Measuring the functional complexity of nanoscale connectomes: polarity matters Qingyang Wang^{1*}, Nadine Randel², Yijie Yin², Cameron Shand³, Amy Strange³, Michael Winding², Albert Cardona³, Marta Zlatic³, Joshua Vogelstein¹, Carey Priebe¹ I Johns Hopkins University, 2 University of Cambridge, 3 The Francis Crick Institute, * correspondence: qwang88@jhu.edu

Summarv

learning-independent to answer.

Motivation

How does a network's Excitatory-Inhibitory connectivity structure affect its functional complexity?

Functional Complexity

Functional complexity = fraction of 'XORable' subnetworks Functional Complexity

The two XOR type tasks on the right are *not* linearly-separable, thus more complex than the two on the left.

Illustration on the procedure of experimentally determining whether a subnetwork, defined by $\{I_1, I_2, O\}$, is XORable or not.

EM connectome constrained mode

		r ·	÷.,	6.4 TR		4 2	121 5		,
. Association sources	上都拉山	\$¥			.	1		1 ·	, [*]
	1 States and			2.3	1.00		201 140		ψ.
				<u>.</u>		戲山		1 1/2	. *
	NO. S. C. LAND						W 5 46 15	1	
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		C		. 4			12 26.65		
TER ST	ner en su			e 7.	. 7:27	218 R	TRA BE	12:25	1
	1000					10			1.1
	i and the second		1.1	12.64			100		2. 5
							- RC	· · · · · · · · · · · · · · · · · · ·	ir in
ang manana ang manana ang kanana a	1 1		A CONTRACTOR	1.8					
	8	{;•	. N. 14	18.1	1	1	16	ļ	
	1.1	8	1.32		1	1		1 · · ·	54
							a mil.	1.	
	Little D			. New		T (S)			
		N.A					1 6.4	1. De-	
1475.000						CALC FLO	1.0 Krist	day.	1
				7		and a			11.
					-	S INTERES		0.0.2	10.00
						- 7	1 有需	Dies	時日日
	10.1	1 5 12 Might		l.		1	1	No. Carl	
	· 500.00	S OF BUILD				1		2 (1) 20 (1)	2000

----- Postsynaptic neurons

(Winding et al., 2023) (Dorkenwald et al., 2024)

Whole-brain RNNs

$\mathbf{I}(l)$	$- MeLO(\mathbf{vv})$

neurons

Acknowledgements: BRAIN Initiative NeuroNex (J.V.), NSF CAREER (J.V.), JHU MINDS Fellowship (Q.W.), the Francis Crick Institute core funding (M.W.).

functional complexity measurement that is task-agnostic and of Exc. neurons lead to higher functional complexity, but only when Inhib. neurons are highly connected.

Sven Dorkenwald et al. "Neuronal wiring diagram of an adult brain". In: Nature 634.8032 (2024), pp. 124–138.

🔿 Class A 🔅 Class B

$$\nabla^T \mathbf{r}(t-1) + \mathbf{E}^{(t)})$$

 $n_{\text{Larva }Drosophila} = 2952,$ $n_{\text{Adult Drosophila}} = 132,490$ Weight matrix $\mathbf{W} = \boldsymbol{lpha}_{\mathsf{sign}} \odot \mathbf{M}_{\mathsf{EM}}$

> Michael Winding et al. "The connectome of an insect brain". In: Science 379.6636 (2023).

• Why do we have so many excitatory neurons? We propose a • Leveraging EM connectomes, we show that over-abundance • The predicted E-I properties of highest functional complexity • These insights learnt from whole-brain nanoscale match the real brains, providing a normative explanation to connectomes are further leveraged to provide clues to guide the development of deep neural networks. these highly conserved E-I connectivity properties.

Marc Corrales et al. "A single-cell transcriptomic atlas Kristofer Davie et al. "A Single-Cell of complete insect nervous systems across multiple life Transcriptome Atlas of the Aging Drosophila Brain". In: Cell 174.4 (2018). stages". In: Neural Development 17.1 (2022).

rse D	NNs	
°°° °°°	**************************************	••••••••••••••••••••••••••••••••••••••
• • •	•	•
•	•	
/Width=24	convWidth=64	convWidth=128
20% Exc (DaClassical pru	ıle's) @ 99% sparsity ning @ 99% sparsity	 convDepth = 3 convDepth = 4