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Fisher’s Conditionality Principle in Statistical Pattern Recognition

Carey E. PRIEBE

We present a simple, illustrative example of Fisher’s Condi-
tionality Principle in statistical pattern recognition. We observe
training data {(Xi, Yi,Zi)}ni=1 with which to learn the discrim-
inant boundary. At classification time, we observe the to-be-
classified feature vector X with true-but-unobserved class label
Y . We do not observe the Z associated with X, and the collec-
tion {Zi} is ancillary for the discriminant boundary. Nonethe-
less, {Zi} is essential for optimal classification.
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INTRODUCTION

In a parametric model, an ancillary statistic is one whose dis-
tribution does not depend on the parameter of interest. While
such statistics are sometimes mistakenly characterized as “use-
less” or “irrelevant,” they are in fact neither (see Ghosh, Reid,
and Fraser 2010 for a recent comprehensive review of ancillary
statistics). Simple examples illustrating the utility of ancillary
statistics for inference abound, but we know of no such example
crafted explicitly in the context of statistical pattern recognition,
in which the parameter of interest is the discriminant bound-
ary. We present a simple, illustrative example of the utility of
ancillary statistics in statistical pattern recognition wherein we
observe training data {(Xi, Yi,Zi)}ni=1 and to-be-classified fea-
ture vector X with true-but-unobserved class label Y . We do
not observe the Z associated with the to-be-classified X, and
the collection {Zi} is ancillary for the discriminant boundary in
our model; still, {Zi} is essential for optimal classification.

AMARI’S STATEMENT OF THE CONDITIONALITY
PRINCIPLE

We consider Fisher’s Conditionality Principle (Fisher 1950,
1956), and in particular Amari’s statement of the Conditional-
ity Principle (Amari 1985, p. 217): “When there exists an ex-
act ancillary statistic r , the conditionality principle requires that
the statistical inference should be performed by conditioning
on r . . . .” The relevant point here is that aspects of the data
which may seem to be not germane to the inferential task at
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hand are nonetheless valuable—essential, even. Amari contin-
ues (inference about u is the goal): “. . .A statistical problem
then is decomposed into subproblems in each of which r is
fixed at its observed value, thus dividing the whole set of the
possible data points into subclasses. It is expected that each sub-
class consists of relatively homogeneous points with respect to
the informativeness about u. We can then evaluate our conclu-
sion about u based on r , and it gives a better evaluation than
the overall average one. This is a way of utilizing information
which ancillary r conditionally carries.”

THE CONDITIONALITY PRINCIPLE IN
STATISTICAL PATTERN RECOGNITION

Consider

(X,Y,Z), {(Xi, Yi,Zi)}ni=1
iid∼ Fµ0 ∈ F = {Fµ :µ ∈ R},

where the distributions Fµ ∈ F are specified via

Y ∼ Bernoulli(1/2)

and

(X,Z)|Y = y ∼ N

([
µ + (−1)y

0

]
,

[
2 1
1 1

])

.

That is, the prior probabilities of class membership are πy =
P [Y = y] = 1/2 for y = 0,1 and the class-conditional joint dis-
tributions of (X,Z) given Y = y are bivariate normal. We see
that X|Y = y ∼ N(µ + (−1)y,2), Z|Y = y ∼ N(0,1) (which
implies that the unconditional Z ∼ N(0,1), hence Z is ancil-
lary), and X|Z,Y = y ∼ N(µ + (−1)y + Z,1).

To apply the conditionality principle in statistical pattern
recognition, the parameter of interest is the discriminant bound-
ary. In this simple example, the discriminant boundary (when
observing test datum X only and with the knowledge that the
πy = 1/2 and the class-conditional distributions of X are ho-
moscedastic Gaussians) is a point µ ∈ R. The Bayes optimal
classifier (upon observing X only) is given by

g∗(X) = I {X < µ0}
with Bayes optimal probability of misclassification given by

L∗ = P [g∗(X) %= Y ] = "(−1/
√

2).

It remains only to learn (estimate) the true but unknown µ0
from the training data.

Since Z is ancillary for µ in F and is not observed for the test
data, it might be naively thought that the training {Zi} can be
safely discarded. That this is not so will be demonstrated here.
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Discarding the ancillary {Zi} and relying on the distribution
X|Y , the maximum likelihood estimate for the optimal discrim-
inant boundary µ0 is given by

µ̂ = (1/n)

n∑

i=1

(Xi − (−1)Yi )

and using this estimate in the plug-in decision rule yields

ĝ
(
X; {(Xi, Yi)}ni=1

)
= I {X < µ̂}.

Utilizing the ancillary {Zi} instead and relying on the distribu-
tion X|Z,Y , the maximum likelihood estimate for µ0 is given
by

µ̃ = (1/n)

n∑

i=1

(Xi − (−1)Yi − Zi)

which yields

g̃
(
X; {(Xi, Yi,Zi)}ni=1

)
= I {X < µ̃}.

This latter estimate, µ̃, considers “the experiment actually per-
formed” (utilizing the {Zi}, here) by relying on X|Z,Y rather
than the marginal X|Y , in accordance with the conditionality
principle.

Our measure of classifier performance is the conditional
probability of misclassification error given training data Tn (De-
vroye, Gyorfi, and Lugosi 1997, p. 2),

Ln(g) = P [g(X; Tn) %= Y |Tn].
Both µ̂ and µ̃ are unbiased for and consistent estimators of µ0;

µ̂ ∼ N(µ0,2/n)

and

µ̃ ∼ N(µ0,1/n).

The superiority (smaller variance) of the estimate µ̃ of the dis-
criminant boundary is due to the fact that Z is correlated with
X and is an example of the well-known control variate vari-
ance reduction technique; in this case the control variate is
ancillary and its use is demanded by the conditionality prin-
ciple. This variance reduction results in superior classification
performance: Ln(g̃) is stochastically smaller than Ln(ĝ). In-
deed, a second-order Taylor series approximation demonstrates
that utilizing the (ancillary) {Zi}ni=1 approximately halves the
excess error for this simple example. For any unbiased esti-
mate µn,

L(µn) = P [I {X < µn} %= Y |Tn]
= h(µn)

= h(µ0) + h′(µ0)(µn − µ0)

+ 1
2
h′′(µ0)(µn − µ0)

2 + op

(
1
n

)

so

E[L(µn)] = L∗ + c Var[µn] + o

(
1
n

)
,

where c = 1
2h′′(µ0). Thus

E[Ln(g̃)] − L∗

E[Ln(ĝ)] − L∗ → 1
2

as n → ∞.

Figure 1. Synthetic example based on Fisher’s Iris Data, with Petal
Length playing the role of X and Sepal Width playing the role of the
ancillary Z for the two classes Versicolor (depicted in red) and Vir-
ginica (depicted in green). The large dots are the 50 data points per
class, and the small dots are generated from the synthetic distribution.

EXAMPLE

A simple example of our phenomenon in practice is given by
a synthetic version of the well-known Fisher’s Iris Dataset. Fig-
ure 1 plots the two features Petal Length (playing the role of X)
and Sepal Width (playing the role of the ancillary Z) for the
two classes Versicolor (Y = 0, depicted in red) and Virginica
(Y = 1, depicted in green). The large dots are the 50 data points
per class, and the small dots are random observations generated
from the distribution

(X,Z)|Y = y

∼ N

([
4.906 + 0.646(−1)y

2.872

]
,

[
0.260 0.076
0.076 0.100

])

.

For this distribution, observing test observation X yields L∗ ≈
0.10. Monte Carlo simulation with 10,000 replicates using n =
10 training observations {(Xi, Yi,Zi)}10

i=1 results in

E[L10(g̃)] − L∗

E[L10(ĝ)] − L∗ ≈ 0.80;

the sign test indicates superiority of g̃ with a p-value < 10−10.

CONCLUSION

The purpose of this short note is to illustrate Fisher’s Con-
ditionality Principle and the utility of ancillary information
in statistical pattern recognition using the simplest possible
example. Generalization of the phenomenon to more real-
istic and applicable settings (multivariate X, more complex
model/discriminant boundary) is straightforward (see, e.g.,
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Priebe, Marchette, and Healy 2004 for such a setting) but the
fundamental idea is here presented in its fullest simplicity.
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