example: If We Wish a High Percentage of the Points to Be Correctly

Classified, Then It Is Better to Select k s 2

Percentage of correct clustering

55 65 75 80 85 90 95 99 100

% ADC correct: k s 1 23.5 9.6 7.9 6.3 5.3 4.5 3.5 1.2 .5
% ADC correct: k s 2 18.5 9.1 7.2 6.3 6.1 6.0 5.4 3.2 1.8

Note. The crossover occurs at precisely the percentage of ADC maps correctly
classifying at least 80% of the points correctly.
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PET EXAMPLE. We now present an example from positron emission
Ž . Ž .tomography PET . Twenty six subjects 14 schizophrenic and 12 normal

Ž . Ž .are scanned in each of three conditions: rest R , sensory control SC , and
Ž .tone recognition TR . These three conditions give rise to two contrasts of

interest for each subject: SC-R and TR-SC, yielding a data set of n s 26
PET scan volume pairs. Each 65 = 87 = 26 voxel scan has been normal-
ized and aligned using the SPM statistical image analysis software package
w x11 . A voxel’s value represents a measure of the change in the amount of

w xblood flow to that area of the brain and, thus, regional neural activity 12 .
The resulting scan volume pairs are not readily clusterable into ‘‘schi-
zophrenics’’ and ‘‘normals’’ visually, due to a large interclass variance.

This volumetric image data is naively represented as having a dimension
for each voxel. Thus we consider clustering n s 26 observations in d s
Ž .2 65 = 87 = 26 s 294,060 dimensions. In the PET community it is com-

mon practice, once SPM registration has been performed, to proceed by
w xanalyzing each voxel separately, i.e. disregarding spatial context 11 . Thus

PET is a particularly good example for expository purposes; we can
demonstrate the ease of applying our methods to small sample sizes in
extremely high-dimensional settings and obtain significant results without
needing to incorporate complicating spatial preanalysis. Figure 1 shows
one midbrain transverse slice for one subject.

There are 26 one-dimensional ADC projections for this problem that
Ž .use one point per set k s 1 and none provide any useful clustering}not

surprising, perhaps, as the high-dimensional structure is no doubt compli-
cated. Figure 2 shows the results of the one-dimensional ADC map for

Ž .stage 1 of this problem using five observations per set. Both qualitatively
Žand quantitatively using the leftmost mode of the probability density

.estimator it is indicated that normals seem to be more tightly clustered
than schizophrenics. That is, for normals the majority of the probability
mass tends to be at the smaller distances, whereas for the schizophrenics
there is more at the larger distances.

There is also behavioral evidence based on performance versus reaction
time which proposes to explain the additional structure seen in Fig. 2. Five
of the schizophrenics behave similarly to the normals}i.e., some
schizophrenics perform this task normally. These may be indicated in Fig.
2 by the schizophrenic subjects with significant probability mass at the
small distances and could indicate that the behavioral result has a physio-
logical manifestation.

Ž .Discriminant analysis leave-one-out cross-validation based on ADC
projections yields correct classification of 25 of the 26 observations into
the classes normal and schizophrenic. This is a pleasant surprise since the
volumetric images themselves, even for experienced PET scan analysts, do
not readily yield the conclusion that such a classification rule exists.
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FIG. 1. This shows one transverse slice from one of the 26 scan pairs.

This naive voxel-as-dimension approach is obviously not a solution to
the general image clustering application, as ignoring spatial information
may be foolhardy for inherently contextual data. However, image analysis
is a notoriously difficult application, and the ultimate solution to any
image clustering problem will involve a compendium of techniques. Fur-
thermore, in PET}a subtractive application in which registration is possi-
ble and for which the features of interest are normalizable, anatomically
based, equi-located changes in blood flow}the noncontextual approach
described above has potential application.

MULTIPLE CLUSTERS

In some sense, using the one-dimensional method to find two clusters is
the general case from an algorithmic point of view, since, given a set of
data that clusters into g groups, we can separate cluster C from the resti
of the data, remove C , and iterate. However, from an approximatei
distance versus dimension reduction point of view, it is interesting to ask
for projections that can represent multiple clusters simultaneously. Here
we show how the required dimensionality will, in general, increase as a
function of the number of clusters.
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FIG. 2. This presents kernel density estimates of the distances for 2500 random ADC
projections using a random sample of k s 5 observations per set. The subjects on the left are
normals, and those on the right are schizophrenics.

Suppose d-dimensional data clusters into g clusters, C , . . . , C , with1 g
g ) 2. As before, we wish to represent this data in fewer than d dimen-
sions, in such a way that the separation between clusters is not lost. In this
section, it will be cleaner to generalize the one-dimensional k-separable,
rather than k-clusterable definitions.

DEFINITION. Clusters C , . . . , C in R s are linearly separable if there1 g
Ž . sexists g y 1 s y 1 -dimensional hyperplanes that partition R such that

each C is contained in its own region.

Let C be a collection of points in R d. Given a collection of s subsets
D , . . . , D , D ; C, we define the associated s-dimensional ADC map1 s

d s Ž . Ž .M: R ª R to be the map which, for each c g C, M c s m , . . . , m ,1 s
5 5where m s min d y c . In the theorem below, k-separable refers toi d g D i

the two clusters C and all the rest of the data, C _ C .j j
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THEOREM. Suppose CC s C , . . . , C lie in R d so that for each C , C is1 g j j
Ž .k-separable from CC _ C . Then 1 there exists an ADC map into s s g y 1j

Ž .dimensions so that the images of C , . . . , C are linearly separable; 2 there1 g
exists a collection CC as abo¨e so that no ADC map with one point per set into
fewer than g y 1 dimensions results in linear separable clusters in the image;
Ž .3 there exists a collection CC as abo¨e so that no ADC map into fewer than
log g dimensions results in linear separable clusters in the image.2

Ž . Ž .Proof. Sketch . 1 For i s 1 ??? g y 1, let D separate C from CC _ Ci i i
and let M be the ADC map associated with D ???D . Let e s1 gy1 i

5 5 Ž .max min c y d . Define h to be the g y 1 -dimensional hyper-cg CC d g D ii

plane which contains each of the axes except i and goes through the ith
axis at the coordinate e . Clearly h separates C from the rest of CC.i i i
Ž .2 Let CC be as follows: C consists of identical points, all of whom havei
0s, except a 1 in the ith coordinate. Then each of the C is 1-separablei
from CC _ C . Choosing a single point in C , all the points in C map to 0,i i i
whereas all the non-C points map to 1. Any point c g C will map to ai i
point with coordinates 0 or 1 under any ADC map: 0 in a coordinate where
a point from C is chosen; 1 otherwise. Thus if only one point is chosen peri
set, we need a point from each set and g y 1 dimensions are required.
Ž . Ž .3 Choose the same collection CC as in part 2 . Suppose we have an ADC
map that clusters CC in s - log g dimensions. We can represent each2
cluster C by a binary string of length s, where we put a 1 in position i ifi
some element of C was chosen in D . If s - log g, some C and some Ci i 2 i j

Ž .will be represented by the same binary string by the pigeonhole principle
dand, hence, their elements will be mapped to the same points in R .

One easy specialization of the theorem above is the observation that the
one-dimensional method cannot in general represent three distinct clus-
ters. For example, if three clusters form points of an equilateral triangle in
2-space, any point in one cluster will be equidistant from points in both of
the other clusters, no matter how well-separated the three clusters are in
2-space. However, the one-dimensional method can sometimes recover
three clusters, for example, when they are at different distances from each
other. This representation of more clusters than the theory might indicate
can occur frequently in practice.

DISCUSSION

We have introduced a new method for finding clusters in high-dimen-
sional space based on the preservation of approximate distances between
clusters. At the heart of the method is a randomized algorithm: in some
sense, we can say that our definition of when a clustering structure can be
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recovered is a randomized one. The randomness can allow us to automati-
cally find dense cluster regions and thus pull out cluster structure.
J. Michael Steele has asked us: is there a way to define clustering along
these lines, but in such a way that the criteria is norm independent or at
least is invariant over a wide class of distance metrics?

Other open questions include: for what data is it possible to give a
Ž .dimension reduction map that represents g clusters in less than f g

dimensions? What alternative distance metrics should be considered?
For the purpose of this paper, we examine data that clustered; in many

practical examples, the raw data would not cluster because of misclassified
sample points, or outliers. There has been a large literature in the
optimization and machine learning communities about optimizing misclas-
sification rates. The definition of k-clusterable can be generalized to deal
with misclassification, so that error rates can be better studied, and this is
an important area of future research.

Finally, as far as the PET data sets themselves are concerned, we have
recently found that restricting the region of interest via preprocessing a la

w x w x‘‘statistical parametric mapping’’ 11 or spatial smoothing 13 is an effec-
tive way to combine the ADC procedure with information about spatial
dependencies.
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