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Abstract—This paper studies the problem of identifying an
inhomogeneous interaction structure amongst social agents. We
construct the social network by a random graph and model
the messaging activities via a multi-channel self-exciting point
process. We design a methodology that divides the agents into
two disjoint groups so that members within each group are
considered to be of similar attributes. Our methodology and
algorithm are useful for investigating and detecting abnormal
activities within a network. We provide numerical illustrations
based on a large email dataset from Enron.
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In this paper, we propose a model to estimate and analyze
the structure of messaging activities in a social network.
This is motivated by the recent proliferation of mobile
technology, along with spread of blogs, social networking
site, and media-sharing technology. For classification, de-
tection, tracking and other practical purposes, robust sta-
tistical analysis as well as a good understanding of the
data structure are essential. In this paper, we consider a
collection of messaging data, made public by the Federal
Energy Regulatory Commission in 2003, that contains highly
accurate information about the time at which each message
was exchanged. We introduce a meaningful way to reduce
messaging data to a random graph and explore its possible
application to a community detection problem.

A simple and popular existing method to achieve this is to
“pairwise threshold”, where for each pair of agents, an edge
between vertex i and vertex j is formed if the number of
messaging events between them exceeds a certain threshold.
Such graphs are often thought to reveal a structure of an
underlying social dynamic, motivating several successful
models for a social network with sub-communities, and
many tools for detecting a community with a particular
graph theoretic and statistical properties have been proposed
(Goldenberg et al. 2010, Kolaczyk 2009).

On the other hand, some recent research (De Choudhury
et al. 2010), has documented that changing the thresholds in
the reduction procedure can produce dramatically different
graphs, resulting in vastly dissimilar communities. This issue
has motivated the work such as Heard et al. (2010) and
Perry and Wolfe (2010). In both studies, as a remedy, the
messaging events are modeled by way of point processes.

In Heard et al. (2010), a piecewise-constant interaction rate
is considered, while in Perry and Wolfe (2010) a Cox
multiplicative intensity model is used with covariates that
depend on the history of the process.

Our approach is to model the dynamic network via n low-
dimensional latent processes. One challenge to overcome
is to estimate the intensity processes. Given an estimate
of the intensity processes, we propose a novel embedding
methodology to facilitate inference. Based on our method-
ology, we can produce a random graph with a particular
probabilistic structure that could be very useful for the
purpose of community detection.

I. MESSAGING EVENTS LABELED WITH
LINEARLY-ORDERED RISK LEVELS

We consider a network of n vertices, and denote V =
{1, . . . , n}. For ` ∈ N, we denote by τ`, {i`, j`} and
k`, respectively, the occurrence time, the messaging pair
and the risk level of the `-th message. Collectively, d` =
(τ`, {i`, j`}, k`) represents the `-th messaging event. We
require that

τ` < τ`+1 and 1 ≤ i` 6= j` ≤ n.

The risk levels K = {1, 2, . . . ,K} is assumed to be linearly
ordered, and we will say that topic label k1 ∈ K is more
risker than topic label k2 ∈ K if k1 > k2.

For each (undirected) pair ij of the vertices and t ∈ [0, T ],
we denote by Nij,k(t) the number of (undirected) messaging
events on the topic k. between vertex i and vertex j during
[0, t]. For each t ∈ [0, T ], let Dk(t) be the collection of all
communication messaging events by time t on topic label
k, i.e.,

Dk(t) =

{
(τk,`, {ik,`, jk,`}, k) : ` = 1, . . . ,

∑
i<j

Nij,k(t)

}
,

where τk,` is the time at which the `-th messaging event
labeled with k occurred and ik,` and jk,` have a similar
interpretation. Then, collectively, we have the entire corpus:

D(T ) = ∪Kk=1Dk(T ).



(a) From the 38-th week

(b) From the 58-th week

Figure 1: Timeplots of a subset of Ernon E-mail Corpus
Data. The entire corpus involves 184 individuals, but for
simplicity, only 34 individuals are used to make these plots.
The vertical coordinates indicate the labels that identify the
thirty four vertices. If a vertical line was to be drawn, then
either the vertical line passes no circle or exactly two circles,
which represent the sender-receiver pair of a particular e-
mail, and the (common) color of the circles represents the
topic of the e-mail. For each graph, time is scaled so that 0
denotes the beginning of a week and 1 denotes the end of
the week.

For future reference, for each pair ij and topic k, let

Dij,k(t) =

(τij,k(`), i, j, k) : ` = 1, . . . ,
∑
i<j

Nij,k(t)

 ,

where τij,k(`) is the time at which the `-th messaging event
labeled with k occurred between i and j.

II. MATHEMATICAL MODEL AND PROBLEM STATEMENT

Let M(n, d) be the set of all n× d matrices for some fixed
d. Let X = (X1, . . . , XK) be the solution of SDE:

vec(X(t)) = vec(X(0))

+

∫ t

0

b(vec(X(s)))ds+

∫ t

0

σ(vec(X(s)))dBs,

where Bt denotes a multivariate standard Brownian motion
and for M = (M1, . . . ,MK) ∈ M(n, d)K , vec(M) is the
column vector obtained by stacking the rows of M from the
top row to the bottom row, starting from M1 and ending
with MK . Moreover, we assume that each Xi,k(t) has finite
second moment and a density.

Let N(t) = (Nij,k(t)) be a collection of doubly stochastic
point processes for which, the intensity process for pair ij
and topic k is:

λij,k(t) = λ0 exp(−‖Xk,i(t)−Xk,j(t)‖),

where ‖ · ‖ is the usual Euclidean norm. In particular, we
have

P(Nij,k(t+ h) = Nij,k(t) + 1 |Ft ) = λij,k(t)h+ o(h),

where o(h) is a term that becomes negligible in comparison
to λij,k(t)h as h→ 0. Note that each

Nk(T ) = {Nij,k(t) : 1 ≤ i < j ≤ n, t ∈ [0, T ]}

generates Dk(T ). In summary, the collection of n(n− 1)/2
point processes

N (T ) = {Nij,k(·) : 1 ≤ i < j ≤ n, k = 1, . . . ,K}

generates the entire corpus D(T ). Finally, note that N (T ) is
generated by X = (X1, . . . , Xn), where Xk is a stochastic
process taking values in Rd. Henceforth, we will say that the
n× d dimensional process X generates the corpus D(T ).

Recovering the original X based on N is challenging if
not impossible. In this paper, we develop an alternative
characterization of Nt in terms of another latent process that
is amenable to conducting estimation, inference and model
checking.

III. IMPLIED LATENT POSITION BASED ON MULTIPLE
POINT PROCESSES

Let S be the set of all n× n symmetric matrices such that:

(i) the diagonal elements are zero,
(ii) the off-diagonal elements are non-negative.

For each t and topic k, let Dk(t) be the symmetric matrix
such that for each pair of i, j ∈ V with i < j,

Dk,ij(t) = − log(λij,k(t)/λ0).

Note that, when Λij,k(t) is large, Dij,k(t) is small. This
incorporates the idea that the more intensely vertex i and
vertex j talk about topic k, the more closely vertex i and
vertex j are aligned in topic k space.



In addition, it is well known that there exists Xk(t) such
that, when D

(2)
k (t) is the matrix obtained by squaring each

entry of Dk(t),

Xk(t)Xt
k(t) = − 1

2 (I− 11t/n)D
(2)
k (t)(I− 11t/n),

Dk,ij(t) = ‖Xk,i(t)−Xk,j(t)‖.

Note that such a decomposition is not unique because one
can always use an orthogonal transformation to produce
another one. In other words, depending on a particular choice
of decomposition rule, Xk(t) and Xk(t) may be different
from each other by an orthogonal transformation and a rigid
motion translation.

One important main observation to note here is that, given
the collection

{λij,k(t) : 1 ≤ i < j ≤ n, 1 ≤ k ≤ K},

we can always construct X1(t), . . . ,XK(t). This is true
even when there is no explicit underlying processes
X1(t), . . . , XK(t) as we have posited in the last section.

We now define a function ψ∗ that maps each element of
S to an element of M(n, d), which is the set of all n × d
matrices for some fixed d.

To get around the aforementioned non-uniqueness issue due
to the equivalent orthogonal rotations, we fix Z∗ ∈M(n, d)
to be a matrix such that for each pair i < j, ‖Z∗i −Z∗j ‖ > 0.
Then, for each M ∈ S, let

ψ(M) = arg min
X∈M(n,d)

‖τ(M)−XXT ‖2F ,

where ‖ · ‖F denotes the Frobenius norm and

τ(M) = −1

2
(I− 11t/n)M (2)(I− 11t/n).

For each M ∈ S , being a real symmetric matrix, the
geometric multiplicity of M is the same as the algebraic
multiplicity of M . In particular, the column vectors should
be all linearly independent, and each X ∈ ψ(M) has the
full rank. Note also that for each M ∈ S, ψ(M) is closed
and bounded, whence it is compact.

For each M ∈ S, let

ψ∗(M) = arg min
X∈ψ(M)

‖X − Z∗‖2F .

We show now that our definition of ψ∗ yields a well-defined
continuous embedding of M ∈ S as an element ofM(n, d).

Theorem 1: The mapping M → ψ∗(M) defines a continu-
ous function on S.

Figure 2: Time-plots for the implied latent position of Vertex
1 through Vertex 4, where the latent position of each vertex
is computed from the estimated (pan-topic) intensity process
via a 2-dimensional embedding. The smaller box locates the
initial location of vertices, and the bigger box locates the
final location of vertices

Proof: Assume that as Mε → M0 as ε → 0. We shall
show that

ψ∗(M0) = lim
ε→0

ψ∗(Mε).

First, we establish a preliminary fact. For this, for each
ε, fix an arbitrary Yε ∈ ψ(Mε) 6= ∅. Now, by taking a
subsequence necessary, we may assume that as ε → 0, we
have

Y (ε) → Y (0) ∈ ψ(M0).

Let X ∈ ψ(M0). We claim that there exists an orthogonal
matrix Q(0) such that

X = Y (0)Q(0). (1)

First, because XXT = Y (0)(Y (0))T and XTX is invertible
(X is of full column rank), we have

X = Y (0)(Y (0))TX(XTX)−1. (2)

Because Y (0) is also of full column rank and
(Y (0))TX(XTX)−1 is a d × d matrix, it follows that
(Y (0))TX(XTX)−1 is of rank d and hence invertible.

Thus, X = Y (0)Q for some invertible matrix Q. From
XXT = Y (0)(Y (0))T we have

tr(Y (0)(QQT − I)(Y (0))T ) = 0. (3)

Once again by the fact that Y (0) is of full-column rank,
implies QQT = I and thus Q is orthogonal. This proves
our claim in (1).



We now show that

lim
ε→∞

ψ∗(Mε) = ψ∗(M0). (4)

For this, we take an arbitrary convergent subsequence of
{ψ∗(Mε)} but for simplicity, we suppress this aspect from
our notation with understanding that the limit is to be taken
along the (arbitrary chosen) convergent subsequence. Now,
it can be shown that limε→0 ψ

∗(Mε) ∈ ψ(M0). Hence, from
our earlier calculation, we see that there exists an orthogonal
matrix Q such that(

lim
ε→0

ψ∗(Mε)
)
Q = ψ∗(M0). (5)

Now,

‖ lim
ε→0

ψ∗(Mε)− Z∗‖2F ≥ ‖ψ∗(M0)− Z∗‖2F
= ‖ lim

ε→0
ψ∗(Mε)Q− Z∗‖2F

= lim
ε→0
‖ψ∗(Mε)Q− Z∗‖2F

≥ lim
ε→0
‖ψ∗(Mε)− Z∗‖2F

≥ ‖ lim
ε→0

ψ∗(Mε)− Z∗‖2F .

In other words, we have:

‖ lim
ε→0

ψ∗(Mε)− Z∗‖2F = ‖ψ∗(M)− Z∗‖2F .

Then by strict convexity of ‖·‖2F along with the facts that (i)
all of the convergent subsequences share the common limit,
and (ii) each subsequence has a convergent subsequence, we
have our claim in (4).

In summary, this proves the (pointwise) continuity of ψ∗.

IV. RANDOM GRAPHS BASED ON A SELF-EXCITING
REPRESENTATION OF A DOUBLY STOCHASTIC PROCESS

A. The classical Zakai equation

In this section, we propose an alternative to estimating
λij,k(t) which is often a challenging if not impossible. For
this, we will use a known fact that with respect to the internal
history

Ft = σ(N(s) : s ∈ [0, t]),

each Nij,k is also a self-exciting process whose intensity
function is

λ̂ij,k(t) ≡ E [λij,k(t) |Ft ] .
For reference, see Snyder (1975, Chapter 5). Now, note also
that:

λ̂ij,k(t) = E [λij,k(t) |Ft ]

= λ0E [exp(−Dij,k(t)) |Ft ]

= λ0E

exp
−

√√√√ d∑
`=1

|Xi,k,`(t)−Xj,k,`(t)|2

 |Ft

 .

Hence, λ̂ij,k(t) can be written in terms of the conditional
distribution πt of Xt given Ft, where Ft denotes the
observation until time t.

The conditional distribution πt can be computed/estimated
in various ways. We briefly summarize the main idea of
these methods. For this, let C2b denote the set of all bounded
and twice continuously differentiable functions. Also, let L
is the second order differential operator:

L =
∑
i

bi(x)∂i +
1

2

∑
i,j

aij(x)∂i∂j ,

and a(x) = σ(x)σ(x)t, and denote by aij(x) and bi(x), the
entry of a(x) and b(x), respectively. Under some regularity
conditions, for each f ∈ C2b ,

πt(f) =
ρt(f)

ρt(1)
,

where and ρt(·) is a measure-valued process that solves the
so-called classical Zakai equation:

ρt(f)

= ρ0(f) +

∫ t

0

ρs(Lf −
∑
i<j

∑
k

f(λij,k − 1))ds

+
∑
i<j

∑
k

∫ t

0

ρs−(f · (λij,k − 1))d(Nij,k(t)− t).

Then, the method in Scott and Zeng (2008) uses a Bayesian
filtering approach. Also, one may find an alternative ap-
proach in Frey et al. (2011), which is based on a finite
element solution to a univariate classical Zakai equation.
Also, we can also appeal to a suboptimal filtering procedure
studied in Snyder (1975).

t = 1 t = t∗ − 1 t = t∗ t = tmax

1

Figure 3: Notational depiction of the change-point in a time-
series of graphs. Given a time-series of graphs, interested
is the problem of testing, for a time t ∈ {1, 2, . . . }, the
hypotheses that t is the change-point.

B. Stress graphs

We are interested in a (random) graph G
(k)
T that could be

used to access the goodness of fit of our estimated πt.
More to the point, considering the mapping T → G

(k)
T as

a stochastic process, we would like to define G(k)
T so that

one can find an interesting graph-theoretic pattern in G(k)
T as

anomalous messaging activities are emerging in our network.



A notation of the change-point in a time-series of graphs is
illustrated in Figure 3.

For such exploitation tasks, we propose to use graph-
statistics based on “stress graphs”, which are constructed
using the random time-change mapping:

t→
∫ t

0

λ̂ij,k(s)ds. (6)

The theory of point processes (Daley and Vere-Jones. 2008,
Theorem 7.4.V) shows that the sequences:

{ξij,k(`) : i 6= j ∈ V and 1 ≤ ` ≤ Nij,k(T )}
form a collection of independent exponential random vari-
ables with a common mean one, where for each ` =
1, . . . , Nij,k(T ),

ξij,k(`) =

∫ τij,k(`)

τij,k(`−1)
λ̂ij,k(s)ds. (7)

(a) Erdos-Renyi, signaling ab-
sence of misfit.

(b) Non Erdos-Reyni patterns,
signaling a presence of misfit.

Figure 4: Stress graph. Each gray edge represents an event
that the test statistic for the pair has the p-value lower than
the pre-specified level of significance α0. On the right, the
ten vertices with the most edges are also the vertices whose
deviation from the normal behavior happens to be the largest.

Now, we outline a procedure for constructing the (random)
graph G

(k)
T where each f can be any Borel measurable

function on R. To simplify our notation, we will suppress
the dependence of G(k)

T on f unless needed for clarification.

First, for each ij and k, we let Qij,k(T ) be a statistic based
on

{ξij,k(`) : ` = 1, . . . , Nij,k(T )} (8)

where as T gets large, the asymptotic (null) distribution
of Qij,k(T ) can be computed or estimated. For example,
Qij,k(T ) can be defined to be:

Qij,k(T ) =

(∑Nij,k(T )
`=1 (ξij,k(`)− 1)√

Nij,k(T )

)
, (9)

or alternatively, one can take Qij,k(T ) be the Kolmogorov-
Smirnov statistics. For the rest of our discussion in this

section, we will fix Qij,k(T ) to be of the form given by
(9). In this case, the asymptotic null distribution is simply
the standard normal distribution.

Up to this point, we need not specify the function f . Now fix
a Borel measurable function f on R. Then, let G(k)

T (f) be
the weighted graph such that for each pair of vertices i and
j, the weight of the edge between i and j is f(Qij,k(T )).
For the statistic in (9), we can take, for a fixed α0 ∈ (0, 1),

f0(x) = 1{Φ(x) > 1− α0},

where 1{·} denotes the indicator function and Φ denotes
the cumulative distribution of a standard normal random
variable. Note that when T is sufficiently large, one has
that Φ(Qij,k(T )) is (approximately) uniformly distributed
on (0, 1), and hence, f0(Qij,k(T )) is a Bernoulli random
variable with its success probability α0. Some notional
examples of such a graph are illustrated in Figure 4.

Finally, the graphs G(1)
T (f0), . . . , G

(K)
T (f0) form a collection

of independent Erdos-Reny random graphs. This is a fact
that can be useful in developing a methodology for change
point detection as one can search for a strong signal for
deviation from G

(k)
T (f0) being an Erdos-Renyi graph.

V. CONCLUSION AND FUTURE WORK

The point process approach has the potential to yield many
benefits. In this paper, we have explored the benefits of using
a system of dependent point processes to generate networks
and graphs of interest.

By considering the network as evolving in continuous time,
the noise induced by constructing graphs from temporally
aggregated can be reduced. In addition, the effect of tempo-
ral resolutions and summary schemes on the derived graph
properties can be further understood. The benefits of a point
process approach also carry over to anomaly, outlier, and
change detection where better detection capabilities can be
achieved.

As the relationship between entities will drive the structure
of the resulting point processes, one can consider inves-
tigating how to construct, estimate, and make inferences
on the mutual dependence structure between entities based
on various histories of messaging activity. The concepts of
point process thinning as well as rescaling can be used for
goodness-of-fit testing for model validation.

Another component of our approach in this paper is to model
the network dynamics via a set of low-dimensional latent
processes based on the point process intensities. In addition,
the creation of a latent graph space allows communities to
be discovered and tracked easier by significantly reducing
the dimensionality of the problem. In particular, we have



considered an embedding algorithm based on the messag-
ing intensities that can scale over time and network size.
By analyzing these embeddings as they change, we might
discover communities that share a similar spatial trajectory
over time.

Finally, for an exact model like in this paper, it is often useful
to derive an approximate model allowing one to conduct
more detailed mathematical analysis. For a time series of
random graphs, this approach has been explored in Lee
and Priebe (2011), and subsequently in Priebe et al. (2011),
Tang et al. (2011). Following this strategy, another fruitful
approach is to consider the asymptotic distribution of the
following scaled processes when r →∞:

N̂r
ij,k(t) =

Nij,k(rt)− Cij,k(rt)√
r

, (10)

where

Cij,k(s) =

∫ s

0

λ̂ij,k(u)du.

Under some regularity conditions, the functional invariance
principle (Anderson et al. 1995, Theorem II.5.4) suggests
that as r → ∞, the scaled process N̂r converges in
distribution to a (multivariate) Brownian motion.
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