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Abstract

Conditional diffusion probabilistic models can model the
distribution of natural images and can generate diverse and
realistic samples based on given conditions. However, of-
tentimes their results can be unrealistic with observable
color shifts and textures. We believe that this issue results
from the divergence between the probabilistic distribution
learned by the model and the distribution of natural images.
The delicate conditions gradually enlarge the divergence
during each sampling timestep. To address this issue, we
introduce a new method that brings the predicted samples
to the training data manifold using a pretrained uncondi-
tional diffusion model. The unconditional model acts as a
regularizer and reduces the divergence introduced by the
conditional model at each sampling step. We perform com-
prehensive experiments to demonstrate the effectiveness of
our approach on super-resolution, colorization, turbulence
removal, and image-deraining tasks. The improvements ob-
tained by our method suggest that the priors can be incor-
porated as a general plugin for improving conditional dif-
fusion models. Our demo is http://bi-noising.demohub.cc.

1. Introduction

In recent years, conditional image generation has re-
ceived significant attention in the computer vision commu-
nity. Some applications that make use of conditional image
generation include text-to-image generation (e.g. DALLE-
2 [28]) and image restoration (e.g. SR3 [31]). The most
challenging part of these restoration applications comes
from the ill-posedness, i.e., the same degraded images may
come from multiple different ground truth images. The
ill-posedness affects the performance of traditional meth-
ods like sparse coding [20, 21] and makes it difficult for
the learning-based algorithms to solve this problem. Al-
though recent learning-based methods have made impres-
sive progress [17], there remains a significant quality gap

between the prediction and natural images.
Recent works that utilize pretrained generative networks

have shown the superior visual quality of conditional gener-
ation compared to the aforementioned end-to-end learning
methods. Generative models have shown impressive im-
age generation results in terms of sample quality and diver-
sity, indicating their capacity for encapsulating rich photo-
realistic priors. Some representative methods include Gen-
erative Adversarial Networks (GANs) [7], Variational Au-
toencoders (VAEs) [14], and Autoregressive models [15].
Their generation process generally starts from the standard
normal distribution from which diverse high-fidelity images
sampled [12,13]. Recent work [29] has shown that the con-
tinuity in the normal distribution remains preserved in the
sampled results. For example, the results produced from
two different Gaussian noises with the same model will be
close to each other if the two noises are close to each other
in Euclidean space. The continuity allows one to perform
conditional image generation in an inversion manner that
inverts degraded images into standard noises. This inverted
noise can then generate clear images by projecting the noise
with generative models. Following the protocol, multi-
ple GAN-based generative priors, including optimization-
based [23] and learning-based [29] schemes have been pro-
posed for various real-world tasks [37].

Denoising diffusion probabilistic models [9, 32] are the
most recent deep generative models. They have shown com-
parable and even better performance at image synthesis than
GANs with delicate guidance [6]. These models learn to
sequentially denoise stochastic noise map starting from the
normal distribution N (0, I) to clean images. However, the
generation process is stochastic, and the continuity cannot
be preserved from the initial sampled noise. For instance,
two sampled noises from the same normal distribution with
a small divergence may generate significantly different clear
images. Such a noncontinuous generation process prevents
the generative priors from being applied along with the de-
noising process like the inversion GANs [29]. Hence, de-
spite their impressive synthesis capacity, diffusion model-
based priors have not been explored before.

http://bi-noising.demohub.cc
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Figure 1. The graphical model showing the difference between the previous diffusion sampling process and ours with bi-noising guidance
for colorization, where xt is the noise of each diffusion process at timestep t, p(x0) is the predicted noise-free start point of x0, and arrows
indicate the denoising results of the diffusion models at each denoising process. Top figure shows how the conditional denoising process
for colorization gradually accumulates the incorrect noise and results in artifacts. Instead, as shown on the bottom figure, the proposed
additional noising and denoising steps diminish the incorrect noise and help in achieving better results.

In this work, we introduce a new method, named bi-
noising diffusion, for utilizing rich priors encapsulated in
the unconditional pretrained diffusion models. Inspired by
implicit sampling that was first developed in the denoising
diffusion implicit models [33] for acceleration, we show
that the implicit sampling using an unconditional pretrained
diffusion model has a capacity for correcting the divergence
of distributions modeled by the conditional diffusion mod-
els. Specifically, we make a coarse implicit prediction at
each intermediate diffusion time step by sampling from the
conditional model. We then sample the prediction back to
the intermediate step with the forward diffusion process. Fi-
nally, we make a refined prediction by utilizing an uncondi-
tional model. Fig. 1 visualizes the bi-noising procedure and
the error by predicting the noiseless start-point image p(x0)
of the noise image xt. Using this two-step procedure, one
can utilize the embedded rich priors learned by the uncon-
ditional model and produce better-quality images. This hy-
pothesis is further validated through extensive experiments
demonstrating that the introduced method performs favor-
ably against state-of-the-art conditional diffusion models.

2. Related Work

Iterative methods. Finding the corresponding latent
code [1, 2, 5, 8, 23] or sampled noise [4, 19, 22] of distorted
images for restoration is one of the most straightforward
ways of utilizing the generative priors. The intuition is that
the pretrained generative models tend to produce natural re-
sults from their initial distribution. Thus the corresponding
latent code or sampled noise can be projected to the restored
images without additional optimization or learning. Menon
et al. [23] proposed optimizing the latent code based on the
difference between the generative results and the distorted
images. Gu et al. [8] proposed to optimize multiple latent

codes and compose them together for better visual quality.
Similar iterative methods based on diffusion models have
also been explored. Choi et al. [4] proposed to refine the
sampled noise at each reverse diffusion step with the resid-
ual of distorted images. However, the applied stochastic
iterative process tends to produce significantly different re-
sults though slightly changing its input. Therefore, these
methods can only be applied to applications that do not re-
quire preserving the image identity.

Learning-based methods. Employing additional en-
coders [3, 29, 37, 42] to predict the latent code is another
promising way that can bypass the stochastic optimization
issues. However, such a method is incompatible with the
diffusion models since it is impossible to encode the dis-
tribution of each reverse diffusion process for models that
employ many sampling timesteps. Existing works learn to
model conditional generative restoration [31, 38] instead.
Richardson et al. [29] proposed to encode images with a
ResNet backbone into an extended W+ latent space, which
defines upon features of each input layer of the generative
networks. Wang et al. [37] proposed to encode images with
a U-Net backbone and modulate the features of each gen-
erative layer of the generative networks. Saharia et al. [31]
proposed to learn the noise distribution with the distorted
image as the condition. Whang et al. [38] proposed to
learn the generative process of residual given restored im-
ages. Compared with these GAN-based learning methods, a
large number of sampling timesteps significantly increases
the complexity of designing the corresponding encoders and
thus makes the priors difficult to be learned.

Classifier guidance. Diffusion models have been using
class information heavily to perform truncated or low-
temperature sampling to increase the sample quality. The
initial attempt [6, 26, 32, 35] is to incorporate a pre-trained



classifier by using its gradients to guide the diffusion sam-
pling process. However, it complicates the diffusion model
because additional training is required for the classifier on
noisy data. Classifier-free guidance [10, 36] is another ap-
proach for addressing the complexity issue. It alleviates
the complexity by combining the existing network with the
classifier for guidance, e.g., Ho et al. [10] use conditional
diffusion network with an empty condition, and Wang et
al. [36] use pretrained segmentation with a null label. Nev-
ertheless, the classifier fails at natural images, and its gra-
dient is meaningless for restoration. Its strength parameters
also become less reasonable for the almost definite restora-
tion sampling process. In this paper, we are interested in
incorporating the sampling quality superiority of the empty
condition and the sampling guidance ability of degraded im-
ages. We show that the empty condition can bring the incor-
rect noisy image back into the high-quality manifold. Com-
pared with the classifier and classifier-free guidance, our bi-
noising guided diffusion process keeps the same complexity
but better fits the restoration task.

3. Proposed Method
In this section, we discuss the proposed mechanism to

add the embedded priors to diffusion models. For consis-
tency, we denote the intermediate output of the uncondi-
tional diffusion model as ϵθ(·), parameterized by θ in the
upcoming discussions following Denoising Diffusion Prob-
abilistic Models [9] (DDPM). The additional, conditional
diffusion model is denoted by fϕ(·), the condition (i.e.
degraded images) and natural image pairs are denoted by
{x0,y0}, where the conditional diffusion model fϕ(·) with
parameters ϕ denoises noisy image xt at timestep t with the
concatenated condition y0.

3.1. Preliminaries

Diffusion probabilistic models belong to a new family of
generative models [6,9,27,32,34] that can effectively model
intractable distributions [32]. A diffusion process consists
of two parts, i.e., the forward process and the reverse dif-
fusion process. In the forward diffusion process, a clean
image is sampled from its data distribution and destroyed in
T timesteps by repetitive noising using Gaussians of very
small variances. Specifically, the forward process can be
formulated as

q(yt|yt−1) = N
(
yt;

√
βty0, (1− βt) I

)
=

√
βty0 + ϵ

√
1− βt, ϵ ∼ N (0, I),

(1)

or
q(yt|y0) = N

(
yt;

√
ᾱty0, (1− ᾱt) I

)
=

√
ᾱty0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I),

(2)

where αt = 1 − βt and ᾱt :=
∏t

s=1 αs come from the
variance schedule {β1, . . . , βT } . The key idea here is that
for large values of T , repetitive noising using Gaussians of

small variances lead to a standard Gaussian, i.e.,
q(yT |y0) = N (yT ; 0, I) . (3)

Now at each reverse timestep t, we attempt to recon-
struct the noisy yt−1 from yt using a distribution p modeled
by a neural network with parameters θ. The parameters of
the distribution pθ(·), found by optimizing variational lower
bound of log-likelihood of pθ(y0), which is simplified by
Ho et al. [9] by claiming that the major component in the
objective comes from Lt−1, and the simplified loss is

Lt−1 = Et∼[1,T ],ϵ∼N (0,I)

[
∥ϵ− ϵθ (yt, t)∥2

]
. (4)

Here network ϵθ(·) models the noise ϵ ∼ N (0, I) at each
timestep t with the denoised one yt, which can be seen
as the process of learning the gradient of distributions with
score matching according to Song et al. [34]. Therefore, we
can learn the impressive perceptual synthesizing capacity
with the simplified loss function between noises.

3.2. Learning to Refine Diffusion Process

In our experiments, we denote the recent diffusion mod-
els [31, 38] that learn the diffusion process with conditions
as the way of Learning to Refine Diffusion Process (LRDP).
LRDP models the conditional distribution of a clean image
given a degraded image for restoration learning, and thus it
requires separate training for different tasks or datasets. The
objective for this learning process is formulated as

Lvlb := Et∼[1,T ],ϵ∼N (0,I)

[
∥ϵ− ϵθ (x0,yt, t)∥2

]
, (5)

where yt ∼ N (yt|
√
ᾱty0, (1 − ᾱt)I). The network ar-

chitecture in LRDP is a slightly changed version from the
original U-Net found in DDPM, and the additional input
x0 and y0 are concatenated and passed to the input layer.
Similarly, the reverse diffusion process of LRDP is slightly
changed from the original one and formulated as

yt−1 =
1

√
αt

(
yt −

1− αt√
1− ᾱt

ϵθ (x0,yt, t)

)
+

√
1− αtz,

(6)
where z ∼ N (0, I) and αt, ᾱt is the variant of the pre-
defined variance schedule {β1, . . . , βT }, that is αt := 1−βt

and ᾱt :=
∏t

s=1 αs. Since the diffusion process con-
ditions on the specific type of degradation p(·) that pro-
duces degraded image x0 given clear image y0 as p(x0|y0),
LRDP needs re-training from scratch for different restora-
tion tasks, which further heightens the training cost.

We experimentally find that such a protocol degrades the
visual quality of the generation compared with the one with-
out x0 conditioned. The most straightforward assumption
towards the performance drop is that the assumed posterior
p(x0|y0) contrasts with the diffusion process pθ(y0|x0) ∝
pθ(y0)pθ(x0|y0) due to the ambiguous property of the
degradation models. Thus, we claim that decomposing the
diffusion generation process into different protocols should
be a more promising way to handle restoration tasks.



3.3. Conditioning on Diffusion Process

The recent work [4,19] falls into another category of uti-
lizing the diffusion process, which uses a pretrained DDPM
and changes its reverse diffusion process with distorted im-
ages by Conditioning on Diffusion Process (CDP). A sim-
ilar way was previously explored in the other generative
models, e.g., mGANprior [8] and PULSE [23] invert a
trained GAN by optimizing its latent code. However, CDP
does not require optimization compared with the previously
mentioned GAN-based methods. In contrast, it ensembles
the conditions during sampling as

ŷt−1 =
1

√
αt

(
yt −

1− αt√
1− ᾱt

ϵθ (yt, t)

)
+
√
1− αtz

(7)

yt−1 = ŷt−1 + σ(x0, ŷt−1), (8)
where σ(·) is a handcrafted transformation which aims at
combining x0 with ŷt−1 for accurate restoration. For ex-
ample, Choi et al. [4] proposed to downsample x0 and ŷt−1

and take their residual as the conditioning, while Lugmayr
et al. [19] proposed to sum the visible region of x0 with the
invisible region ŷt−1 for the inpainting task.

Though CDP avoids the heavy training cost and is suit-
able for some conditional generation tasks like restoration
with minimal modifications, its performance highly de-
pends on the amount of degradation in the conditioned im-
ages. For example, when the conditioned images suffer
from high amounts of distortion for face image restoration,
CDP cannot preserve the face identity and tends to generate
pseudo-sharp results with fake details. These fake details
introduce further ill-posedness to the restored images and
greatly limit the applications of such methods. Therefore,
we propose refining the denoised results for correcting such
artifacts at each step.

3.4. Implicit Error-feedback Diffusion Priors

Since the diffusion models follow a time-sequential pro-
cess, the error in each step and the visual artifacts propa-
gate and add up, hence severely degrading the quality of
some CDP results. However, such issues are rarely ob-
served in the unconditional diffusion models. We argue
that the difference comes from conditioning breaking the
inherent probabilistic distribution of noises at each sam-
pling timestep, causing them to deviate from the manifold
of natural images. Therefore, we propose to apply gener-
ative priors embedded in a pretrained unconditional model
to regularize the noise predicted at each timestep from the
conditional model. The trained diffusion model with condi-
tioning denoted as fϕ(·) takes as input the predicted image
of the previous timestep and makes an implicit prediction
ỹ0 defined by

ỹ0 = (yt −
√
1− ᾱtfϕ(x0,yt, t))/

√
ᾱt. (9)

Here yt denotes the prediction at the previous timestep.

We then estimate the noisy version of the implicit predic-
tion, which undergoes further regularization from an uncon-
ditional diffusion model. Please note that the unconditional
diffusion model that fits the inherent probabilistic distribu-
tion. The diffusion process yt ∼ q(yt|ỹ0) with ϵθ(·) is
formulated as

q(yt|ỹ0) := N (yt|
√
ᾱtỹ0, (1− ᾱt)I)

=
√
ᾱtỹ0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I),

(10)

and

yt−1 =
1

√
αt

(
yt −

1− αt√
1− ᾱt

ϵθ (yt, t)

)
+ σtz. (11)

Following this procedure brings in an inherent regulariza-
tion to the output of the conditional model during the re-
verse diffusion process. Note that Equation (11) takes the
noised version yt sampled from ỹ0 as input. It is similar
to the original reverse diffusion process, which takes the
noised version of natural images as input.

In summary, we utilize two diffusion models for condi-
tional image generation. The unconditional diffusion model
regularizes the predicted outliers at each prediction timestep
of the conditional diffusion model in an error-feedback
way. Moreover, for the complex real-world application like
draining where domain gaps may exist, we further discuss
the details of applying our bi-noising diffusion with slight
modifications to achieve better performance.

3.5. Complex Application: Deraining

Here we discuss one of the applications where we apply
our introduced bi-noising diffusion for further clarification.
The diffusion model is trained for the task of deraining us-
ing the rainy image as a condition for generating rain-free
results. Motivated by the power of diffusion models to learn
the distribution of clean natural images, we train a diffusion
model to learn the distribution of rain and, at the same time,
make the model aware of the distribution of real-world rain-
free images. For this, we first train a diffusion model for
image generation using the ImageNet dataset, and we then
train another diffusion model by ensuring that the weights
of the model trained for deraining are aligned to the weights
learned for real-world rain-free images. Let Wr denote
the weights of the first model and θ denote the weights of
the diffusion decoder estimated after each iteration through
backpropagation. Then the weights of the second model are
updated after each iteration of training according to,

W ′ = α.θ + (1− α).Wr, (12)
where α denotes the rate of Exponential Moving Average
(EMA) for updating the decoder weights. The encoder
weights are updated as such.

One observation from our experiments on image derain-
ing while training by direct conditioning like in SR3 [31]
was that the restored images suffered from artifacts and
color channel shift which can be seen in Fig. 4. On further
investigation, we found that this is due to incorrect condi-
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Figure 2. Colorization visual result comparisons corresponding to the CelebAHQ dataset.

tioning of input during the training process. Specifically,
for the task of image restoration with source-target pairs de-
noted as (x0,y0), existing methods optimize the weights of
the network ϵθ(·) modelling the reverse process of diffu-
sion, by minimizing the Lsimple function defined in [9] as

Lsimple := Et∼[1,T ],ϵ∼N (0,I)

[
∥ϵ− ϵθ (x0,yt, t)∥2

]
. (13)

The training objective Lsimple holds the inherent as-
sumption that during inference time yt, (i.e. the recon-
structed image at time t ) is close to the clean target. But
for extreme cases where the intermediate diffusion outputs
are not accurate during the initial steps of diffusion, the rain
streaks continue to propagate through the diffusion process,
as can be seen in Fig. 4. This is because, inherently, the
diffusion model works by predicting the noise present in yt

than the amount of degradation in it. To account for this,
we add a correction prior Lcorr so that the network can give
equally good output for high distortion levels. This term is
defined by,

Lcorr := αt ∥ϵθ (xt,x0, t)− ϵθ (yt,x0, t)∥2 . (14)
The final objective for training the network is,

Lfinal = Lsimple + λcorrLcorr. (15)
The value of λcorr is empirically set equal to 0.001 for all
experiments.

4. Experiments
To demonstrate the restoration capacity of our method,

we evaluate our method with several experimental settings
following the most representative diffusion models, i.e.,

ILVR [4] and SR3 [31] based on the Guided-diffusion archi-
tecture [26]. Following the common practice that pixel-wise
metrics, i.e., PSNR and SSIM cannot comprehensively de-
note the visual quality of restored results, we utilize FID and
LPIPS as the additional metrics for evaluation. The tasks in
which we evaluate our method on are

• Conditional image restoration which is trained on the
FFHQ [30] dataset (70000 images) and evaluated on
the CelebA-HQ [11, 18] dataset (first 3000 images)
with a resolution of 256× 256 pixels.

• Conditional image restoration which is 4× face super-
resolution trained on the FFHQ [30] dataset and eval-
uated on the CelebA-HQ [11, 18] dataset (first 3000
images) with a resolution of 256× 256 pixels.

• Image turbulence removal follows the turbulence sim-
ulation settings [25] on the FFHQ dataset and conducts
evaluation on the real long-range imaging images [24].

• Image deraining which is conducted on the
Rain800 [41] dataset and Jorder 200L [39] dataset
with their respective train sets. The diffusion models
conduct in a resolution of 256× 256 pixels.

Note that for the first three tasks, the diffusion models
are trained on the FFHQ dataset for face generation. For
the last task, the diffusion models are trained on the Ima-
geNet dataset for natural image generation. The uncondi-
tional model utilized has never seen the validation dataset
during its training process for all of these cases.



4.1. Colorization

Colorization aims at reconstructing grayscale images
with colors that are fitted to natural statistics and image se-
mantics. The grayscale image is obtained by averaging the
values at red, green, and blue channels of the corresponding
colour image. We empirically observed that conditional de-
noising diffusion models fail at colorization. Even though
they can preserve the fine-grained details, unnatural colors
always exist in their reconstructed results. In contrast, the
method that adopts our proposed bi-noising diffusion is ca-
pable of correcting the reconstruction with more semantics
and accurate color descriptions. The quantitative perfor-
mance comparison is shown in Tab. 1, where our method
achieves 7.906dB higher PSNR than the one without pre-
training. The visual results in Fig. 2 further clarify the im-
provements that come from more globally consistent col-
ors and tones of our results, even though the pretraining
had never seen the ground truth before. In contrast, a sim-
ilar method, i.e., ILVR cannot deal with the colorization
task even though it also utilizes a pretrained unconditional
model, which demonstrates the superiority of our proposed
DDRP in such tasks. Therefore, we argue that utilizing the
priors plays a crucial role in ensuring the color naturalism.

Method PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
ILVR Diffusion [4] 18.3936 0.5674 86.2642 0.5008
SR3 Diffusion [31] 19.1647 0.8680 13.8126 0.2959
Bi-Noising (Ours) 27.0707 0.9531 12.6796 0.1417

Table 1. Colorization results corresponding to the CelebAHQ
dataset. The best and second-best performace is indicated with
blod and italic respectively. We use ↑ and ↓ to suggest high/lower
score should be achieved by better methods.

4.2. Face Super-resolution

Face super-resolution is the other representative task in
image restoration, and it is widely evaluated in the other
denoising diffusion-based restoration works. We follow
the experimental settings of SR3 and ILVR, i.e., restore
256 × 256 face images from 64 × 64 face images down-
sampled by Bicubic interpolation. The implementation de-
tails of PULSE [23], ILVR [4], SR3 [31] are presented in
the supplementary file. From Fig. 3, one can notice that
our method achieves the best visual quality compared with
the other methods. Compared with the state-of-the-art face
super-resolution method based on GAN priors, our method
better preserves the identity of the restored face images. As
can be seen from Tab. 2, our method significantly outper-
forms the other methods in terms of the distortion measures,
i.e., PSNR and SSIM with 4.8316 dB and 0.04 better than
the second one. Though our results in the FID metric are
not better than ILVR, FID doesn’t denote the reconstruction
accuracy that is curcial for super-resolution. Therefore, the
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Figure 3. 4× super-resolution visual result comparisons corre-
sponding to the CelebAHQ dataset.

above results demonstrate our performance superiority.

Method PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
PULSE [23] 23.5769 0.6794 31.2309 0.3832
ILVR Diffusion [4] 22.5374 0.6150 20.4621 0.3393
SR3 Diffusion [31] 22.8290 0.6442 29.8932 0.3350
Bi-Noising (Ours) 29.3996 0.8414 24.5632 0.1809

Table 2. 4× super-resolution results corresponding to the Cele-
bAHQ dataset.

4.3. Image Deraining

We perform single image deraining on two popular
draining datasets. Namely, the Jorder 200L dataset which
contains large rain streaks, and the Rain800 dataset which
contains realistic rain. Since no diffusion-based deraining
method has been proposed in literature before, we perform
comparisons after retraining the models proposed for super-
resolution in the literature. Specifically, we perform com-
parisons with ILVR diffusion [4] and conditional diffusion
models, and we include the improvements brought about
by our modules. To evaluate the reconstruction quality, we
use the PSNR and SSIM metrics. To assess the quality of
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Figure 4. Deraining visual result comparisons corresponding to the Rain 800 dataset.
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Figure 5. Deraining visual result comparisons corresponding
to the JORDER-200 dataset.

images produced by various methods, we use LPIPS and
NIQE as metrics. As we can see from Tab. 3, the proposed
conditioning loss functions bring significant improvement
for all metrics in the JORDER 200L dataset [39], obtain-
ing about 2.45 dB PSNR over the exiting method as well
as giving realistic natural images. The visual comparisons
in Fig. 4 and Fig. 5 further demonstrate our method on the
visual quality compared with the other methods.

Jorder 200L dataset

Method PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓
Rain Images (Input) 26.70 0.8439 0.2411 4.131
ILVR Diffusion [4] 21.22 0.4942 0.0972 6.467
SR3 Diffusion [31] 31.45 0.9091 0.1779 3.588
Bi-Noising (Ours) 33.90 0.9555 0.0972 3.232

Table 3. Restoration results comparison on the Jorder 200L
dataset with the other re-trained diffusion models.

4.4. Turbulence Removal

We plug the proposed bi-noising approach into the re-
cent diffusion restoration work [25] to demonstrate the ap-
plicability of our method on an extremely ill-posed atmo-
spheric turbulence mitigation problem. Compared with the
diffusion network with single noise conditioning, the results
shown in Fig. 7 validate that our bi-noising method is able
to remove the unnatural textures from the face images re-
sulting from the incorrect denoising results.

4.5. Design Analysis

Nonparametric v.s. Parametric Priors. Inspired by Ho
et al. [10], here we analysis the effect of alleviating com-
plexity by parameterizing unconditional models into the
conditional restoration model, denoted as Nonparametric
Prior in Tab. 4. The compared methods use the same dif-
fusion model but different guidance settings as the prior for
fair comparisons. We showcase their performance and ef-
ficiency difference in the colorization task that was con-
ducted using a single NVIDIA A6000 GPU. Specifically,



Methods Ours

Settings Ho et al. [9] Dhariwal et al. [6] Nichol et al. [26] Ho et al. [10] w/o parametric w/o full guidance Bi-Noising

classifier guidance [6] ✓
CLIP guidance [26] ✓

classifier-free guidance [10] ✓ ✓
alternative guidance ✓

Bi-Noising ✓ ✓ ✓

PSNR ↑ 19.16 20.10 23.14 25.91 26.46 26.81 27.07
Parameters (M) ↓ 93.6 147.7 243.2 93.6 93.6 187.2 187.2

Running Time (s) ↓ 1.6 4.9 3.4 3.1 3.1 2.3 3.1

Table 4. Result comparisons between different prior parameterizations.
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Figure 7. Atmospheric turbulence mitigation results corre-
sponding to the LRFID dataset [25].

we use a single diffusion model that takes conditions for
restoration, and it takes a null token ∅ for unconditional
generation. From Tab. 4, we can conclude that the non-
parametric prior, i.e., w/o parametric, significantly reduces
half of parameters for diffusion sampling, while the model
suffers 0.26 dB performance drop compared with the para-
metric prior, i.e., Bi-Noising, that is our final setting. The
reason is that the null token increases the diffusion model
training difficulty and thus the model fits worse than the un-
conditional model used in our final setting. Compared with
other concurrent works that utilize classifier guidance [6]
and clip guidance [26], our method outperforms them sig-
nificantly with a slight increase in the number of parameters
and running time. This clearly demonstrates the benefits of
our parametric prior that can encapsulate the low-level in-
formation distribution for restoration.

Fig. 6 further demonstrates the efficiency of our method
that achieves better FID score after 2.0s denoising process.
Priors Correlation. For the complex applications like de-
raining, we introduce additional correlation priors to further
boost the final results. In Tab. 5, we present the ablation
study of the introduced correlation priors to demonstrate its
effectiveness. Since the rain streaks in the JORDER 200L
dataset are relatively small, we choose the Rain800 dataset

Method PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓
Rain Images (Input) 26.70 0.8439 0.2411 4.131
SR3 Diffusion [31] 31.45 0.9091 0.1779 3.588
Ours 33.23 0.9505 0.1043 3.285
Ours + Lcorr 33.90 0.9555 0.0972 3.232

Table 5. Ablation study on the improvements brought by each
introduced component.
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Figure 8. Deraining visual result comparisons that demon-
strate the improvement brought by our Lcorr component.

for a fair experiment. The ablation starts with the base
model and then adds the two priors one by one to show the
improvements. From the improved results due to Lcorr, we
can conclude that the introduced correlation priors allow our
diffusion priors to better fit the probabilistic distribution of
complex images, which ultimately benefits conditional gen-
eration with more realistic results. The comparisons pre-
sented in Fig. 8 also visually validate the conclusion.

5. Conclusion
We explored ways in which one can utilize denoising

diffusion probability model priors for improving image en-
hancement and restoration tasks. The proposed way of in-
tegrating the stochastic priors into the deterministic condi-
tioning denoising diffusion restoration model showed its su-
periority in colorization, face super-resolution, natural im-
age super-resolution, and deraining tasks. Compared with
similar denoising diffusion-based restoration methods, the
restored results of our introduced method achieved better
color consistency and contain more fine-grained details.
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A. Demo
In order to provide a straightforward overview of our method, we have provided an online colorization demo and com-

pared our bi-denoising process with the naive-diffusion by visualizing their intermediate predicted x0. The online demo is
accessible at http://bi-noising.demohub.cc.

Figure 9. Screenshot of our online demo.

Figure 10. Screenshot of our online demo that shows artifacts in naive diffusion results, highlighted with red arrow.

http://bi-noising.demohub.cc


B. Manifold Correction using Diffusion Priors
An alternate advantage of the proposed bi-noising diffusion is the effect of manifold correction. Consider any general

restoration modelf(.)) which maps from a domain B of the degraded image to a domain A of all natural images. The desired
mapping function of this model for any restoration task is to learn the mapping

b ∈ B h(.)
==⇒ a ∈ A (16)

But in real scenarios, because the restoration task is ill-posed, rather than learning the natural image manifold, a deep network
learns an inverse function that merely removes the degradation effect. Let this manifold be denoted by C. The mapping
function hence learned is

b ∈ B f(.)
==⇒ a ∈ C (17)

For example, for a restoration model trained for the task of face super-resolution, for an input (b), the network could
create an output (c) that is the image of a disoriented face rather than an image in the manifold of faces. Theoretically, if we
utilize any generative model for the restoration, the model should be able to achieve the ideal mapping. But often, the model
learns the more complex problem of removing the degradation than learning to map to the domain of natural images. This
is because it is difficult to reach the solution corresponding to the global optimum. In any generic restoration method, this
deviation from the natural manifold can be corrected by adding a correction network that learns the mapping from domain
C to A. Unlike all other models, diffusion models contain a flexible model structure where intermediate latent variables can
be accessed. This enables a manifold correction during inference time alone with explictly training a network to map from
the generated manifold C to the natural manifold A. Hence in our work, we exploit this property and perform the manifold
correction to the domain of natural images through an additional step that utilizing an unconditional model. Consider a CDP
trained for any restoration task denoted by fϕ(ct, b, t). During inference, the restored sample cT is generated through the
cascade of steps

fϕ(c0, b, t) → fϕ(c1, b, t), .... → fϕ(cT , b, t) (18)
or equivalently,

c0
fϕ(.)−−−→ c1, ...

fϕ(.)−−−→ cT (19)
Here, c1, ..., cT denotes the intermediate diffusion outputs of an image cT in the manifold C that can be reconstructed from

a degraded b. As mentioned before, the function f will not always map to the domain A of natural images. Hence we add
an unconditional model gθ(.) that does the task of aligning the manifold of the generated image to the manifold of natural
images. The sequence of operations is as follows

fϕ(c0, b, t) → gθ(c1, t), ....fϕ(aT−1, b, t) → gθ(cT , t) (20)

c0
fϕ(.)−−−→ c1

gθ(.)−−−→ a1
fϕ(.)−−−→ c2, ...

fϕ(.)−−−→ cT
gθ(.)−−−→ aT (21)

a1, ..., aT denotes the intermediate diffusion outputs of an image aT in manifold A.

C. Turbulence Removal
Here we provide the quantitative evaluation of our method on the turbulence removal benchmark LRFID dataset. Com-

pared with the other methods, ours not only has achieved better performance in the sample quality in terms of LPIPS but also
better fidelity in terms of face recognition accuracy Top-1 and Top-3.

Dataset LRFID dataset [24]
Metric LPIPS(↓) Top-1(↑) Top-3(↑)

degraded 0.6293 35.3 62.2
CNN based models

MPRNET [40] 0.5755 34.1 64.6
ATNet [40] 0.6128 36.5 64.6

GAN based models
ATFaceGAN [16] 0.6300 47.5 65.8

Diffusion models
ILVR Diffusion [4] 0.5661 31.7 59.7

Bi-Noising Diffusion (Ours) 0.5500 48.7 73.1

Table 6. Quantitative results on on real world turbulence degraded datasets: LRFID dataset [24]
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