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Abstract. Fusion and inference from multiple and massive disparate data
sources—the requirement for our most challenging data analysis prob-
lems and the goal of our most ambitious statistical pattern recognition
methodologies—has many and varied aspects which are currently the tar-
get of intense research and development. One aspect of the overall challenge
is manifold matching—identifying embeddings of multiple disparate data
spaces into the same low-dimensional space where joint inference can be
pursued. We investigate this manifold matching task from the perspective of
jointly optimizing the fidelity of the embeddings and their commensurabil-
ity with one another, with a specific statistical inference exploitation task in
mind. Our results demonstrate when and why our joint optimization method-
ology is superior to either version of separate optimization. The methodology
is illustrated with simulations and an application in document matching.

1 Introduction

1.1 Motivation

Let (�, F , P) be a probability space, that is, � is a sample space, F is a sigma-
field and P is a probability measure. Consider K measurable spaces �1, . . . ,�K

and measurable maps πk :� → �k . Each πk induces a probability measure Pk

on �k . We wish to identify a measurable metric space X (with distance func-
tion d) and measurable maps ρk : �k → X , inducing probability measures P̃k

on X , so that for [x1, . . . , xK ]′ ∈ �1 × · · · × �K we may evaluate distances
d(ρk1(xk1), ρk2(xk2)) in X . See Figure 1.

Given ξ1, ξ2
i.i.d.∼ P in �, we may reasonably hope that the random variable

d(ρk1 ◦ πk1(ξ1), ρk2 ◦ πk2(ξ1)) is stochastically smaller than the random variable
d(ρk1 ◦ πk1(ξ1), ρk2 ◦ πk2(ξ2)). That is, matched measurements πk1(ξ1),πk2(ξ1)

representing a single point ξ1 in � are mapped closer to each other than are un-
matched measurements πk1(ξ1),πk2(ξ2) representing two different points in �.
This property allows inference to proceed in the common representation space X .

However, we do not observe ξ ∈ �; we also do not observe the xk = πk(ξ) ∈ �k

directly, nor do we have knowledge of the maps πk . But suppose we have access
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Figure 1 Maps πk induce disparate data spaces �k from “object space” �. Manifold matching
involves using matched data {xik} to simultaneously learn maps ρ1, . . . , ρK from disparate spaces
�1, . . . ,�K to a common “representation space” X , for subsequent inference.

to functions δk :�k × �k → R+ = [0,∞) such that δk(πk(ξ1),πk(ξ2)) represents
the “dissimilarity” of outcomes ξ1 and ξ2 under map πk . We propose to use sample
dissimilarities for matched data in the disparate spaces �k to simultaneously learn
maps ρk which allow for a powerful test of matchedness in the common represen-
tation space X .

1.2 Problem formulation

Consider n objects each measured under K different conditions,

xi1 ∼ · · · ∼ xik ∼ · · · ∼ xiK, i = 1, . . . , n,

where xi1 ∼ · · · ∼ xik ∼ · · · ∼ xiK denotes K matched measurements π1(ξi), . . . ,

πK(ξi) representing a single object ξi ∈ �, where � denotes the “object space.”
The assumption of K different conditions implies that xik ∈ �k where the spaces
�1, . . . ,�K cannot be assumed to be similar. We are given K new measurements
{yk}Kk=1,yk ∈ �k . The question under consideration is: Does the collection {yk}Kk=1
also correspond to matched measurements representing a single object measured
under the K conditions?

We use the � notation to remind the reader that the spaces �k cannot be as-
sumed to be standard finite-dimensional Euclidean spaces. We do assume that each
space �k comes with a within-condition dissimilarity δk—a hollow, symmetric
function from �k ×�k to R+—through which the matched data {xik} yields n×n

dissimilarity matrices �k , k = 1, . . . ,K . For new measurements {yk}Kk=1, we have
available for each k the within-condition dissimilarities δk(yk,xik), i = 1, . . . , n.

Remark 1. The xik and yk are introduced mainly for symbolic purposes; the cor-
responding data may not be available or may be too complex to use directly, and
we proceed from the dissimilarities.

The specific statistical inference exploitation task we consider throughout most
of this article is hypothesis testing. Our goal, simplified for the case K = 2, is to
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determine whether y1 and y2 are a match. That is,

H0 : y1 ∼ y2 versus HA : y1 � y2,

or equivalently,

H0 : y1 = π1(ξ),y2 = π2(ξ) versus

HA : y1 = π1(ξ),y2 = π2(ξ
′) for ξ �= ξ ′ ∈ �.

(We control the probability of missing a true match.)

1.3 Manifold matching

We define manifold matching as simultaneous manifold learning and manifold
alignment—identifying embeddings of multiple disparate data sources into the
same low-dimensional space where joint inference can be pursued. Figure 1 de-
picts our framework. Conditional distributions are induced by maps πk from “ob-
ject space” �. Our assumption is that the conditional spaces �k are not commen-
surate. For example, if the elements of � are individual people, then a photograph
in image space �1 and a biographical sketch in text document space �2 are not
to be directly compared. Indeed, our fundamental premise defining disparate data
sources is that the various �k cannot profitably be treated as replicates of the same
kind of space. Rather, the various spaces are different not just in degree but in kind.
Each dissimilarity δk has been tailored for application to �k , and it is inappropri-
ate to apply δk on �k × �k′ for k′ �= k. This distinguishes our data fusion from
conventional multivariate analysis.

In Figure 1, matched points {xik} are used to simultaneously learn appropriate
maps ρk taking the disparate data from the various �k into a common represen-
tation space X . These maps are then applied to {yk}Kk=1 yielding ỹk = ρk(yk),
whence (for K = 2) we use T = d(̃y1, ỹ2) as our test statistic and reject for T

“large.”

Remark 2. Our convention is to use the “ ·̃ ” notation for points in the target space
X , contrasted with no tilde for points in the original �k spaces.

Remark 3. We will throughout consider the special case of X = R
m for some

prespecified target dimension m. The fundamentally important and challenging
task of choosing the target dimension—model selection—will be considered only
as a confounding issue in this paper; m is a nuisance parameter which must be
selected but whose selection is beyond the scope of this manuscript.

1.4 What are these “conditions” and what does “matched” mean?

As suggested above, one example of “conditions” involves photographs {xi1} and
biographical sketches {xi2}, with “matched” xi1 ∼ xi2 meaning that the photograph
xi1 and the biographical sketch xi2 are of the same person.
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Figure 2 An example of “not matched” for multi-lingual text documents. The English is clear
enough to lorry drivers—but the Welsh reads “I am not in the office at the moment. Send any work to
be translated.” (See http://news.bbc.co.uk/2/hi/uk_news/wales/7702913.stm; permission obtained
from http://www.golwg360.com/Hafan/default.aspx.)

Other illustrative examples include: a general image & caption scenario, with
“matched” meaning that they go together; multiple languages for text documents,
with “matched” meaning on the same topic; multiple modalities for photographs
(e.g., indoor lighting vs. outdoor lighting, two cameras of different quality, or
passport photos and airport surveillance photos), with “matched” meaning of the
same person; Wikipedia text document and Wikipedia hyperlink structure, with
“matched” meaning of the same document. More generally, our framework may
be applicable to any scenario in which multiple dissimilarity measures are applied
to the objects at hand.

Fundamentally, “matched” means whatever the training data say it means. We
know it when we see it—or, perhaps more accurately, we know unmatched when
we see it; see Figure 2. Consider, for instance, an example of multiple languages
for text documents, with “matched” meaning on the same topic. Given English
and French Wikipedia documents with the matching provided by Wikipedia itself,
“matched” means “on the same topic.” But of course the Wikipedia documents are
not direct translations of one another, and documents in different languages on the
same topic may have significant conceptual differences due to cultural differences,
etc.

1.5 Dirichlet setting

While the matched training data ultimately determine what “matched” means, in
order to provide a clear mathematical characterization of matchedness we con-
sider an illustrative Dirichlet setting. This setting is clearly overly simplified, but
it invokes some aspects of the foregoing example of multiple languages for text
documents.

http://news.bbc.co.uk/2/hi/uk_news/wales/7702913.stm
http://www.golwg360.com/Hafan/default.aspx
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Figure 3 Illustrative Dirichlet setting wherein Xik
i.i.d.∼ Dirichlet(rγ i + 1) represent documents

i = 1, . . . , n = 10 in languages k = 1, . . . ,K = 2 in the standard 2-simplex S2. The parameter r

controls the meaning of matchedness—the similarity of matched documents Xi1 and Xi2 compared
to unmatched documents Xi1 and Xi′2 for i �= i′.

Let Sp = {x ∈ R
p+1
+ :

∑p+1
�=1 x� = 1} be the standard p-simplex. We consider

here the case �1 = Sp and �2 = Sp—the two spaces are, in fact, commensurate

in this case, for illustration. Let γ i

i.i.d.∼ Dirichlet(1) represent n “objects” or “top-

ics.” Let Xik
i.i.d.∼ Dirichlet(rγ i + 1) represent document i in language k. (Since

the Xik take their value in Sp , we can think of them as modelling (normalized)
word count histograms with p + 1 distinct words. �1 = �2 = Sp suggests a sim-
plified 1–1 word correspondence model. A permutation σ indicating that the 1–1
word correspondence is unknown may be applied to the dimensions of one space
with no alteration to our illustration.) In this case, r controls what it means to be
matched—e.g., document translation quality analogy. If r is large (highly accu-
rate translations), then matched documents Xi1 and Xi2 will be probabilistically
more similar than Xi1 and Xi′2 for i �= i ′; if r is small (rough translations), then
“matched” doesn’t mean much. Indeed, the limiting case of r → ∞ (point masses)
yields “matched” means “identical” while r = 0 (recall that Dirichlet(1) is uniform
on the simplex) yields “matched” means “no relationship.” Figure 3, with p = 2,
provides an illustration wherein matched means quite a lot. A real data version of
this setting with multiple documents per topic is depicted in Figure 4, where three
Linguistic Data Consortium (LDC) Enron email message topic classes are pro-
jected into the simplex S2 via Fisher’s Linear Discriminant composed with Latent
Semantic Analysis (FLD ◦ LSA) (see, e.g., Berry, 2003, 2007; Berry and Kogan,
2010).

1.6 Related work

The 2006 David Hand polemic (Hand, 2006) argued persuasively that a fundamen-
tal issue in statistical inference research and development—perhaps the fundamen-
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Figure 4 An example considering the FLD ◦ LSA projection into S2 of multiple Enron e-mail
messages identified with three Linguistic Data Consortium (LDC) topics. The three colored scatter-
plots—yellow, red, purple—represent documents from the three topics; the green dots represent the
topic means. We see that “matched,” meaning “on the same topic,” does mean something quite like
Dirichlet(rγ topic + 1) in this case (but the variability “r” may be topic-dependent).

tal issue—is robustness in the face of test data drawn from a distribution not the
same as the distribution from which the training data are drawn. The disparate
information fusion described above—combining multiple spaces with different
characteristics—provides a setting for investigation of related issues. The recent
survey (Pan and Yang, 2010) considers a wide range of examples and methodolo-
gies addressing this phenomenon in terms of transfer learning, domain adapta-
tion, multitask learning, etc. The recent special issue (Ma et al., 2011) is devoted
entirely to dimensionality reduction via subspace and submanifold learning. The
majority of this article considers the Neyman–Pearson hypothesis testing setting,
which provides clarity through the most straightforward of inference tasks. In Sec-
tion 5.2 we briefly consider a ranking task.

Our dissimilarity-centric approach is motivated by the Pekalska and Duin
(2005) book on the dissimilarity representation for pattern recognition and the
far-reaching success of multidimensional scaling methodologies (Torgerson, 1952,
1958; Cox and Cox, 2001; Borg and Groenen, 2005).

Combining information from disparate data sources when the information in the
various spaces is fundamentally incommensurate—that is, a separate collection of
useful features can be extracted from each space but their interpoint geometry
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precludes profitable alignment in a common space—is considered via Cartesian
product space embedding in Ma et al. (2010).

Preliminary development of our joint optimization methodology presented
herein, as well as an application to classification tasks, is presented in Ma,
Marchette and Priebe (2012).

1.7 Summary

In Section 2, we frame the problem as an optimization problem, and lay the
groundwork for the methodologies proposed in Section 3. Section 4 illustrates the
methodologies with instructive simulations that illustrate characteristic behavior;
in particular, a simulation involving Dirichlet random variables sets the stage for
the experimental examples on text documents presented in Section 5. Finally, Sec-
tion 6 provides discussion and suggestions for several areas of continuing research.

2 Fidelity and commensurability

As suggested in Figure 1, our goal is to identify maps ρk taking �k to R
m (for

some prespecified m) such that (for K = 2) the power of the test, P [d(̃y1, ỹ2) >

cα|HA : y1 � y2], is large, where the critical value cα is determined by the null
distribution of the test statistic and the allowable Type I error level α.

We proceed using �2 error for convenience and simplicity; clearly there is ample
reason to consider other error criteria for particular applications. Similarly, we will
assume symmetric dissimilarities δk .

The available matched points {xik} are used to identify appropriate maps ρk .
Fidelity is how well the mapping xik 	→ x̃ik preserves original dissimilarities. The
within-condition squared fidelity error is given by

ε2
fk

= 1(n
2

) ∑
1≤i<j≤n

(
d(̃xik, x̃jk) − δk(xik,xjk)

)2

for each k. If the fidelity error is large, then it is likely that the mapping does not
capture aspects of original data that may be needed for inference.

On the other hand, even if all fidelity errors are small, inference may fail if
d(̃y1, ỹ2) is large under the “matched” null hypothesis H0 : y1 ∼ y2. Commensu-
rability is how well the mappings preserve matchedness; the between-condition
squared commensurability error is given by

ε2
ck1k2

= 1

n

∑
1≤i≤n

(
d(̃xik1, x̃ik2) − δk1k2(xik1,xik2)

)2
.

Alas, δk1k2 does not exist—we have no dissimilarity on �k1 × �k2 . How-
ever, the concept of “matchedness” suggests that it might be reasonable to set
δk1k2(xik1,xik2) = 0 for all i, k1, k2, in which case the commensurability error is
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the mean squared distance between matched points—the same criterion optimized
by the Procrustes matching employed below.

There is also between-condition squared separability error given by

ε2
sk1k2

= 1(n
2

) ∑
1≤i<j≤n

(
d(̃xik1, x̃jk2) − δk1k2(xik1,xjk2)

)2
.

However, it is less clear how to identify a reasonable stand-in for the δk1k2 terms in
this expression. We will return to this issue when presenting our joint optimization
inference methodology proposal in Section 3.3 below.

If all these errors are small—and if the target dimensionality is low enough so
that estimation variance does not dominate (see, e.g., Jain, Duin and Mao, 2000,
Section 3, and Devroy, Gyorfi and Lugosi, 1996, Figure 12.1)—then successful
inference in the target space may be achievable. The idea of the joint optimization
method proposed in this manuscript (Section 3.3) is to attempt to minimize all
three of these errors simultaneously.

3 Inference methodologies

In this section, we present three methodologies for performing our manifold
matching inference—one which focuses on fidelity and is based on multidimen-
sional scaling and Procrustes matching, one which focuses on commensurability
and is based on canonical correlation analysis, and then our proposal for joint op-
timization of fidelity and commensurability.

Before proceeding, we briefly review multidimensional scaling, Procrustes
matching, and canonical correlation analysis.

Multidimensional scaling (MDS) takes an n × n dissimilarity matrix � = [δij ]
and produces a configuration of n points x̃1, . . . , x̃n in a target metric space
endowed with distance function d such that the collection {d(̃xi , x̃j )} agrees
as closely as possible with the original {δij } under some specified error crite-
rion; see, for instance, Torgerson (1952, 1958), Cox and Cox (2001), Borg and
Groenen (2005). For example, �2 (also known as “raw stress”) MDS minimizes∑

1≤i<j≤n(d(̃xi , x̃j ) − δij )
2.

Out-of-sample embedding is used throughout this paper—given a configuration
{̃xi}ni=1 of the training observations and dissimilarities between test observations
and the training observations, the test points are embedded into the existing config-
uration so as to be as �2-consistent as possible with these dissimilarities. This out-
of-sample embedding can be one at a time, or jointly if the dissimilarities among
multiple test observations are also available. Trosset and Priebe (2008) present the
out-of-sample methodology appropriate for classical MDS embeddings. We use
raw stress embeddings herein, and the appropriate corresponding out-of-sample
methodology is presented in Ma and Priebe (2010).
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Procrustes matching (Kendall, 1989; Bookstein, 1991; Mardia and Dryden,
1998; Gower and Dijksterhuis, 2004) takes two matched collections X̃1 and X̃′

2 of
n points in R

m and finds the rigid motion transformation which optimally aligns
the two collections. For example, �2 Procrustes minimizes the Frobenius norm
‖X̃1 − X̃′

2Q‖F over all m × m matrices Q such that QT Q = I . (We assume the
dissimilarities have been scaled so that a scaling is not required in the Procrustes
mapping. Thus, Q defines a rigid motion mapping X̃′

2 “onto” X̃1. We address this
issue briefly in Section 6.)

Canonical correlation analysis (CCA) takes a collection X1 of n1 points in
R

m1 and a collection X2 of n2 points in R
m2 and finds the pair of linear maps

U1 : Rm1 → R and U2 : Rm2 → R which maximizes the correlation between X̃1 =
U1(X1) and X̃2 = U2(X2). Performing m iterations of this procedure in the suc-
cessive orthogonal subspaces yields a CCA procedure which maps to R

m. See, for
instance, Hotelling (1936), Mardia, Kent and Bibby (1980), Hardoon, Szedmak
and Shawe-Taylor (2004).

Let us now consider these tools as building blocks for manifold matching infer-
ence.

3.1 Procrustes ◦ MDS

Multidimensional scaling yields low-dimensional embeddings. That is, �1 	→ X̃1

and �2 	→ X̃′
2 yields n × m configurations. Procrustes (X̃1, X̃

′
2) yields

Q∗ = arg min
QT Q=I

‖X̃1 − X̃′
2Q‖F .

Given δk(yk,xik), i = 1, . . . , n for k = 1,2, out-of-sample embedding of the test
data gives y1 	→ ỹ1,y2 	→ ỹ′

2 where the embedded points are chosen so that their
distances to x̃ik agree as closely as possible with the available dissimilarities. Us-
ing the rigid motion transformation obtained in the Procrustes step, both ỹ1 and
ỹ2 = ((̃y′

2)
T Q∗)T are in R

m with same coordinate system. Thus, inference may
proceed by rejecting for large values of d(̃y1, ỹ2). We dub this separate embedding
approach “Procrustes composed with multidimensional scaling,” or “p ◦ m.”

From an inspection of the raw stress multidimensional scaling criterion func-
tion, it follows immediately that the �k 	→ X̃k mappings minimize fidelity error.
Thus, we have established the following result:

Theorem 1. p ◦ m optimizes fidelity without regard for commensurability.

That is, the maps ρk are identified separately, with no concern for whether the
commensurability optimization in the Procrustes step will be able to provide a
good alignment.
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3.2 Canonical correlation

Since canonical correlation begins with Euclidean data, the first step of this
methodology necessarily involves multidimensional scaling. This appears similar
to Procrustes ◦ MDS above, but in this case no attempt is made to achieve meaning-
ful dimensionality reduction. Multidimensional scaling yields high-dimensional
embeddings, �1 	→ X′

1 and �2 	→ X′
2, but in this case these maps are to the

highest-dimensional space possible, R
n−1 in general. Canonical correlation finds

linear maps to R
m, U1 :X′

1 	→ X̃1 and U2 :X′
2 	→ X̃2, to maximize correla-

tion. Again, out-of-sample embedding yields (n − 1)-dimensional points y1 	→
y′

1,y2 	→ y′
2. Then ỹ1 = UT

1 y′
1 and ỹ2 = UT

2 y′
2 can be directly compared. An in-

vestigation of the correlation criterion function shows that the CCA maps U1 and
U2 minimize commensurability error, subject to linearity. Thus, there is no need
for Procrustes in this case, and once again inference may proceed: reject for large
values of d(̃y1, ỹ2). We dub this approach “cca.”

From the equivalence of the correlation objective function and commensurabil-
ity error, we have established the following result:

Theorem 2. cca optimizes commensurability without regard for fidelity.

That is, the maps ρk are identified jointly, but with no concern for fidelity of the
individual embeddings (beyond linearity).

3.3 Omnibus embedding

In response to the optimization objectives of the two methodologies presented
above—one considering fidelity only and the other considering commensurabil-
ity only—we develop an omnibus embedding methodology explicitly focused on
the joint optimization of fidelity and commensurability.

Under the “matched” assumption, we impute dissimilarities W = [δ12(xi1,xj2)]
to obtain a 2n×2n omnibus dissimilarity matrix M . See Figure 5, which depicts M

as a block matrix consisting of the n×n dissimilarities matrices �1 and �2 on the
diagonal and W as the n × n off-diagonal block. (This generalizes immediately to

Figure 5 Depiction of the 2n × 2n omnibus dissimilarity matrix M , including imputed dissimilari-
ties W = [δ12(xi1,xj2)] and out-of-sample test data y1,y2.
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K > 2.) As discussed above, it seems reasonable under H0 to set the diagonal ele-
ments δk1k2(xik1,xik2) of W to zero. (Notice, however, that δk1k2(xik1,xik2) = 0 for
k1 �= k2 is not necessarily “truth.” For instance, the Dirichlet setting of Section 1.5
with r < ∞ would have nonzero elements for diag(W). Still, this “shrinkage” of
diag(W) to zero seems reasonable.) As for the off-diagonal elements of W , we
argue that either leaving them as missing data unused in the subsequent optimiza-
tion or letting W = (�1 + �2)/2 are reasonable suggestions; we will return to
this imputation issue later. Once we have settled on W , our approach considers
MDS embedding of M as 2n points in R

m—zeros on the diagonal of W act to
force matched points to be embedded near each other. It is clear that raw stress
MDS applied to M has as its objective function precisely ε2

f1
+ ε2

f2
+ ε2

c12
+ ε2

s12
.

If diag(W) = 0 and the off-diagonal elements are treated as missing and ignored
in the optimization, then this objective function reduces to a consideration of just
fidelity and commensurability.

Let ui1 = δ1(y1,xi1) and vi2 = δ2(y2,xi2). Under H0, impute vi1 = δ12(y1,xi2)

and ui2 = δ12(y2,xi1) via v1 = u2 = (u1 + v2)/2. Out-of-sample embedding of
(uT

1 ,vT
1 )T and (uT

2 ,vT
2 )T yields ỹ1 and ỹ2. Reject for large values of d(̃y1, ỹ2).

We dub this omnibus embedding approach for joint optimization of fidelity and
commensurability “jofc.”

Obviously, the choice of W is key for this joint optimization. Also, note that
weights can be incorporated into the MDS optimization criterion; this weighting
can become quite elaborate, but in its simplest form it yields a more general trade-
off between fidelity and commensurability via ω(ε2

f1
+ ε2

f2
) + (1 − ω)ε2

c12
.

4 Illustrative simulation

In this section, we present an illustrative Dirichlet simulation which helps to eluci-
date when and why our joint optimization methodology is superior to either version
of separate optimization.

4.1 Dirichlet product model

We describe a probability model with parameters p,q, r, a and K .
Let �k = Sp+q , k = 1,2. Here the simplex Sp encodes “signal” and the sim-

plex Sq encodes “noise.” That is, on Sp we let γ i

i.i.d.∼ Dirichlet(1) and mutually
independent X1

ik ∼ Dirichlet(rγ i +1) (signal, as in Section 1.5) while on Sq we let

X2
ik

i.i.d.∼ Dirichlet(1) (pure noise). For a ∈ [0,1], let Xik = [(1−a)X1
ik, aX2

ik]—the
concatenation of (weighted) signal and noise dimensions. The resultant distribu-
tion for (Xi1, . . . ,XiK) is denoted by Fp,q,r,a,K , and Fp,q,r,a,K|γ 1,...,γ n

denotes
the distribution conditional on the location of the γ i .
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4.2 Testing

For each of nmc Monte Carlo replicates (nmc = 1000 in the simulations), we
generate n matched pairs according to the Dirichlet product model distribution
Fp,q,r,a,K=2 by first generating γ 1, . . . ,γ n and then, conditional on the collection
{γ i}, generating the matched pair (Xi1,Xi2). Embeddings are defined for each
of the three competing methodologies based on this matched training data. For
each test datum under H0, one new γ is generated, a matched pair is generated,
out-of-sample embedding is performed, and the statistic T = d(̃y1, ỹ2) is calcu-
lated; this is repeated s times independently (s = 1000 in the simulations) and
the critical value cα for the allowable Type I error level α is determined based
on the Monte Carlo estimate of null distribution of T . Then unmatched pairs are
generated, out-of-sample embedding is performed, and the statistic T is calcu-
lated for test data under HA; this provides an estimate of the conditional power
P [d(̃y1, ỹ2) > cα|HA,γ 1, . . . ,γ n].

We perform nmc Monte Carlo replicates to integrate out the γ 1, . . . ,γ n, yielding
comparative power estimates. We also investigate conditional power for particular
collections {γ i}, in order to better understand precisely when and why our joint
optimization methodology is superior to either version of separate optimization.

4.3 Results

Figure 6 presents results from our Dirichlet product model. K = 2, with p = 3, q =
3, r = 100, a = 0.1. The target dimension is m = 2. We use n = 100. The allow-
able Type I error level α is plotted against power β = P [d(̃y1, ỹ2) > cα|HA].
The results are based on nmc = 1000 Monte Carlo replicates with s = 1000;
the differences in the curves are statistically significant. In this case, jofc with
W = (�1 + �2)/2 is superior to both p ◦ m and cca.

4.4 Analysis

The Dirichlet product model is designed specifically to illustrate when and why
jofc is superior to both p ◦ m and cca in terms of fidelity and commensurability.

If q is large with respect to the target dimensionality m, then with high proba-
bility cca will identify a m-dimensional subspace in the “noise” simplex Sq with
spurious correlation. This phenomenon requires only that a > 0. In this event, the
out-of-sample embedding will produce arbitrary ỹ1 and ỹ2, even under H0. Thus,
the null distribution of the test statistic will be inflated by these spurious correla-
tions. If the allowable Type I error level is smaller than the probability of inflation,
then the power of the cca method will be negatively affected.

If a is small and m ≤ p, then with high probability the m-dimensional subspaces
identified by the MDS step will come from the “signal” simplex Sp . If m < p, then
with positive probability, these two subspaces, identified separately in p ◦ m, will
be geometrically incommensurate (see Figure 7). Thus, the null distribution of the
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Figure 6 Dirichlet product model simulation results plotting the Type I error level α against power
β = P [d(̃y1, ỹ2) > cα |HA], indicating that jofc is superior to both p ◦ m and cca. See text for
description.

test statistic will be inflated by these incommensurate cases. If the allowable Type I
error level α is smaller than the probability of inflation, then the power of the p ◦m

method will be negatively affected.
For large q and small a, the two phenomena described above occur in the same

model. The jofc method is not susceptible to either phenomenon: incorporating
fidelity into the objective function obviates the spurious correlation phenomenon,
and incorporating commensurability into the objective function obviates the geo-
metric incommensurability phenomenon. Thus, we can establish that, for a range
of Dirichlet product model distributions, jofc is superior to both p ◦ m and cca.

Theorem 3. Let m ∈ {1, . . . ,min{p−1, q}}, a ∈ (0,1/2) and r ∈ (0,∞). Then for
large q , small a and large r , there exists allowable Type I error level α > 0 such
that the Dirichlet product model distribution Fp,q,r,a,K=2 with target dimension-
ality m yields power βjofc > max{βp◦m,βcca}, where power β = P [d(̃y1, ỹ2) >

cα|HA] for the various testing methodologies jofc, p ◦ m and cca.
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Figure 7 Idealization of the incommensurability phenomenon: for a symmetric collection
{γ 1,γ 2,γ 3,γ 4} in the simplex S3, all four of the facet projections have the same fidelity and are
geometrically incommensurable with one another.

Proof. Let b1 denote the probability that cca suffers from the spurious correlation
phenomenon, and let b2 denote the probability that p ◦m suffers from the geomet-
ric incommensurability phenomenon. Then q 
 p implies that cca suffers from
the spurious correlation phenomenon with high probability and thus b1 ≈ 1 and
βcca ≈ α. For a ≈ 0 and r sufficiently large, jofc and p ◦ m identify approximately
the same embeddings except for the cases in which p ◦ m suffers from the incom-
mensurability phenomenon. Thus, the null distribution of T = d(̃y1, ỹ2) for jofc is
approximately point mass at zero while the null distribution of T for p ◦ m has b2
mass 
 0. Hence, α ≈ b2/2 yields βjofc ≈ 1 while βp◦m ≈ 1/2. �

Delving into our simulation results via investigation of conditional power
P [d(̃y1, ỹ2) > cα|HA,γ 1, . . . ,γ n], it is apparent that the superiority of jofc is in-
deed due to occurrences of the phenomena described above—individual Monte
Carlo replicates (particular selections of the {γ i}, essentially) are identified in
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which the spurious correlation phenomenon causes poor performance for cca or
the incommensurability phenomenon causes poor performance for p ◦ m but in
which jofc is unaffected.

We note that the Dirichlet product model introduced here as an aid in under-
standing when and why jofc is superior to both p ◦m and cca does in fact (loosely)
model general high-dimensional real data scenarios: many dimensions consisting
mostly of noise along with a few signal dimensions.

4.5 Gaussian model

A Gaussian model, analogous to the Dirichlet product model investigated above,
is constructed here to provide a sense of the generality of models with many di-
mensions consisting mostly of noise along with a few signal dimensions.

We consider p-dimensional means μi
i.i.d.∼ N (�0, Ip), i = 1, . . . , n, analogous

to the γ i from the Dirichlet model. Matchedness arises from independent X1
ik ∼

N (μi , r
−1Ip), i = 1, . . . , n, k = 1, . . . ,K , for r ∈ (0,∞); as r increases, the de-

gree of matchedness increases. As before, we have q-dimensional “noise” vectors

X2
ik

i.i.d.∼ N (�0, Iq). Again, for a ∈ [0,1], Xik = [(1 − a)X1
ik, aX2

ik] represents the
concatenation of (weighted) signal and noise dimensions. As with the Dirichlet
product model, both the spurious correlation phenomenon and the geometric in-
commensurability phenomenon are present in this Gaussian model.

Figure 8 presents simulation results for this Gaussian model, entirely analogous
to those depicted in Figure 6.

5 Experimental results

5.1 Testing

A collection of documents {xi1}ni=1 are collected from the English Wikipedia,
corresponding to the directed 2-neighborhood of the document “Algebraic Ge-
ometry.” This yields n = 1382 and, through Wikipedia’s own 1–1 correspon-
dence, the associated French documents {xi2}ni=1. For dissimilarity matrices �k ,
k = 1,2, we use the Lin and Pantel discounted mutual information (Lin and Pan-
tel, 2002; Pantel and Lin, 2002) and cosine dissimilarity δk(xik,xjk) = 1 − (xik ·
xjk)/(‖xik‖2‖xjk‖2).

Our results are obtained by repeatedly randomly holding out four documents—
two matched pairs—and identifying the embeddings via cca, p ◦ m and jofc based
on the remaining n = 1380 matched pairs. The two sets of held-out matched pairs
are used as y1 and y2, via out-of-sample embedding, to estimate the null distribu-
tion of the test statistic T = d(̃y1, ỹ2). This allows us to estimate critical values
for any specified Type I error level. Then the two sets of held-out unmatched pairs
are used as y1 and y2, via out-of-sample embedding, to estimate power. Target
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Figure 8 Gaussian model simulation results plotting the Type I error level α against power
β = P [d(̃y1, ỹ2) > cα |HA], indicating jofc is superior to both p ◦ m and cca, entirely analogous
to those presented for the Dirichlet product model in Figure 6.

dimensionality m is determined by the Zhu and Ghodsi automatic dimensionality
selection method (Zhu and Ghodsi, 2006), resulting in m = 6 for this data set.

Figure 9 plots the allowable Type I error level against power. These experimen-
tal results indicate that jofc is superior to both p ◦ m and cca, and are entirely
analogous to the simulation results presented above.

5.2 Ranking

Here we consider a ranking task in which matched training data exists in disparate
spaces �1 and �2, but test observation y2 will be observed in space �2. The task
is to find the match for y2 amongst a candidate collection C = {y11, . . . ,yz1} ⊂ �1

of z > 1 possibilities. Using the training set of matched observations, we identify
the embeddings via cca, p ◦ m and jofc, and out-of-sample embedding then yields
ỹ2 and C̃ = {̃y11, . . . , ỹz1}. The rank r∗ of the one true match to y2 amongst the
candidate collection C in terms of {d(̃yζ1, ỹ2)}zζ=1 is our measure of performance;
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Figure 9 Experimental results on English/French Wikipedia documents plotting the Type I error
level α against power β = P [d(̃y1, ỹ2) > cα |HA], indicating jofc is superior to both p ◦ m and cca.
See text for description.

r∗ = 1 represents perfect performance, r∗ = z/2 represents chance and r∗ = z is
the worst possible.

For this experiment we consider a different collection of Wikipedia documents:
all English/Persian (Farsi) matched pairs (matched, again, through Wikipedia’s
own 1–1 correspondence) for which both documents in the pair contain at least
500 total words and at least 100 distinct words. There are 2448 such pairs. (The
word-count restrictions are to ensure that the documents are legitimate articles,
rather than “stubs”—place-holders for future articles on the topic.)

Figures 10 and 11 present notched boxplot experimental results wherein we
repeatedly hold out z = 1000 matched pairs from the training set. (Recall that
nonoverlapping notches implies a statistically significant difference of means.)
Figure 10 depicts r∗ as a function of target dimension m for jofc (gray) and p ◦ m

(white). Performance improves for both methods as m increases from 5 to 25, with
jofc superior. Performance levels off after m = 30 (and degrades significantly for
m > 50). Figure 11 depicts difference in ranks, r∗

p◦m − r∗
jofc; differences greater

than 0 indicate jofc superiority.
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Figure 10 Comparative rank experimental results depicting the rank r∗ of the one true match to
test observation y2 amongst the candidate collection C in terms of {d(̃yζ1, ỹ2)}zζ=1 as a function of

target dimension m. For each m ∈ {5,10,15, . . . ,50}, there are two boxplots. These results indicate
that jofc (gray) is superior to p ◦ m (white) on this data set. With z = 1000, both methods perform
much better than chance (r∗ = z/2), although performance does not achieve perfection (r∗ = 1). See
text for description.

6 Discussion and conclusions

We have presented a complete methodological core for manifold matching via
joint optimization of fidelity and commensurability and comprehensive compar-
isons with either version of separate optimization. Continuing research includes
comparison with other standard competing methodologies, variations and general-
izations of our omnibus embedding methodology and further theoretical develop-
ments.

Here we discuss a few of the most pressing issues.

• K > 2 conditions: It is straightforward to generalize the omnibus dissimilarity
matrix M to the case of K > 2 conditions.
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Figure 11 Comparative rank experimental results depicting difference in ranks r∗
p◦m − r∗

jofc; dif-
ferences greater than 0 indicate jofc superiority. See text for description.

• Pre-scaling the �k : The scale of the various dissimilarities has been assumed
to be consistent. For Dirichlet data, this assumption is warranted; however, pre-
scaling of the �k prior to constructing M is imperative for the general case.

• MDS objective: Our omnibus embedding methodology can be employed with
MDS criteria other than raw stress; the �2 criterion provides direct correspon-
dence to fidelity and commensurability. Weighted �2 is straightforward. Other
MDS minimization objectives have been studied in depth, and should in partic-
ular circumstances provide superior performance.

• Imputation of W : It seems reasonable under H0 to set the diagonal elements
δk1k2(xik1,xik2) of W to zero. Recall, however, that this is not necessarily
“truth;” the Dirichlet setting of Section 1.5 with r < ∞ would have nonzero
elements for diag(W). Still, this shrinkage of diag(W) to zero seems reason-
able. However, there may be cases for which imputing nonzero values would
be appropriate; for example, if information is available suggesting that some
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matchings are unreliable, then it might be advantageous to use larger values for
these matchings.

As for the off-diagonal elements of W , we have argued that either leav-
ing them as missing data unused in the subsequent optimization or letting
W = (�1 + �2)/2 are reasonable suggestions. We believe that more elabo-
rate imputation should provide superior performance. In particular, it seems
clear that choosing λ ∈ [0,1] and setting W = λ�1 + (1 − λ)�2 or W =
(λ�2

1 + (1 − λ)�2
2)

1/2 will be preferable in certain circumstances.
• Model selection: The choice of target dimensionality m: We have assumed

throughout that X = R
m for some prespecified target dimension m. First, we

note that, in general, embedding into target spaces other than Euclidean is pos-
sible and sometimes productive. More pressing is the necessity, in many appli-
cations, for data-driven choice of target dimension. This is in general a vexing
model selection task—the bias–variance trade-off. Of course, m = 1 generally
induces significant model bias and m = n−1 generally admits excessive estima-
tion variance, as characterized in Devroy, Gyorfi and Lugosi (1996, Figure 12.1).
Many dimensionality selection methods based on the principle of diminishing
returns in terms of variance explained are available—in Section 5.1 we made
use of the method proposed in Zhu and Ghodsi (2006), and in Section 5.2 we
presented results as a function of m. A dimensionality selection methodology
specifically designed for use with our omnibus embedding methodology is of
significant interest.

One illustrative point in this regard is that the general commensurate-space
approach considered throughout this article—for all three approaches jofc, p◦m

and cca—adds a further complication with respect to identification of optimal
target dimension: the optimal target dimension m∗

k for the various �k will not
the be same. This adds to the degree of difficulty in designing methods for iden-
tifying the optimal common-space target dimension m∗.

• Learning the πk : We have assumed that the maps πk from object space � to the
conditional spaces �k are fixed (see Figure 1). Indeed, � and the πk have been
treated as notional only. In some circumstances, it may be possible to use per-
formance analyses to glean information concerning the induced conditional dis-
tributions and profitably adjust the πk , in a manner analogous to fusion frames
(Calderbank et al., 2012).

• Fast Omnibus embedding: Out-of-sample embedding of test data precludes re-
learning the mappings for each inference. More importantly, it is straightforward
to make a version of our omnibus embedding methodology fast (O(n)). Making
an effective fast version requires numerous methodological choices for various
stages of jofc.

• Commensurability error vs. Hausdorff distance on Gp,m: In the simple setting of
Euclidean spaces �k , the p ◦ m methodology yields two elements of the Grass-
mann space Gp,m of m-dimensional subspaces of R

p . This space is a manifold
under the Hausdorff distance 2 sin(θ/2), where θ is the canonical angle between
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Figure 12 Commensurability error and Hausdorff distance on the Grassmannian Manifold for our
Dirichlet product model simulation (Figure 6). Strong correlation is evident. Furthermore, the red
points represent replicates for which the conditional power P [d(̃y1, ỹ2) > cα |HA,γ 1, . . . ,γ n] is
low—predominantly those replicates for which Hausdorff distance and commensurability error are
large.

subspaces (Qiu, Zhang and Li, 2005). Under special conditions the Hausdorff
distance between p ◦ m’s two subspaces and the commensurability error be-
tween their respective embeddings are closely related.

See Figure 12 for a first example, from the Dirichlet product model simulation
presented in Figure 6. Each point in Figure 12 represents a Monte Carlo repli-
cate. We note that the Hausdorff distance between p ◦ m’s two subspaces and
the commensurability error between their respective embeddings are strongly
correlated. Furthermore, the red points represent replicates for which the con-
ditional power P [d(̃y1, ỹ2) > cα|HA,γ 1, . . . ,γ n] is low—predominantly those
replicates for which Hausdorff distance and commensurability error are large.
This demonstrates the effect of the incommensurability phenomenon on p ◦ m.
The jofc embeddings are not subject to this deleterious phenomenon.

Additional investigations concerning the superiority of jofc to p ◦ m due to
the incommensurability phenomenon involve this relationship between Haus-



398 Priebe, Marchette, Ma and Adali

dorff distance and commensurability error. Significantly more involved inves-
tigations are required when, as is the case for proper text document analysis,
one uses a more appropriate dissimilarity (Hellinger distance, or more generally
α-divergence) on the simplex.

• Three-way MDS: Three-way MDS (see, e.g., Borg and Groenen, 2005) ad-
dresses a problem superficially similar to joint optimization of fidelity and com-
mensurability, in which a single configuration and two transformation matrices
are identified from two dissimilarity matrices �1,�2. It may be of interest to
compare and contrast our omnibus embedding methodology with various in-
stantiations of three-way MDS—particularly the identity model presented in
Commandeur and Heiser (1993).

6.1 Conclusions

In conclusion, we have presented an omnibus embedding methodology for joint
optimization of fidelity and commensurability that allows us to address the mani-
fold matching problem by jointly identifying embeddings of multiple spaces into a
common space. Such a joint embedding facilitates statistical inference in a wide ar-
ray of disparate information fusion applications. We have investigated this method-
ology in the context of simple statistical inference tasks, and compared and con-
trasted with competing fidelity-only and commensurability-only methodologies,
demonstrating the superiority of our joint optimization.

We have focused on a simple setting and simple choices for various methodolog-
ical options. Many variations and generalizations are possible, but the presentation
here provides the core methodological instantiation.
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