Measuring the functional complexity of nanoscale connectomes: polarity matters
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e Why do we have so many excitatory neurons? We propose a ® Leveraging EM connectomes, we show that over-abundance o The predicted E-| properties of highest functional complexity ® These insights learnt from whole-brain nanoscale
functional complexity measurement that is task-agnostic and of Exc. neurons lead to higher functional complexity, but only match the real brains, providing a normative explanation to  connectomes are further leveraged to provide clues to guide

learning-independent to answer.

How does a network's Excitatory-Inhibitory connectivity struc-
ture affect its functional complexity?

Functional complexity = fraction of 'XORable' subnetworks
Functional Complexity

i | O i | O (O ClassA ™ ClassB

The two XOR type tasks on the right are not linearly-separable, thus more complex than the
two on the left.
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lllustration on the procedure of experimentally determining whether a subnetwork, defined
by {11, I, O}, is XORable or not.

Whole-brain RNNs
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when Inhib. neurons are highly connected.

E-l sampling
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As the inhibitory population is increasingly biased to be highly-connected (darkened colors),
the peak functional complexity is reached at higher E/(E+I) ratios, with higher overall
functional complexity. n=10. Shaded area=95% ClI.
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The top simulations of highest functional complexity match the real brain
observations in the larva. 8180 different E-I compositions were drawn from 818 different
connectedness-conditioned sampling procedures. y-axis = Degree; — Degreer. Networks of
higher functional complexity (darker bigger) have both over-abundance of Exc. (x-axis >
0.5) and more highly connected Inhib. compared to the Exc. population (y-axis > 0). They
match to brain observations (green stars).
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The proposed functional complexity measurement is key in revealing the above patterns —
conventional norm-based methods such as the participation ratio and spectral norm fail to
do so.
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these highly conserved E-| connectivity properties.

the development of deep neural networks.
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The top simulations of highest functional complexity match the real brain
observations in the adult. Same as the larva except 705 different E-1 compositions were
drawn from 235 different connectedness-conditioned sampling procedures.
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Sparse deep neural networks (DNNs) present a challenge in training (orange); DNNs
constrained by Dale’s rule and with over-abundance of Exc. (red) solves the challenge the
best.
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Q: What E-I structure => 1 functional complexity?
A: over-abundance of E + highly-connected |I.
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