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The Generalized Spherical Homeomorphism Theorem for
Digital Images

Lowell Abrams, Donniell E. Fishkind, and Carey E. Priebe*

Abstract—The spherical homeomorphism conjecture, proposed by Shat-
tuck and Leahy in 2001, serves as the backbone of their algorithm to correct
the topology of magnetic resonance images of the human cerebral cortex.
Using a canonical image-thickening technique and the authors’ previously
proven “spherical homeomorphism theorem for surfaces,” we formulate
and prove a spherical homeomorphism theorem which is valid for all dig-
ital images when utilizing the (26,6)-connectivity rule.

Index Terms—Digital topology, spherical homeomorphism.

I. INTRODUCTION AND OUTLINE

The human cerebral cortex, viewed as closed at the brain stem, may
be thought of as a surface topologically equivalent to a sphere. Due
to noise and resolution issues, a magnetic resonance image approxi-
mating the cerebral cortex may fail to be spherical and, worse yet, may
not even be a surface. Correcting the spherical topology is important for
mapping the regions of the cerebral cortex by neurological and biolog-
ical function, and much attention has been paid to this problem in the
recent literature (see [2], for instance, and the references listed there).
In [3], Shattuck and Leahy proposed a method to correct the spherical
topology based on their Spherical Homeomorphism Conjecture, which
conjectured that the boundary of a digital image is topologically spher-
ical if and only if the “foreground” and “background” graphs associated
with the image are trees. In [1], we showed that, subject to the condi-
tion that the boundary of the digital image is a surface, the conjecture is
true. The idea of the proof was to consider the Euler characteristics for
the boundaries of [ the parts of the image represented by ] the vertices
and edges of the associated graphs and to then combine these into the
global Euler characteristic for the boundary of the entire digital image.

In this paper, we show that if the boundary of a connected digital
image is not a surface there is a canonical way to adjust it so as to yield
a surface. Then we show that when the foreground and background
graphs are constructed using the (26,6)-connectivity rule, the Spherical
Homeomorphism Conjecture holds for the adjusted boundary.

In Section II, we show that the boundary of a connected digital image
fails to be a surface preciselywhen the image contains one of three “for-
bidden” subimages, and that a simple thickening fixes these problems,
rendering the boundary a surface. In Section III, we review the Spher-
ical Homeomorphism Conjecture and the special case for which it was
previously proved. We then formulate and prove a Spherical Homeo-
morphism Theorem which is true for all digital images when utilizing
the (26,6)-connectivity rule.
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Fig. 1. The fundamental obstructions to being locally homeomorphic to a disk.

II. THICKENING NONSURFACES

We use the term surface to refer to a compact, connected subset of 3

that is locally homeomorphic to a disk. Since the boundaries of digital
images, as we will define them, are always compact, and since connec-
tivity in the context of the Spherical Homeomorphism Conjecture is
inherent, the only obstruction to the boundary of a digital image being
a surface is the requirement that it be locally homeomorphic to a disk.
The main results of this section are Theorem 1, which characterizes
such nonsurfaces, and Theorem 2, which provides a simple solution to
the problem of this obstruction.
For any positive integers i, j, k, we define the i, j, kth voxel vi;j;k

to be the unit cube [i � 1; i] � [j � 1; j] � [k � 1; k] � 3. For any
positive integers q, r, and s, we define


q;r;s := fvi;j;k : 1 � i � q; 1 � j � r; 1 � k � sg:

We refer to a subset A � 
q;r;s as a digital image and let A denote
[v2Av �

3. We denote by @A the boundary of A, and we write Ac

for the complement of A in 
q;r;s. If each q; r; s � 2, then we say A
is an elementary digital image.
Suppose A � 


q;r;s, B � 

q ;r ;s such that each of q0; r0; and

s0 are, respectively, less than or equal to q, r, and s. We say B is a
subimage of A if there exists nonnegative integers x0, y0, z0 less than
or equal to q� q0, r� r0, s� s0, respectively, such that for all positive
integers i, j, k less than or equal to q0, r0, s0, respectively, we have
vi;j;k 2 B if and only if vx +i;y +j;z +k 2 A.
We refer to the elementary digital images of Fig. 1(a)–(c) which are,

respectively, in 
2;2;1, 
2;2;2, and 
2;2;2, as forbidden digital images.
Note that Fig. 1(b) and (c) are complements of each other. The bound-
aries of these three forbidden digital images are not locally homeomor-
phic to a disk due to zero-dimensional (0-D) or one-dimensional (1-D)
identifications on their boundaries.
We say two digital imagesB,C are equivalent if there is an isometry

(spatial rotation or reflection) fromB ontoC . We extend the term “for-
bidden” to include any elementary digital image containing a subimage
equivalent to a forbidden image. In particular, the elementary digital
images in Fig. 2 which are marked with an � are forbidden.
Theorem 1: For any digital imageA � 


q;r;s, @A is locally home-
omorphic to a disk if and only if A contains no forbidden subimage.

Proof of Theorem 1: If A contains a forbidden subimage then
@A is not locally homeomorphic to a disk at a 0-D or 1-D identifica-
tion on the boundary of the forbidden subimage. Conversely, if there
is a point on @A where @A is not locally homeomorphic to a disk
then, for some elementary subimage E of image A, this point corre-
sponds to a point on @E where @E is not locally homeomorphic to a
disk. We only need to verify that this E is a forbidden digital image,
and the result follows. Indeed, it is straightforward to enumerate all
classes of equivalent elementary digital images; the numbers of such
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Fig. 2. The twelve elementary subimages with two, three, or four foreground voxels; those marked with an � have a boundary which is not locally homeomorphic
to a disk.

classes with 0, 1, 2, 3, 4, 5, 6, 7, 8 voxels, respectively, are 1, 1, 3,
3, 6, 3, 3, 1, 1. The 12 different classes with 2, 3, or 4 voxels are
displayed in Fig. 2; all other classes are trivial or “dual” to these
through complementation. By inspection, those classes E such that
@E is not locally homeomorphic to a disk (which are marked with
an � in Fig. 2) are forbidden.

Let n be a positive integer greater than 2 and set � = 1=n. For any
� := (x; y; z) 2 3, we define �? to be the set f(x0; y0; z) 2 3 :
jx0 � xj � �; jy0 � yj � �g; thus, �? is a two-dimensional (2-D)1

2�� 2� square centered at � . Now, we define the �-thickening of A to
be A? := [

�2A
�?. The �-thickenings of (the original three) forbidden

1We could alternatively define � by expanding about � in all three dimen-
sions (without affecting any result in this manuscript), but the definition we use
here greatly simplifies exposition later.

Fig. 3. Thickened forbidden images.

images are displayed in Fig. 3; note that the boundary of each of these
thickened images is locally homeomorphic to a disk.
Theorem 2: For any digital imageA � 
q;r;s, @A? is locally home-

omorphic to a disk. Thus, if @A? is connected then @A? is a surface.
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Proof of Theorem 2: About each point in @A? there is an open
neighborhood homeomorphic to an open neighborhood about an asso-
ciated point in @E? for some elementary subimageE ofA. An inspec-
tion of the respective �-thickenings of all elementary images (whose
classes are enumerated above) shows that each such �-thickening has
a boundary which is locally homeomorphic to a disk. Thus, @E? and
@A? are locally homeomorphic to a disk.

Informally, the miniscule expansion fromA toA? swallows any 0-D
or 1-D boundary identifications into the interior without creating any
new 0-D or 1-D boundary identifications. In particular, this thickening
naturally suits the (26,6)-connectivity rule discussed in Section III.

III. THE SPHERICAL HOMEOMORPHISM THEOREM

Voxels v, v0 2 
q;r;s, are said to be 26-adjacent if the intersection
v \ v0 (in 3) is nonempty, and are said to be 6-adjacent if v \ v0 is
2-D. These notions of adjacency should be viewed as discrete relations
on the finite set 
q;r;s, relative to which a collection of voxels is either
6-connected or 6-disconnected and either 26-connected or 26-discon-
nected. At the same time, these notions reflect different strengths of
connectivity of v [ v0 as a subset of 3; 26-adjacency corresponds to
connectivity of v [ v0, while 6-adjacency corresponds to connectivity
of the interior of v [ v0.

For each k = 1; 2; . . . ; s, let Lk denote the kth level of 
q;r;s,
i.e., the set of voxels vi;j;k where i, j vary freely. Let a digital image
A � 
q;r;s be given. We call each 26-connected component of voxels
in Lk \ A a foreground vertex, and each 6-connected component of
voxels in Lk \ Ac a background vertex. For each pair of foreground
vertices W , W 0 satisfying W \W 0 6= ;, each connected component
of W \ W 0 is called a foreground edge with endpoints W and W 0.
For each pair of background verticesW ,W 0 satisfyingW \W 0 6= ;,
each connected component of the relative interior2 ofW \W 0 is called
a background edge with endpointsW and W 0. The foreground graph
of A (background graph of A, respectively) is the multi-graph Gf (A)
(respectively, Gb(A)) with vertex set consisting of all foreground ver-
tices (resp., background vertices) and with edge set consisting of all
foreground edges (resp., background edges).

We say the digital imageA � 
q;r;s is standard if for every vi;j;k 2
A, we have i 62 f1; qg, j 62 f1; rg, k 62 f1; sg. The following is a
slightly modified version of the Spherical HomeomorphismConjecture
of Shattuck and Leahy [3]:
Conjecture 3 (Spherical Homeomorphism Conjecture): If

A � 
q;r;s is a standard digital image, then @A is topologically
equivalent to a sphere if and only if both Gf (A) and Gb(A) are
graph-theoretic trees.

For digital images A such that @A is not a surface, the conjecture
needs to bemodified; @A cannot be topologically equivalent to a sphere
if @A is not a surface, whether or not Gf (A) and Gb(A) are trees. On
the other hand, if @A is a surface then the conjecture is true; this is
proved in [1].
Theorem 4 (Spherical Homeomorphism Theorem for Surfaces,

A-F-P 2002): If A � 
q;r;s is a standard digital image such that @A
is a surface, then @A is topologically equivalent to a sphere if and only
if both Gf (A) and Gb(A) are graph-theoretic trees.

Note that if @A is a surface thenA contains no forbidden subimages.
From this it is easy to verify that, when @A is a surface, the type of con-
nectivity (6 versus 26) used in defining the foreground and background
graphs is immaterial.

We now present our main result.
Theorem 5: If A � 
q;r;s is a standard digital image then @A?

is topologically equivalent to a sphere if and only if both Gf (A) and
Gb(A) are graph-theoretic trees.

2This difference in definition between foreground and background edges re-
flects the difference in the respective notions of connectivity.

Proof of Theorem 5: Let A � 
q;r;s be a standard digital image
and suppose first that @A? is connected; by Theorem 2, @A? is a
surface. Consider the linear transformation T : 3 ! 3 sending
(x; y; z) ! (nx; ny; z). Since n = 1=�, we have T (A?) = B for
some digital image B � 
nq;nr;s. Moreover, @B is a surface of the
same genus as @A?. By the Spherical Homeomorphism Theorem for
Surfaces, @B, and hence @A? as well, are topologically equivalent to a
sphere if and only if both Gf (B) and Gb(B) are trees. We next show
that Gf (A) and Gb(A) are, respectively, isomorphic to Gf (B) and
Gb(B); Theorem 5, in the case that @A? is connected, then follows.
Let � : 
q;r;s ! 3 denote the map sending C 7! C where C �


q;r;s. The effect of the �-thickening is that two voxels v, v0 (in A,
say) are 26-adjacent in 
q;r;s iff T (�fv; v0g?) is connected which, in
turn, happens iff the interior of T (�fv; v0g?) is connected. Thus, the
vertices and edges of Gf (A), which are formed using 26-adjacency,
correspond to the vertices and edges of Gf (B). On the other hand,
two voxels v, v0 (in Ac, say) are 6-adjacent in 
q;r;s iff 
nq;nr;s n
T � (fv; v0gc)

? is connected which, in turn, happens iff the inte-
rior of 
nq;nr;s nT (� (fv; v0gc)) is connected. Thus, the vertices and
edges ofGb(A), which are formed using 6-adjacency, correspond to the
vertices and edges of Gb(B). These correspondences provide isomor-
phisms between Gf (A) and Gf (B) and between Gb(A) and Gb(B),
respectively.
Finally, if @A? is not connected then it is not a surface, so @B is a

disjoint union of surfaces. This implies that one ofGf (B) andGb(B)
is disconnected, hence one of them fails to be a tree, and thus Gf (A)
and Gb(A) are not both trees.

ACKNOWLEDGMENT

The authors thank the referees for their helpful suggestions and com-
ments.

REFERENCES

[1] L. Abrams, D. E. Fishkind, and C. E. Priebe, “A proof of the spherical
homeomorphism conjecture for surfaces,” IEEE Trans. Med. Imag., vol.
21, pp. 1564–1566, Dec. 2002.

[2] X. Han, C. Xu, U. Braga-Neto, and J. Prince, “Topology correction in
brain cortex segmentation using a multiscale, graph-based algorithm,”
IEEE Trans. Med. Imag., vol. 21, pp. 109–121, Feb. 2002.

[3] D. W. Shattuck and R. M. Leahy, “Automated graph-based analysis and
correction of cortical volume topology,” IEEE Trans. Med. Imag., vol.
20, pp. 1167–1177, Nov. 2001.


