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(a) Our 4-step real-world super-resolution

(b) Our 1-step InstructPix2Pix with: “Make it lowkey” and “Make it sunset”

(c) Our 4-step generation from depth-map

(d) Our 4-step inpainting results with prompts: Shiba, Husky, Alpaca, Panda, Hawk, Dragon

(a) Our 4-step real-world super-resolution

(c) Our 4-step depth-map generation

(b) Our 4-step inpainting results with prompts:Shiba Inu, Husk, Chihuahua…

(c) Our 1-step InstructPix2Pix

Figure 1. Our proposed CoDi efficiently distills a conditional diffusion model from an unconditional one, enabling rapid generation of
high-quality images under various conditional settings. We demonstrate CoDi’s capabilities through generated results across various tasks.

Abstract

Large generative diffusion models have revolutionized
text-to-image generation and offer immense potential for
conditional generation tasks such as image enhancement,
restoration, editing, and compositing. However, their
widespread adoption is hindered by the high computational
cost, which limits their real-time application. To address
this challenge, we introduce a novel method dubbed CoDi,
that adapts a pre-trained latent diffusion model to accept
additional image conditioning inputs while significantly re-
ducing the sampling steps required to achieve high-quality
results. Our method can leverage architectures such as
ControlNet to incorporate conditioning inputs without com-
promising the model’s prior knowledge gained during large
scale pre-training. Additionally, a conditional consistency
loss enforces consistent predictions across diffusion steps,
effectively compelling the model to generate high-quality
images with conditions in a few steps. Our conditional-

task learning and distillation approach outperforms previ-
ous distillation methods, achieving a new state-of-the-art
in producing high-quality images with very few steps (e.g.,
1-4) across multiple tasks, including super-resolution, text-
guided image editing, and depth-to-image generation.

1. Introduction

Text-to-image diffusion models [27, 29, 34] trained on
large-scale data [15, 38] have significantly dominated gen-
erative tasks by delivering impressive high-quality and di-
verse results. A newly emerging trend is to use the prior
of pre-trained text-to-image models such latent diffusion
models (LDMs) [29] to guide the generated results with ex-
ternal image conditions for image-to-image transformation
tasks such as image manipulation, enhancement, or super-
resolution [22, 53]. Among these transformation processes,
the diffusion prior introduced by pre-trained models is

1

https://fast-codi.github.io


shown to be capable of greatly promoting the visual quality
of the conditional image generation results [3, 16, 26, 31].

However, diffusion models heavily rely on an iterative
refinement process [4, 33, 35, 43, 49] that often demands
a substantial number of iterations, which can be challeng-
ing to accomplish efficiently. Their reliance on the num-
ber of iterations further increases for high-resolution image
synthesis. For instance, in state-of-the-art text-to-image la-
tent diffusion models [29], achieving optimal visual quality
typically requires 20−200 sampling steps (function evalua-
tions), even with advanced sampling methods [10, 17]. The
slow sampling time significantly impedes practical applica-
tions of the aforementioned conditional diffusion models.

Recent efforts to accelerate diffusion sampling predom-
inantly employ distillation methods [21, 36, 44]. These
methods achieve significantly faster sampling, completing
the process in just 4−8 steps, with only a marginal decrease
in generative performance. Very recent works [14, 23] show
that these strategies are even applicable for distilling pre-
trained large-scale text-to-image diffusion models.

A very common application scenario is to incorporate
new conditions into these distilled diffusion models, such
as using low-resolution images for super-resoltion [35], or
instruction-tuning for image editing [3], where the most
straightforward way is to directly finetune the distilled text-
to-image pre-trained model with new conditional data. An
alternative common approach [23] is to first finetune the dif-
fusion model with the new conditional data, then conduct-
ing distillation on the already-finetuned conditional model.
While these two methods have been demonstrated to accel-
erate sampling, each has distinct disadvantages in terms of
result quality and cross-task flexibility, as discussed below.

In this paper, we introduce a new algorithm for
Conditional Distillation which we call CoDi for efficiently
adding new controls into distilled models. Unlike previ-
ous distillation methods that rely on finetuning, our method
directly distills a diffusion model from a text-to-image pre-
training (e.g., StableDiffusion) and ends with a fully dis-
tilled conditional diffusion model. As depicted in Figure 1,
our distilled model is capable of predicting high-quality re-
sults in just 1− 4 sampling steps.

By design, our method eliminates the need for the orig-
inal text-to-image data [37, 38], a requirement in previous
distillation methods (i.e., those that first distill the uncon-
ditional text-to-image model), thereby making our method
more practical. Additionally, our formulation avoids sac-
rificing the diffusion prior in the pre-trained model dur-
ing finetuning, a common drawback in the first stage of
the finetuning-first procedure. Our extensive experiments
show that our CoDi outperforms previous distillation meth-
ods in both visual quality and quantitative metrics, particu-
larly when operating under the same sampling time.

Parameter-efficient distillation methods are a relatively

understudied area. We demonstrate that our method also en-
ables a new Parameter-Efficient distillation paradigm (PE-
CoDi). It can transform an unconditional diffusion model
to conditional tasks by incorporating a small number of
additional learnable parameters. Specifically, our formula-
tion allows for integration with various existing parameter-
efficient tuning algorithms, e.g., ControlNet [53]. We show
that our distillation process that integrates the ControlNet
adapter can efficiently preserve the generative prior in pre-
training while adapting the model to new conditioned data.
This new paradigm significantly improves the practicality
of different conditional tasks.

Our contributions are summarized as follows:
• We propose a new method for image and image-text con-

ditioned generation. It can derive a conditional diffusion
model from pretrained text-to-image LDMs for generat-
ing high-quality results in only a few sampling steps.

• The proposed method’s efficiency and effectiveness arise
from a non-trivial consistency between the model’s pre-
dictions at different time steps. Enforcing this consis-
tency through learning enables the simultaneous reduc-
tion of required sampling steps and the integration of new
conditions into the model.

• We introduce the first parameter-efficient distillation
mechanism that can produce compelling results in just
a few steps, while requiring only a small number of addi-
tional parameters compared with the pretrained LDMs.

2. Related Work
Diffusion Distillation. To reduce the sampling time of
diffusion models, Luhman et al. [21] proposed to learn a
single-step student model from the output of the original
(teacher) model using multiple sampling steps. However,
this method requires to run the full inference with many
sampling steps during training which make it poorly scal-
able. Inspired by this, Progressive Distillation [36] and its
variants, including Guided Distillation [23] and SnapFu-
sion [14], use a progressive learning scheme for improving
the learning efficiency. A student model learns to predict the
output of two steps of the teacher model in one step. Then,
the teacher model is replaced by the student model, and
the procedure is repeated to progressively distill the mode
by halving the number of required steps. We demonstrate
our method by comparing these methods on the conditional
generation tasks. We note that strategies like classifier-free
guidance distillation [14, 23], or the different adopted sam-
pling techniques [51, 54], are orthogonal to our method, and
they could be incorporated in our formulation. Even though
some concurrent works [50, 52] find that tasks like super-
resolution requires less sampling steps, we later show that
distilling pre-trained diffusion models can still improve the
performance in such restoration tasks.
Consistency Distillation. A Consistency Model is a single-
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step generative approach distilled from a pre-trained dif-
fusion model [44]. The learning is achieved by enforcing
a self-consistency in the predicted signal space. Based on
this idea, following work [7, 11, 19, 41] have focus on im-
proving the training techniques. However, learning con-
sistency models for conditional generation has yet to be
thoroughly studied. In this paper, we compare our method
against a baseline approach that enforces self-consistency
in an already fine-tuned conditional diffusion model. Our
results demonstrate that our conditional distilled model out-
performs the baseline approach, indicating the effectiveness
of our proposed distillation strategy.
Diffusion Models Adaptations. Leveraging the knowl-
edge of pre-trained models for new tasks, known as model
adaptation, has gained significant traction in NLP and
computer vision domains. This approach utilizes model
adapters [9, 28, 30, 45] and HyperNetworks [1, 6] to effec-
tively adapt pre-trained models to new domains and tasks.
In the context of diffusion models, model adapters have
been successfully employed to incorporate new conditions
into pre-trained models [24, 53]. Our proposed method
draws inspiration from these approaches and introduces a
novel application of model adapters: distilling the sampling
steps of diffusion models. Compared to fine-tuning the en-
tire model [36], our method offers enhanced efficiency and
flexibility. It enables the adaptation of multiple tasks using
the same backbone model.

3. Background

Continuous-time VP diffusion model. A continuous-time
variance-preserving (VP) diffusion model [8, 39] is a spe-
cial case of diffusion models1. It has latent variables {zt|t ∈
[0, T ]} specified by a noise schedule comprising differen-
tiable functions {αt, σt} with σ2

t = 1− α2
t . The clean data

x ∼ pdata is progressively perturbed in a (forward) Gaus-
sian process as in the following Markovian structure:

q(zt|x) = N (zt;αtx, σ
2
t I), (1)

q(zt|zs) = N (zt;αt|szs, σ
2
t|sI), (2)

where 0 ≤ s < t ≤ 1 and α2
t|s = αt/αs. Here the latent zt

is sampled from the combination of the clean data and ran-
dom noise by using the reparameterization trick [13], which
has zt = αtx + σtε.
Deterministic sampling. The aforementioned diffusion
process that starts from z0 ∼ pdata(x) and ends at zT ∼
N (0, I) can be modeled as the solution of an stochastic
differential equation (SDE) [43]. The SDE is formed by
a vector-value function f(·, ·) : Rd → Rd, a scalar function

1What we discussed based on the variance preserving (VP) form of
SDE [43] is equivalent to most general diffusion models like Denoising
Diffusion Probabilistic Models (DDPM) [8].

g(·) : R→ R, and the standard Wiener process w as:

dzt = f(zt, t)dt+ g(t)dw. (3)

The overall idea is that the reverse-time SDE that runs back-
wards in time, can generate samples of pdata from the prior
distribution N (0, I). This reverse SDE is given by

dzt = [f(zt, t)− g(t)2∇z log pt(zt)]dt+ g(t)dw̄, (4)

where the w̄ is a also standard Wiener process in reversed
time, and ∇z log pt(zt) is the score of the marginal distri-
bution at time t. The score function can be estimated by
training a score-based model sθ(zt, t) ≈ ∇z log pt(zt) with
score-matching [42] or a denoising network x̂θ(zt, t) [8]:

sθ(zt, t) := (αtx̂θ(zt, t)− zt)/σ
2
t . (5)

Such backward SDE satisfies a special ordinary differential
equation (ODE) that allows deterministic sampling given
zT ∼ N (0, I). This is known as the probability flow (PF)
ODE [43] and is given by

dzt = [f(zt, t)−
1

2
g2(t)sθ(zt, t)]dt, (6)

where f(zt, t) = d logαt

dt zt, g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t

with respect to {αt, σt} and t according to [12]. This
ODE can be solved numerically with diffusion samplers like
DDIM [40], where starting from ẑT ∼ N (0, I), we update
for s = t−∆t:

ẑs := αsx̂θ(ẑt, t) + σs(ẑt − αtx̂θ(ẑt, t))/σt, (7)

till we reach ẑ0.
Diffusion models parametrizations. Leaving aside the
aforementioned way of parametrizing diffusion models with
a denoising network (signal prediction) or a score model
(noise prediction equation 5), in this work, we adopt a pa-
rameterization that mixes both the score (or noise) and the
signal prediction. Existing methods include either predict-
ing the noise ε̂θ(xt, t) and the signal x̂θ(zt, t) separately
using a single network [5], or predicting a combination of
noise and signal by expressing them in a new term, like the
velocity model v̂θ(zt, t) ≈ αtε − σtx [36]. Note that one
can derive an estimation of the signal and the noise from the
velocity one,

x̂ = αtzt − σtv̂θ(zt, t), and ε̂ = αtv̂θ(zt, t) + σtzt. (8)

Similarly, DDIM update rule (equation 7) can be rewritten
in terms of the velocity parametrization:

ẑs := αs(αtẑt−σtv̂θ(ẑt, t))+σs(αtv̂θ(ẑt, t)+σtẑt). (9)

Self-consistency property. To accelerate inference, [44]
introduced the idea of consistency models. Let sθ(·, t)
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be a pre-trained diffusion model trained on data x ∼
Odata. Then, a consistency function fφ(zt, t) should sat-
isfy that [44] where fφ(x, 0) = x and

fφ(zt, t) = fφ(zt′ , t
′), ∀t, t′ ∈ [0, T ], (10)

where {zt}t∈[0,T ] is the solution trajectory of the probabil-
ity flow ODE (PF-ODE) (equation 6). A boundary condi-
tion, i.e., fφ(x, 0) = x is parameterized with skip connec-
tions for ensuring continuous properties similar as done in
previous works [2, 10, 44]:

Fφ(zt, t) = cskip(t)x + cout(t)fφ(zt, t), (11)

where cskip(0) = 1, cout(0) = 0. In practice, fφ(zt, t)
is usually a denoising network that is distilled from a pre-
trained diffusion model. We later show that we can replace
the frozen PF-ODE with the distillation network and thus fit
the PF-ODE for new conditional data during distillation.

4. Method
4.1. From Unconditional to Conditional

In order to utilize the image generation prior encapsulated
by the pre-trained unconditional2 diffusion model, we first
propose to adapt the unconditional diffusion model into a
conditional version for the conditional data (x, c) ∼ pdata.
Similar to the zero initialization technique used by control-
lable generation [25, 53], our method adapts the uncondi-
tional pre-trained architecture by using an additional condi-
tional encoder.

To elaborate, we take the widely used U-Net as the dif-
fusion network. Let us introduce the conditional-module
by duplicating the encoder layers of the pretrained network.
Then, let hθ(·) be the encoder features of the pretrained
network, and hη(·) be the features on the additional condi-
tional encoder. We define the new encoder features of the
adapted model by

hθ(zt)
′ = (1− µ)hθ(zt) + µhη(c), (12)

where µ is a learnable scalar parameter, initialized to µ =
0. Starting from this zero initialization, we can adapt the
unconditional architecture into a conditional one. Thus,
our conditional diffusion model ŵθ(zt, c, t) is the result
of adapting the pre-trained unconditional diffusion model
v̂θ(zt, t) with the conditional features hη(c).

4.2. A New Conditional Diffusion Consistency

Our core idea is to optimize the adapted conditional diffu-
sion model ŵθ(zt, c, t) from v̂θ(zt, t), so it satisfies a con-
ditional diffusion consistency property:

ŵθ(zt, c, t) = ŵθ(ẑs, c, s), ∀t, s ∈ [0, T ], (13)
2The discussed unconditional models include text-conditioned image

generation models, e.g., StableDiffusion [29] and Imagen [34], which are
only conditioned on text prompts.

where the ẑs belong to the probability flow ODE (equa-
tion 6) of the adapted model. Note that this consistency
property differs from the one in consistency models [44] in
the probability flow ODE model used for sampling ẑs and
the consistency loss space. To motivate this formulation, let
us introduce the following general remark.

Remark 1. If a diffusion model, parameterized by
v̂θ(zt, t), satisfies the self-consistency property (equa-
tion 10) on the noise prediction ε̂θ(zt, t) = αtv̂θ(zt, t) +
σtzt, then it also satisfies the self-consistency property on
the signal prediction x̂θ(zt, t) = αtzt − σtv̂θ(zt, t).

The proof is a direct consequence of change of vari-
ables from noise into signal and is given in Appendix.
Based on this general remark, we claim that we can opti-
mize the conditional diffusion model ŵθ(zt, c, t) to jointly
learn to enforce the self-consistency property on the noise
prediction ε̂θ(zt, c, t) and the new conditional generation
(x, c) ∼ pdata with the signal prediction x̂θ(zt, c, t). We
then impose the boundary condition for consistency distilla-
tion by parameterizing the noise prediction ε̂θ(zt, c, t) with
the same skip connections of equation 17.
Prediction of ẑs. In the distillation process given by equa-
tion 15, the latent variable ẑs is achieved by running one
step of a numerical ODE solver. Consistency models [44]
solve the ODE using the Euler solver, while progressive dis-
tillation [36] and guided distillation [23] run two steps using
the DDIM sampler (equation 7).

We propose an alternative prediction for ẑs that lever-
ages the adapted diffusion model, x̂θ(zt, c, t), as opposed
to the conventional frozen pretraining one. We then sample
ẑs in the adapted diffusion model PF-ODE by

ẑs = αsx̂θ(zt, c, t) + σsε, with zt = αtx + σtε, (14)

and ε ∼ N (0, I). This novel formulation effectively harmo-
nizes the conflicting optimization directions between con-
sistency distillation from pretrained data and conditional
guidance from conditional data.
Training scheme. Inspired by consistency models [44], we
use the exponential moving averaged parameters θ− as the
target network for stabilize training. Then, we can minimize
the following training loss for conditional distillation:

L(θ) :=E[dε(ε̂θ-(ẑs,s,c), ε̂θ(zt,t,c))) + dx(x, x̂θ(zt, t, c)].
(15)

where dε(·, ·) and dx(·, ·) are two distance functions to mea-
sure difference in the noise space and in the signal space
respectively. Note that the total loss is a balance between
the conditional guidance given by dx, and the noise self-
consistency property given by dε.

The overall conditional distillation algorithm is pre-
sented in Appendix. In the following, we will detail how
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Figure 2. Sampled results between distilled models learned with alternative conditional guidance. Left curves shows the quantitative
performance between the LPIPS and FID in {1, 2, 4, 8} steps. Right part show the visual results where each result comes from the 1
sampling step (top) or 4 sampling steps (bottom). The distance function from the left to right is ‖x − E(D(x̂θ(zt, c)))‖22, ‖D(x) −
D(x̂θ(zt, c))‖22, Flpips(D(x),D(x̂θ(zt, c)), and our default ‖x− x̂θ(zt)‖22, respectively.

we sample ẑs and discuss other relevant hyperparameters in
our method (e.g., dx).

4.3. Effects of Different Conditional Guidance

To finetune the adapted diffusion model with the new con-
ditional data, our conditional diffusion distillation loss in
equation 15 penalizes the difference between the predicted
signal x̂θ(zt, c, t) and the corresponding image x with a dis-
tance function dx(·, ·) for distillation learning.

Here we investigate the impact of the distance func-
tion dx(·, ·) in the conditional guidance. According to
both qualitative and quantitative results, shown in Fig-
ure 2, different distance functions lead to different be-
haviours when doing multi-step sampling (inference). If
dx = ‖ · ‖2 in the pixel space or the encoded space, i.e.,
‖x − E(D(x̂θ(zt, c, t)))‖22 and ‖D(x) − D(x̂θ(zt, c, t))‖22,
multi-step sampling leads to more smooth and blurry re-
sults. If instead we adopt a perceptual distance in the pixel
space, i.e., Flpips(D(x),D(x̂θ(zt, c, t))), the iterative re-
finement in the multi-step sampling leads to over-saturated
results. Overall, by default we adopted the `2 distance in
the latent space since it leads to better visual quality and
achieve the optimal FID with 4 sampling steps in Figure 2.

4.4. Parameter-Efficient Conditional Distillation

Our method offers the flexibility to selectively update pa-
rameters pertinent to distillation and conditional finetun-
ing, leaving the remaining parameters frozen. This leads
us to introduce a new fashion of parameter-efficient condi-
tional distillation, aiming at unifying the distillation process
across commonly-used parameter-efficient diffusion model
finetuning, including ControlNet [53], T2I-Adapter [24],
etc. We highlight the ControlNet architecture illustrated in
Figure 3 as an example. This model duplicates the encoder
part of the denoising network, highlighted in the green
blocks, as the condition-related parameters. Our method
can then optimizes the conditional guidance and the consis-
tency by only updating the duplicated encoder.

Text

Noise

...
pretraining

Image

new conditional data 

...

zero-conv

zero-conv

Noise 

frozen target / online network diffusion latent variables  attention layers

Signal 

Noise 

Signal 

Figure 3. Network architecture illustration of our parameter-
efficient conditional distillation framework.

CM-I CM-II GD-I GD-II Ours

stage-1 distill finetune distill finetune conditional distill
stage-2 finetune distill finetune distill n.a.

7 3 3 3 3

Table 1. We compare previous distillation methods by applying
them to a T2I LDMs and then finetuning the distilled models (CM-
X), and also distillation methods by directly applying them into the
finetuned LDMs (GD-X). Since fine-tuning a distilled consistency
model within the existing diffusion loss framework is not feasible,
we excluded it from our comparison.

5. Experiments

We demonstrate the efficacy of our method on represen-
tative conditional generation tasks, including, real-world
super-resolution [48], depth-to-image generation [53], and
instructed image editing [3]. We utilize a pre-trained text-
to-image latent diffusion models3 and conduct conditional
distillation directly from the model. Each of the compared
methods, including the text-to-image pretraining, was inde-
pendently trained for 8 days on 64 TPU-v4 pods.

3We base our work on a version of Latent Diffusion Model trained on
internal text-to-image data. It is comparable with StableDiffusion v1.4.
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LR CM-II CoDi (Ours) HR Ground Truth Mask CM-II PF-CoDi (Ours)
Figure 4. We show the results sampled in 4 steps by different models. Samples generated according to the low-resolution images (left) and
masks (right) respectively. Please see our supplement for many more examples such as visual comparisons with the other methods.

Super-resolution (DF2K)
Sampling Steps Methods FID ↓ LPIPS ↓

1 step RealESRGAN [48] 37.640 0.3112
200 steps StableSR [46] 24.440 0.3114

4 steps DiffIR [50] 31.719 0.3088
4 steps ControlNet [53] 34.56 0.3381

250 steps LDMs [29] 19.200 0.2639
50 steps LDMs [29] 19.231 0.2603
20 steps LDMs [29] 20.510 0.2627

8 steps LDMs [29] 24.493 0.2789
6 steps LDMs [29] 26.338 0.2873
4 steps LDMs [29] 29.266 0.3014
4 steps + DPM Solve [17] 28.936 0.3077
4 steps + DPM Solver++ [18] 28.937 0.3073

GD-I [23] 27.806 0.3202
GD-II [23] 23.675 0.2796

CM-II (frozen) [44] 28.088 0.3192
CM-II [44] 27.810 0.3172

4 steps PE-CoDi (Ours) 25.214 0.2941
CoDi (Ours) 19.637 0.2656

Inpainting (ImageNet)
Sampling Steps Methods FID LPIPS

1000 steps Palette [33] 13.151 -
250 steps Repaint [20] - 0.2827

50 steps ControlNet [53] 14.895 0.2260

4 steps ControlNet [29] 20.205 0.2635
+ DPM Solver++ [18] 19.941 0.2644

CM-II [44] 17.710 0.2580
GD-II [23] 15.95 0.2452

4 steps PE-CoDi (Ours) 14.700 0.2231

Text-guided Depth-to-image (WebLI)
Sampling Steps Methods FID CLIP

250 steps ControlNet [53] 20.884 0.2910

4 steps ControlNet [53] 29.780 0.2854
+ DPM Solver++ [18] 32.208 0.2834

CM-II [44] 27.640 0.2869
GD-II [23] 26.51 0.2870

4 steps PE-CoDi (Ours) 23.047 0.2874

Table 2. Quantitative performance comparisons between the baselines and our methods. Our model can achieve comparable performance
in 4 steps than models sampled in 250 steps. The 4-step sampling results of our parameters-efficient distillation (PE-CoDi) is comparable
with the original 8-step sampling results, while PE-CoDi doesn’t sacrifice the original generative performance with frozen backbone.

5.1. Results

Baselines. We compare our method with two previous
SOTA diffusion distillation methods, i.e., consistency mod-
els (CM) [44] and guided-distillation (GD) [23]. We im-
plement CM with ControlNet without freezing denoising

U-Net, which leads to the same network architecture and
the same number of parameters as ours. For completeness,
we consider two different ways of applying the tested dis-
tillation techniques, by first making the model conditional
(fine-tuning first), or by first distilling the model and then
making it conditional (distill first). A summary of the tested
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(a) Depth (b) ControlNet (c) CoDi (Ours)

Figure 5. Samples generated according to the depth image (left) from ControlNet sampled in 4 steps (middle), and ours from the uncondi-
tional pretraining sampled in 4 steps (right). Please see our supplement for many more examples.

Input IP2P (200 steps) CoDi (Ours) (1 step)

make it sunset

Input IP2P (200 steps) CoDi (Ours) (1 step)

make it long exposure
Input IP2P (200 steps) CoDi (Ours) (1 step)

make it low key

Input IP2P (200 steps) CoDi (Ours) (1 step)

make it sunny

Figure 6. Generated edited image according to the input image and the instruction (bottom) from Instructed Pix2Pix (IP2P) sampled in 200
steps and ours sampled in 1 step. Please see our supplement for many more examples.

configurations is shown in Table 1. Additionally, we com-
pare our method to recently introduced fast ODE solvers,
including DPM-Solver [17] and DPM-Solver++ [18].
Real-world super-resolution. We evaluate our method
on the challenging real-world super-resolution task,
where the degradation is simulated using Real-ESRGAN
pipeline [47]. Following StablSR [46], we compare all
methods on 3,000 randomly degraded image pairs. The
quantitative performance is shown in Table 2. The results
demonstrate that our distilled method leads to a signifi-
cant better performance than other distillation techniques.
Our method achieves better results than fine-tuned diffusion
models that requires 50× more sampling setps. Compared
with the distilled model by applying the guided-distillation,
our model outperforms it both quantitatively and qualita-
tively. The visual comparison presented in Figure. 4 also
demonstrates the superiority of our method.
Inpainting. Similar to the above super-resolution compar-
isons, we demonstrate our method on the inpainting task
that conditioned on the masked image, as the quantitative

performance shown in Table 2. Similar to Palette [33], we
apply random masks into ImageNet data [32] for both train-
ing and testing. Note that we conduct experiments on the
up-scaled images in a 512× 512 resolution, which is differ-
ent than Palette in 256 × 256 resolution. Even though we
evaluate their results in the same resoltuion, their number
can only be used for reference.
Depth-to-image generation. In order to demonstrate the
generality of our method on less informative conditions, we
apply our method in depth-to-image generation. The task
is usually conducted in parameter-efficient diffusion model
finetuning [24, 53], which can demonstrate the capability
of utilizing text-to-image generation priors. As Figure 5
illustrated, our distilled model from the unconditional pre-
training can effectively utilize the less informative condi-
tions and generate matched images with more details.
Instructed image editing. To demonstrate our conditional
distillation capability on text-to-image generation, here we
apply our method on text-instructed image editing data [3]
and compare our conditional distilled model with the In-
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Methods Params FID LPIPS

LDMs 865M 29.266 0.3014
+ ControlNet 1.22B 28.951 0.3049

PE-CoDi (Ours) 364M 25.214 0.2941
CoDi (Ours) 1.22B 19.637 0.2656
- distilling PF-ODE 1.22B 20.307 0.2733
- noise-consistency 1.22B 25.728 0.3252

Table 3. Impact of the network architecture and con-
ditional distillation process, where all methods are
using the same 4-step sampling.
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Figure 7. Ablations between alternative settings of our method.

structPix2Pix (IP2P) model. As the results shown in Fig-
ure 6, our single-step sampling result can achieve compara-
ble visual quality to 200 steps of the IP2P model. We ex-
perimentally find only small visual difference between the
results from our single-step sampling and the 200 steps sam-
pling. We believe this suggests that the effect of the condi-
tional guidance on distillation correlates with the similarity
between the conditions and the target data, further demon-
strating the effectiveness of our method.

5.2. Ablations

Here we compare the performance of the aforementioned
designs in our conditional distillation framework. Specifi-
cally we focus on the representative conditional generation
task i.e., real-world super-resolution [48] that conditions on
the low-resolution, noisy, blurry images.
Network architecture and distillation process. To elimi-
nate the impact of the architecture change, we compare our
method with a baseline given by adding a ControlNet mod-
ule trained on super-resolution without freezing the UNet.
As Table 3 shows, simply adopting a ControlNet mod-
ule for super-resolution has negligible impact on the per-
formance. To evaluate the proposed conditional diffusion
consistency, we removed the noise consistency term (equa-
tion 15) and employed the training model in the PF-ODE
instead of the frozen one as used in [44] formulation. As
shown in Table 3, adopting the distillation model PF-ODE
and noise-space consistency have positive effects on the fi-
nal results. These comparisons demonstrate the superiority
of our method without network architecture effects.
Pretraining. To validate the effectiveness of leveraging
pretraining in our model, we compare the results of random
initialization with initialization from the pre-trained text-to-
image model. As shown in Figure 7, our method outper-
forms the random initialized counterpart by a large margin,
thereby confirming that our strategy indeed utilizes the ad-
vantages of pretraining during distillation instead of simply
learning from scratch.
Sampling of zt. We empirically show that the way of sam-
pling zt plays a crucial role in the distillation learning pro-
cess. Compared with the previous protocol [23, 36] that

samples zt in different time t in a single batch, we show
that using a consistent time t across different samples in a
single batch leads to a better performance in our targeted 1-
4 steps. As the comparisons shown in Figure 7, the model
trained with a single time t (in a single batch) achieves bet-
ter performance in both the visual quality (i.e., FID) and the
accuracy (i.e., LPIPS) when the number of evaluations is
increasing during inference.

Conditional guidance. In order to demonstrate the impor-
tance of our proposed conditional guidance (CG) for dis-
tillation, which is claimed to be capable of regularizing
the distillation process during training, we conduct compar-
isons between the setting of using the conditional guidance
as r = ‖x− x̂θ(zt, c)‖22 and not using as r = 0. As the re-
sult shown in Figure 7, the conditional guidance improves
both the fidelity of the generated results and visual quality.
We further observed that the distillation process will con-
verge toward over-saturated direction without CG, which
thus lower the FID metric. In contrast, our model avoids
such a local minimum by using the proposed guidance loss.

6. Conclusion

We introduce a new framework for distilling an uncondi-
tional diffusion model into a conditional one that allows
sampling with very few steps. To the best of our knowledge,
this is the first method that distills the conditional diffusion
model from the unconditional pretraining in a single stage.
Compared with previous two-stage distillation and finetun-
ing techniques, our method leads to better quality given the
same number of (very few) sampling steps. Our method
also enables a new parameter-efficient distillation that al-
lows different distilled models, trained for different tasks,
to share most of their parameters. Only a few additional
parameters are needed for each different conditional gen-
eration task. We believe the method can serve as a strong
practical approach for accelerating large-scale conditional
diffusion models.
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A. Discussion
Limitations. We have shown image conditions benefit our distillation learning. However, the distillation learning depends
on the adapter architecture that introduces additional computation in our current framework. As a future work, we would
like to explore lightweight network architectures [14] in our distillation technique to further reduce the inference latency.
Nevertheless, CoDI’s significantly reduced sampling steps lead to lower latency. See the following table (measured in TPUv5)
for a detailed comparison:

Method CoDi (4step) ControlNet (4step) LDMs (4step) LDMs (50step)

Latency (ms) 107 ± 3 107 ± 3 103 ± 2 977 ± 1

Ethics statement. The diffusion distillation technique introduce in this work holds the promise of significantly enhancing
the practicality of diffusion models in everyday applications such as consumer photography and artistic creation. While we
are excited about the possibilities this model offers, we are also acutely aware of the possible risks and challenges associated
with its deployment. Our model’s ability to generate realistic scenes could be misused for generating deceptive content. We
encourage the research community and practitioners to prioritize privacy-preserving practices when using our method.

B. Proofs
B.1. Notations

We use v̂θ(·, ·) to denote a pre-trained diffusion model that learns the unconditional data distribution x ∼ pdata with param-
eters θ. The signal prediction and the noise prediction transformed by equation 8 are denoted by x̂θ(·, ·) and ε̂θ(·, ·), and they
share the same parameters θ with v̂θ(·, ·).

B.2. Self-consistency in Noise Prediction

Remark. If a diffusion model, parameterized by v̂θ(zt, t), satisfies the self-consistency property on the noise prediction
ε̂θ(zt, t) = αtv̂θ(zt, t) + σtzt, then it also satisfies the self-consistency property on the signal prediction x̂θ(zt, t) = αtzt −
σtv̂θ(zt, t).

Proof. The diffusion model that satisfies the self-consistency in the noise prediction implies:

ε̂θ(zt′ , t
′) = ε̂θ(zt, t),

αt′ v̂θ(zt′ , t
′) + σt′zt′ = αtv̂θ(zt, t) + σtzt,

v̂θ(zt′ , t
′) =

αtv̂θ(zt, t) + σtzt − σt′zt′
αt′

,

(16)

Based on the above equivalence, the transformation between the signal prediction xθ(zt′ , t
′) and xθ(zt, t) by using the

update ruler in equation 7 and the reparameterization trick is:

xθ(zt′ , t
′) = αt′zt′ − σt′ v̂θ(zt′ , t′)

= αt′zt′ − σt′
αtv̂θ(zt, t) + σtzt − σt′zt′

αt′
// integrating equation 16

=
α2
t′zt′ − σt′αtv̂θ(zt, t)− σt′σtzt + σ2

t′zt′

αt′

=
(1− σ2

t′)zt′ − σt′αtv̂θ(zt, t)− σt′σtzt + σ2
t′zt′

αt′

=
zt′ − σt′(αtv̂θ(zt, t) + σtzt)

αt′

=
zt′ − σt′(ε̂θ(zt, t))

αt′
// transformed with equation 8

=
αt′xθ(zt, t) + σt′ ε̂θ(zt, t)− σt′(ε̂θ(zt, t))

αt′
// update ruler equation 9 of DDIM

= xθ(zt, t).
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The derived equivalence shows that enforcing the self-consistency in the noise prediction, which is implemented by learning
to minimize our distillation loss in equation 15, enforces the self-consistency in the signal prediction and can distill the
pre-trained diffusion model.

C. Difference between Consisntecy Models

Algorithm 1 Conditional Diffusion Distillation (CDD)

Input: conditional data (x, c) ∼ pdata, adapted diffusion model ŵθ(zt, c, t), learning rate η, distance functions dε(·, ·)
and dx(·, ·), and EMA γ
θ− ← θ // target network initlization
repeat

Sample (x, c) ∼ pdata and t ∼ [∆t, T ] // empirically ∆t = 1
Sample ε ∼ N (0, I)
s← t−∆t
Sample zt ← αtx + σtε
- x̂t ← αtzt − σtΦ(zt, c, t)
- ε̂t ← αtΦ(zt, c, t) + σtzt
+ x̂t ← αtzt − σtŵθ(zt, c, t) // signal prediction in equation 8
+ ε̂t ← αtŵθ(zt, c, t) + σtzt // noise prediction in equation 8
ẑs ← αsx̂t + σsε̂t // update rule in equation 9
- x̂′t ← αtwθ(zt, c, t) + σtzt
- x̂′s ← αtwθ−(ẑs, c, s) + σsẑs
+ ε̂s ← αswθ−(ẑs, c, t) + σsẑs // noise prediction in equation 8
- L(θ, θ−)← dx(x̂′t, x̂

′
s)

+ L(θ, θ−)← dε(ε̂t, ε̂s) + dx(x, x̂t)
θ ← θ − η∇θL(θ,θ−)
θ− ← stopgrad(γθ− + (1− γ)θ) // exponential moving average

until convergence

D. Implementation Details
Skip Connections. We implement the skip connections as follows, which is same as the consistency models [44] and
EDMs [10] for satisfying the boundary condition but fφ could be either the signal prediction or noise prediction:

f ′φ(zt, t) = cskip(t)x + cout(t)fφ(zt, t), (17)

where
cskip(t) =

σdata
t2 + σ2

data

, cout(t) =
σdatat√
t2 + σ2

data

. (18)

We use σdata = 0.5.

E. Sampling Process Visualization
In order to provide a comprehensive understanding about the sampling process of our distilled model, as well as the difference
between ours and the finetuned conditional diffusion model, here we visualize their predicted clean image x̂0 at each sampling
steps in equation 8.

As the results shown in Figure 8, we can find that our method constantly adds more details into the predicted x̂0 when sam-
ples more steps. In contrast, such a constanly refinement is less visible in the results of the finetuned undistilled model. The
different demonstrate that our method indeed can reduce the sampling time by learning to replicate the iterative refinement
effects.
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sampling steps 0← T with finetuned model

sampling steps T → 0 with our conditional distilled model

Figure 8. Sampling process visualization of the distilled model by using our conditional diffusion distillation and the finetuned conditional
diffusion model. The results belong to the same row come from the predicted x̂0 at different time of the same sampling process, while
different row denotes different sampling process that uses different the total number of the sampling time, which are increased from T = 0
into T = 10 and decreased from T = 10 into T = 0, respectively. 14



F. Additional results

LR StableSR DiffIR LDMs (4 steps) GD-II (4 steps) CM-II (4 steps) CoDi (Ours) HR

Figure 9. Visual comparisons of various diffusion-based methods on the simulated real-world super-resolution benchmark. The input of
all methods is a ‘Bicubic’-upsampled image.
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Input IP2P (200 steps) Ours (1 step) Ours (4 step)

make it sunny

make it sunset

Figure 10. Visual comparisons with the IP2P model and our conditional distilled model.
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Input IP2P (200 steps) Ours (1 step) Ours (4 step)

make it long exposure

make it lowkey

Figure 11. Visual comparisons with the IP2P model and our conditional distilled model.
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Figure 12. Visual comparisons of depth to image generation with the native ControlNet (central row of each item) and our conditional
distilled model (bottom row of each item) in 4 sampling steps.
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Figure 13. Visual comparisons of depth to image generation with the native ControlNet (central row of each item) and our conditional
distilled model (bottom row of each item) in 4 sampling steps.
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