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A Proof of the Spherical Homeomorphism
Conjecture for Surfaces

Lowell Abrams, Donniell E. Fishkind, and Carey E. Priebe*

Abstract—The human cerebral cortex is topologically equivalent to a
sphere when it is viewed as closed at the brain stem. Due to noise and/or res-
olution issues, magnetic resonance imaging may see “handles” that need to
be eliminated to reflect the true spherical topology. Shattuck and Leahy [2]
present an algorithm to correct such an image. The basis for their correc-
tion strategy is a conjecture, which they call the spherical homeomorphism
conjecture, stating that the boundary between the foreground region and
the background region is topologically spherical if certain associated fore-
ground and background multigraphs are both graph-theoretic trees. In this
paper, we prove the conjecture, and its converse, under the assumption that
the foreground/background boundary is a surface.

Index Terms—Magnetic resonance imaging, segmentation, topology,
topological correction.

I. INTRODUCTION

The human cerebral cortex is topologically equivalent to a sphere
when it is viewed as closed at the brain stem. Due to noise and/or res-
olution issues, magnetic resonance (MR) imaging may see “handles”
that need to be eliminated to reflect the true spherical topology.

Shattuck and Leahy [2] present an algorithm to correct such an
image. The basis for their correction strategy is a conjecture, which
they call the spherical homeomorphism conjecture, stating that
the boundary between the foreground region and the background
region is topologically spherical if certain associated foreground and
background multigraphs are both graph-theoretic trees.

In this paper, we prove the conjecture, and its converse, under the
assumption that the foreground/background boundary is a surface. Note
that if the foreground/background boundary is not a surface, then it
cannot be topologically spherical.

II. DEFINITIONS

For positive integerN , we consider the subset of Euclidean 3-space
I := f(x; y; z) 2 R3: 0 � x; y; z � Ng, endowed with the
usual Euclidean metric and topology. For allN3 triplets of indexes
(i; j; k) 2 f1; 2; . . . ; Ng3 we define thei; j; kth voxel to be the
subset ofI given by

vijk := f(x; y; z) 2 I:

i� 1 � x � i; j � 1 � y � j; k � 1 � z � kg:

The indexi is theheightof the voxelvijk. ThelevelLi is the union
of all voxels of heighti. ThesheetSi; i+1 is the intersectionLi\Li+1.
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Fig. 1. Implications of@FG being a surface.

Each voxel is a cube and, thus, its boundary has six faces, calledvoxel
faces. If the intersection of two distinct voxel faces is a line segment,
we call the intersection avoxel edge. If the intersection of two voxel
edges is a point, we call the intersection avoxel vertex. For any set
A � R

3, we denote the boundary ofA by @A. If A � S for some
sheetS, we denote the boundary ofA in S by @S(A). Note that@A is
two-dimensional and@S(A) is one-dimensional.

Each of the voxels inI is classified as eitherforeground or
background. For this MR brain imaging application, the segmentation
process classifies a voxel as foreground if the corresponding location
in the brain consists of tissue which is interior to the cerebral cortex;
otherwise it classifies the voxel as background. DefineFG as the
union of all foreground voxels andBG as the union of all background
voxels. We make the following two important assumptions: First,
we assume that@FG is topologically equivalent to an orientable
surface, which includes the assumption that@FG is connected. For
this brain imaging application, the surface@FG is understood to be
an approximate representation of the cerebral cortex itself. Thus, in
principle, it should be topologically spherical, but may be of higher
genus due to noise and/or resolution issues. The second assumption is
that foreground is surrounded by background, i.e.,@I @FG = ;. In
other words, the foreground image is strictly contained inI.

For eachi, each connected component ofLi \ FG is called afore-
ground vertexof heighti. If two foreground vertices of adjacent heights
have a nonempty intersection then each connected component of the
intersection (which lies inSi; i+1) is called aforeground edge. (There
may be more than one foreground edge between two foreground ver-
tices.) Denote byVf the set of all foreground vertices of all heights, and
denote byEf the set of all foreground edges. Theforeground graphGf

is the (multi)graph(Vf ; Ef) in which each foreground edge� in the
intersection of foreground vertices!1 and!2, say, is considered to be a
graph-theoretic edge whose two endpoints are!1; !2. Thus, when we
speak of a foreground vertex or a foreground edge we not only think
of them as subsets ofI, but also as graph-theoretic objects, and the
perspective in use at any point of this manuscript will be clear from its
context. Analogously, definebackground vertices, background edges,
Vb (the set of all background vertices),Eb (the set of all background
edges), and thebackground graphGb = (Vb; Eb) by substitutingBG
for FG in the foreground definitions.

The assumption that@FG is a surface yields a number of useful im-
plication: 1) If foreground voxelsu andv intersect at precisely voxel
edgee [see Fig. 1(a)], then at least one voxela of the other two voxels
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sharinge is foreground. 2) If foreground voxelsu andv intersect pre-
cisely at voxel vertexx[see Fig. 1(b)], then among the other six voxels
sharingx there are foreground voxelsa andb such that each ofu a,
a b, andb v are voxel faces. (Analogs of these two observations
hold,mutatis mutandis, for the background as well.) 3) The boundary
of each foreground or background vertex is an orientable surface. 4) For
each foreground and background edge� in, say, sheetS we have that
@S(�) consists of (pairwise disjoint) simple closed curves.1 5) For each
i and each foreground or background vertex! inLi orLi+1, the region
! \ Si; i+1 is connected and its boundary inSi; i+1 is a disjoint union
of simple closed curves. 6) The graphsGf andGb are both connected.

Formally, the foreground and background graphs in [2] are con-
structed differently than is done here. There, the foreground graph
is modified using a “special connectivity rule,” and adjacency for
background vertices is defined using the “D18” rule (which considers
sharing of a voxel edge an adjacency). However, under the assumption
that @FG is a surface, the observations in the previous paragraph
show that the “special connectivity rule” never applies, and that the
D18 rule defines an adjacency exactly when the construction here
does. Thus, when@FG is a surface, the foreground and background
graphs in [2] are exactlyGf andGb as constructed here.

For alli, let jVf j, jVb j, jEf j, andjEb j denote the number
of foreground vertices of heighti, background vertices of heighti, fore-
ground edges with endpoints of heightsi andi + 1, and background
edges with endpoints of heightsi andi+ 1, respectively.

III. M AIN RESULT

Shattuck and Leahy [2] conjectured that if both their foreground
and background multigraphs are trees, then@FG is topologically
equivalent to a sphere. Our result regarding their conjecture is the
following theorem, which restricts attention to the case in which@FG

is a surface.2

Theorem 1: Suppose that@FG is a surface. Then@FG is topolog-
ically equivalent to a sphere if and only if bothGf andGb are trees.

The graphGf (Gb) is a tree if and only ifjEf j = jVf j � 1 (jEbj =
jVbj � 1). By Theorem 1 any extra edges beyond this amount indicates
that@FG is not topologically spherical. In general, there is not neces-
sarily a way to determine the genus of@FG exactly from the number
of excess edges, but there is one special case where this can be done:

Theorem 2: Suppose that@FG is a surface and that8! 2 Vf the
genus of@! is zero. Then the genus of@FG is jEf j � jVf j+ 1. Thus,
@FG is topologically equivalent to a sphere if and only ifGf is a tree.

Note that the assumption that the genus of@! is zero8! 2 Vf is
equivalent to the assumption thatGb is precisely a path of lengthN .

For any two-cell embedding of a graph on an orientable surface of
genusg with vertex-setV , edge-setE and face-setF , a classical result
of Euler and Poincaré gives the relationship

�(S) := jV j � jEj+ jF j = 2� 2g (1)

(see, e.g., [3, p. 268]). This quantity�(S) is called theEuler charac-
teristic of the surface. IfA is the union of any collection of voxels

1Each voxel vertexy in S intersects (at most) four voxel faces ofS. Consid-
eration of cases, together with 1) and 2) above, shows thaty intersects exactly
zero or two voxel edges of@ (�). Thus, viewing voxel vertices and voxel edges
as graph theoretic vertices and edges, respectively, we see that@ (�) consists
of disjoint cycles.

2Notice that in the topological sense@FG is obtained from a disjoint union
of spheres (i.e., boundaries of voxels) via finitely many direct sums (adjacencies
of voxel faces) and point identifications (adjacencies of voxel edges or vertices).
Thus, if@FG is not a surface, then it is either not connected or, topologically, it
arises from a surface via point identifications; in neither case is it topologically
equivalent to a sphere.

then @A has a natural two-cell embedding with the voxel vertices,
edges, and faces on the boundary@A playing the role of graph-the-
oretic vertices, edges, and faces, respectively. The Euler characteristic
�(@A) := jV j � jEj + jF j, whereV; E, andF denote the sets of
voxel vertices, edges, and faces on@A, is a well-defined topological
invariant even ifA is not a surface.

One approach to determining the genus of@FG is to determine its
Euler characteristic. This may be done on a local basis, by summing
�(@!) over all! 2 Vf and then adjusting for the voxel vertices, edges,
and faces that were overcounted. An overcount occurs when a voxel
face is on two different foreground vertex boundaries, hence is in a
foreground edge and is not on@FG. Such a voxel face needs to be sub-
tracted away twice, once for each of the two times it was (erroneously)
counted. Note that if� is a foreground edge in sheetS, then all the
voxel edges and vertices that are not in@S(�) were overcounted twice,
and the voxel edges and vertices in@S(�) were overcounted once since
they are in@FG (once) but were counted twice.

If � is a foreground edge in sheetS with n� voxel vertices,e� voxel
edges, andf� voxel faces, the net amount that must be added to the
global Euler characteristic count is

�
0(�) := �2(n� � e� + f�): (2)

This is because the components of@S(�) are simple, closed curves and,
thus, they have exactly as many voxel edges as voxel vertices; since
contributions from edges and vertices have opposite sign in (2), the
fact that we subtract them one more time (that is, the second time) has
no net effect.

Indeed, if we set�0i; i+1 := �2E
�0(�), then we have

�(@FG) =
!2V

�(@!) +
�2E

�
0(�)

=
!2V

�(@!) +

N�1

i=1

�
0

i; i+1: (3)

The boundary of each foreground vertex is a surface, and the handles
of these foreground-vertex-surfaces are in one-to-one correspondence
with the set of all background vertices except for theN background
vertices that intersect@I . Thus, we have

!2V

�(@!) = 2jVf j � 2jVbj + 2N (4)

which gives us the first summand in right-hand side of (3).
To get the second summand in right-hand side of (3), we need two

lemmas. LetTi; i+1 denote the complement inSi; i+1 of the union of
foreground edges, and letti; i+1 denote the number of connected re-
gions ofTi; i+1.

Lemma 3: For all i, �0i; i+1 = �2� 2jEf j + 2ti; i+1.
Proof of Lemma 3:ConsiderSi; i+1 with its embedded voxel ver-

tices, edges, and faces. Just for this proof, disregard all voxel edges
and vertices not contained in a foreground edge, and merge each of
theti; i+1 connected componentsA of Ti; i+1 to a single face without
any embedded voxel vertices, edges, or faces in the interior ofA. The
remaining foreground-edge voxel vertices, edges, and faces and the re-
gions ofTi; i+1 together constitute a two-cell embedding inSi; i+1
of a planar graphG0. The faces of the embedding are precisely the
foreground-edge voxel faces and the connected components ofTi; i+1,
and the number of components ofG0 is exactlyjEf j. Euler’s for-
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mula shows thatjfvertices ofG0gj � jf edges ofG0gj + jffaces of
G0gj = 1 + jEf j. This yields

�
0
i; i+1 �

�2E

�
0(�)

(2)
=�2

�2E

(n� � e� + f�) (5)

=�2 ti; i+1+
�2E

(n��e�+f�) +2ti; i+1 (6)

=�2 1 + jEf j + 2ti; i+1 (7)

which was to be shown.
The following lemma provides a bound for one of the terms in the

expression for�0i; i+1 obtained in Lemma 3.
Lemma 4: For all i, ti; i+1 � jVb j + jVb j � jEb j.

Proof of Lemma 4:LetH denote the [bipartite] subgraph ofGb

induced byVb [ Vb , and let� denote the orthogonal projection of
Li [ Li+1 onSi; i+1. Every path inH between vertices!1; !2 of H
is mapped by� into Ti; i+1, and every path inTi; i+1 from �(!1) to
�(!2) can be lifted to a path inH from!1 to!2. Thus,H has exactly
ti; i+1 components. For each of these the number of vertices minus
the number of edges is at most 1. Summing over each of theti; i+1
graph-theoretic components ofH yields the assertion of the lemma.

We are now in a position to prove the main results.
Proof of Theorem 1:The characteristic of@FG may now be

computed and bounded

�(@FG)
(3)
=

!2V

�(@!) +

N�1

i=1

�
0
i; i+1 (8)

(4);Lm3
= 2jVf j � 2jVbj + 2N

+

N�1

i=1

�2� 2jEf j+ 2ti; i+1 (9)

Lm4

� 2jVf j � 2jVbj + 2 +

N�1

i=1

2jVb j+ 2jVb j

� 2jEf j � 2jEb j (10)

jV j=jV j=1
= 2� 2 [(jEf j � jVf j+ 1)

+ (jEbj � jVbj + 1) ] : (11)

If Gf andGb are both trees, thenjEf j � jVf j + 1 = 0 and jEbj �
jVbj + 1 = 0 and, thus, by (8)–(11), we have�(@FG) � 2. Since the
genus of@FG is at least 0, it follows that�(@FG) = 2, which means
precisely that@FG is topologically equivalent to a sphere.

To prove the converse, suppose without loss of generality thatGf

contains a cycleC. Let lf be a closed curve inFG that “realizes”
C, i.e., lf lies in the interior of the union of the vertices ofC, and
traverses those vertices in the [unoriented] cyclic order given byC.
Without loss of generality, we may assume that the intersection oflf

with any foreground edge fromC consists of exactly one point, and also
that each intersection oflf with a sheet is in a foreground edge. LetS be
a sheet which intersects at least one edge ofC. The intersectionS lf
is a disjoint union of finitely many pointsp1; . . . ; pn and, because
eachpi lies in a distinct foreground edge�i, any path frompi to pj ,
i 6= j, must pass throughBG. There is necessarily anm such that
the “unbounded” component of the complement of�m in S contains
all other�i and, thus, there exists a simple closed curvelb in S BG

such that one region ofS � lb containspm, and all other pointspi lie
in the other region. It is clear thatlf andlb, as closed curves inR3,
are linked and, thus,lf and lb are not contractible inFG andBG,
respectively. This contradicts the generalized Schoenflies theorem [1],
which ensures that both regions of the complement of any topological
sphere “nicely” embedded inR3 are simply connected (all loops can
be contracted to a point). It follow that@FG is not a sphere.

Proof of Theorem 2:The assumption on genus implies that for
all ! 2 Vf , @! is a topological sphere and, thus,�(@!) = 2. If two
foreground vertices!1 and!2 intersecting in sheetS have exactly one
foreground edge� between them, then@S(�) consists of exactly one
simple closed curve that is contractible to a point. Hence,@(!1 !2)
is also topologically spherical. Thus, we must have�0(�) = �2 in
order to balance�(@!1)+�(@!2)+�0(�) = �(@(!1 !2)). If there
are multiple edges, then it follows from the fact that�0(�) is calculated
locally that each edge� 2 Ef has�0(�) = �2. Thus, by (3), we have

�(@FG) =
!2V

�(@!) +
�2E

�
0(�) (12)

=2jVf j � 2jEf j (13)

=2� 2(jEf j � jVf j+ 1): (14)

It is clear from (14) and the Euler–Poincaré relationship that the genus
of @FG is, thus,jEf j � jVf j + 1, and this quantity is zero precisely
whenGf is a tree, sinceGf is connected.

Referee comments suggested an alternative, more geometric argu-
ment for the proof of Theorem 2: The assumption on genus implies
that all! in Vf are topologically three-balls. Since each foreground
edge� is contractible, gluing the! together along the edges� yields
a subspace which deformation-retracts to a complex that is graph-iso-
morphic toGf .
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