
A Holistic Mechanism Against File Pollution
in PeertoPeer Networks

Zhuhua Cai, Ruichuan Chen, Jianqiao Feng, Cong Tang, Zhong Chen, Jianbin Hu
∗

Institute of Software, School of Electronics Engineering and Computer Science, Peking University, China
Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, China

{caizh, chenrc, tangcong, chen, hjbin}@infosec.pku.edu.cn

ABSTRACT

Content pollution is pervasive in the current peer-to-peer
file sharing systems. Many previous reputation models have
been proposed to address this problem, however, such mod-
els strongly rely on the participants’ feedback.

In this paper, we bring forward a new holistic mecha-
nism which integrates the reputation model, inherent file-
source-based information and the statistical data reflecting
the diffusion state to defend against pollution attack. First,
we deploy a redundancy mechanism to assure that the file
requester receives the correct indices that accord with the
information published by the file provider. Second, we com-
plement the reputation information with the diffusion data
to help the file requester select the authentic file for down-
loading. Finally, we introduce a block-oriented probabilistic
verification protocol to help the file requester discern the
polluted files during the downloading with a low cost.

We perform a simulation which shows that our holistic
mechanism can perform very well and converge to a high
accuracy rapidly, even in a highly malicious environment.

Categories and Subject Descriptors

C.2.0 [Computer-communication Networks]: General—
Security and protection; C.2.4 [Computer-communication

Networks]: Distributed Systems—Distributed applications

General Terms

Design, Security

Keywords

File Pollution, File Source, Reputation, Probabilistic Verifi-
cation

1. INTRODUCTION

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’ 09, March 812, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 9781605581668/09/03 ...$5.00.

So far, Peer-to-Peer (P2P) file sharing systems have achieved
a significant success in practice, dominating a large fraction
of the Internet’s resources and the participating users [8].
Some measurement studies showed that P2P traffic con-
stituted 60% of the Internet traffic in tier-1 ISP [1]; more
than 8 million users are connected to three popular P2P file
sharing systems including FastTrack/KaZaA, eDonkey and
eMule [10]. Although popular, due to the decentralized and
unauthenticated nature, P2P file sharing systems have been
targeted by pollution attacks which render the systems rife
with corrupted and mislabeled files, e.g., even over 80% of
the copies of popular files in KaZaA are polluted [9].

Many pollution defense mechanisms have been proposed,
and most of them are based on reputation models [5,7,18].
These reputation-based mechanisms focus on the deduced
information derived by the user collaboration, however they
ignore some other kinds of helpful information. In this pa-
per, we propose a new holistic pollution defense mechanism
based on the Distributed Hash Table (DHT) overlay, which
can quickly identify and isolate polluted files and poisoned
indices [10], to help participants verify the integrity and au-
thenticity of the requested files effectively and efficiently.
Our main motivation lies on the fact that besides the repu-
tation information based on the feedback of the participants,
some inherent file-associated information provided by the file
provider and some statistical data about the diffusion state
of the requested files are ignored.

In common P2P file sharing systems, the process of trans-
actions between the file providers and the file requesters can
be divided into four stages. First, the file provider publishes
the file to the corresponding index nodes. We employ the
redundancy mechanism here to make sure that the index
nodes could not effectively fabricate the information of his
maintained indices. Second, the file requester searches for
his requested file from the associated index nodes. With
the former redundancy mechanism, we have the capacity
of filtering out poisoned indices. Third, the requester se-
lects a specific version of the file. However, due to the lack
of authenticity verification, the file requester generally can-
not know, without downloading, if the requested version has
been polluted. Here, we can resort to the general reputation-
based information and some extra inherent file-related infor-
mation (e.g., the copy number of the requested version) to
help identifying and isolating the potential polluted versions.
Finally, the requester downloads the selected version from
the associated file providers. During this stage, we make the
requester verify if the version being downloaded has been
polluted, without totally downloading the whole requested

version. To reduce the verification overhead, we further
present a block-oriented probabilistic verification protocol
to partially verify the requested version without influenc-
ing the integrity assurance of the verification significantly.
We perform the performance evaluation with various differ-
ent system behavior configurations. The simulation results
demonstrate that our proposed mechanism performs very
well and only very few downloads will end up with down-
loading the polluted versions even in a highly malicious en-
vironment.

The rest of the paper is organized as follows. Section 2
presents related work on the anti-pollution mechanism. Sec-
tion 3 discusses some related terminologies and assumptions.
In section 4 we cover the design of our holistic anti-pollution
mechanism in detail. In section 5 we will describe the eval-
uation methodology and the main results. Finally, some
conclusions and future work are presented in Section 6.

2. RELATED WORK
Along with the extensive deployment of P2P file sharing

systems, security problems gradually become the bottleneck
of their further development. To address the problems, some
previous work has proposed many reputation models, which
can be categorized into three classes, i.e, peer-based models,
object-based models and hybrid models.

Among peer-based models, EigenTrust [7], Scrubber [4]
and PeerTrust [19] are representative of them, in which each
peer is assigned a reputation value reflecting the peer’s hon-
esty. However, many of such peer-based reputation models
have a similar drawback, i.e., a peer with high reputation
may also insert polluted files to the system and the peer’s
reputation can not accurately reflect the quality of such in-
serted files, which contradicts with the data-centric property
of the P2P file sharing systems.

Credence [18] denotes one of the object-based reputation
models, in which the file requester computes a reputation
for the file to download referring to its authenticity. This
computation is based on a distributed vote gathering proto-
col for disseminating the object reputations in the network,
and a correlation scheme which gives more weight to votes
from like-minded peers.

XRep [5] and Hybrid [3] are typical hybrid models which
complement peer-based and object-based mechanisms. Nev-
ertheless, due to the fact that most of participating users in
P2P content sharing systems are rational in seeking to max-
imize their individual utilities, the reputation models are
penalized by the lack of reliable user cooperation.

In [6], Habib et al. incorporated block-oriented probabilis-
tic verification protocol and tree-based forward digest proto-
col to verify the data integrity in the P2P media streaming.
Their design provides high assurance of data integrity and
incurs lower computation overhead. Moreover, they used
multiple hashes or forward error correction (FEC) [13] codes
to improve these two protocols, rendering them to work well
with unreliable transport protocols in media streaming sys-
tems.

Focusing on the replication of computation instead of data
replication and comparison, the Repeat and Compare [12]
utilizes the attestation records and sampled repeated execu-
tion to ensure the integrity of both static and dynamic con-
tent in untrusted P2P content distribution networks. When
the replicas respond to the client, they insert attestation
records to their response. Clients then forward a fraction of

these records to the randomly selected verifiers for verifica-
tion and such verifiers repeat the response generation and
compare the results with received attestation records.

3. TERMINOLOGIES AND ASSUMPTIONS
So far, a general P2P file sharing system is composed by

nodes and files published by such nodes. In a DHT-based
overlay, nodes can play one or several of following roles, a file
provider, a file requester and an index node. A file provider
can publish files to the system, and he will notify the index
node to build up the corresponding indices. When a query
aimed for some specific files are raised by the file requester,
the index node will respond with a list of related indices
for the file requester to select. However, due to the lack
of central authorities in systems, some peers may perform
some malicious behaviors, e.g., a file provider may insert
into the system a lot of polluted files, and the index node
may fabricate the maintained indices.

In order to illustrate our design, we introduce some termi-
nologies. In our design, we define title as the specific content
in a P2P file sharing system, such as a song, movie, docu-
ment and so forth. A specific title can have many versions.
For music and movie, these different versions can be created
by a large number of rippers/encoders, each of which can
create a different version of the same title. Furthermore,
when the metadata of the file (such as the file name, the
file size, ID3 tags) is modified, additional file versions are
created. For a popular title, there may exist thousands of
different versions. Each version is assigned an identifier by
the hash function on the version, including the metadata
and content of the version together. Finally, a version may
have many copies in that the version may be downloaded
from each other in the system.

To provide the mechanisms of availability and scalabil-
ity, the underlying structure of our security framework is
a DHT-based overlay. We utilize Chord [17] as the dedi-
cated underlying DHT-based overlay. We can also conve-
niently utilize another DHT-based overlay (e.g., CAN [14],
Pastry [16] or Kademlia [11]) as an alternative. Some as-
sumptions about the network properties are listed as follows:
first, we suppose that the routing protocol is reliable and
peer/file discovery is perfect. Second, we assume that the
identifiers can be pseudo-randomly produced, e.g., the hash
of the IP address, and then the peer can not select his iden-
tifier at his will. Finally, to assure that the majority of peers
in the system are honest, we assume that sybil attack does
not take place in our system, which can be partially solved
by client cryptographic puzzles [15] or SybilGuard [20].

4. DESIGN RATIONALE
As described above, in four stages, three types of partici-

pants, including the file providers, the index nodes and the
file requesters collaborate together to perform a transaction
in a P2P file sharing system. As is shown in Figure 1, these
four stages are publishing the version, searching for associ-
ated indices of a title, choosing a version of the title and
downloading the version. After the download, the file re-
quester may experience the version, and give feedback on the
downloaded version to perfect our design. Four stages men-
tioned above will be discussed to illustrate our anti-pollution
mechanism. We can show that our distributed and holistic
anti-pollution mechanism can quickly identify and isolate

R

P

I1

I0

3.Choose a version

I2

2.Search for indices

1. Publish the version

1.

4
.D

o
w

n
lo

a
d

th
e

v
er

si
o
n

2.

1.

2.

Figure 1: System illustration. Note that, each user practi-
cally plays one or several roles simultaneously

polluted files and poisoned indices, helping participants ver-
ify the integrity and authenticity of the requested files effec-
tively and efficiently.

4.1 File Publication
The first basic procedure, which is illustrated in Figure 1,

is the file publication initiated by the file provider P . Like
in the original Chord [17], when the file provider P wants to
publish a version of a file, he will choose a peer to maintain
the index for the version. However, the peer selected may
be malicious and refuse to insert the index for the version or
just insert the fabricated index. To solve the problem, we
employ a number of redundant nodes ({I0, I1, I2} in Figure
1) to make sure that any index node could not effectively
poison the index. All these index nodes for the version can
be chosen in the following way. Suppose the file name of the
version is filename, the set of index nodes for the version
is Iv(Iv = {I0, I1, I2} in Figure 1), then we apply the hash
function on the suffixed file name as follows:

Iv = {hi|hi = h(filename|i) ∧ i = 1, 2, . . . , s} (1)

where hi denotes the node that equals or follows the result of
the hash function and s is the number of index nodes for the
version. Iv keeps track of the version v, and any abnormal
information stored in the set members can be discerned by
the file requester. The index information is legitimate only
if the majority of the index nodes in Iv agree on it. In this
way, the index information received by the file requester R is
really published by the file provider P with high probability,
the analysis of which is left to the next subsection.

The index reord can be denoted in the following format.

〈Idv, Meta, Dig, V S, PS〉

where

- Idv: the identifier of the version.

- Meta:the metadata of the version, including the file
name, the file size and the file descriptors.

- Dig: the digest set of the version. Suppose a version
can be divided into b blocks, then Dig has b elements,
i.e., {di}

b
i=1, and Idv can de deduced from Dig, e.g.,

Idv = h(Meta|{di}
b
i=1) (2)

With this equation, we can check if the digests of a
version are real when the version is published for the
first time.

- V S: the voter set, which is the set of peers who had
given votes on the version.

- PS: the provider set, which is the set of the file providers
of the version. Generally, PS may not be equal to V S

for some peers giving votes on the version v may not
provide the version and some file providers may not
give votes on the version v.

Similarly, we can use the redundance mechanism to main-
tain the vote histories for a voter in the overlay. Each voter
can broadcast his updated vote histories to a group of vote
maintainers, who can be selected in the above way by hash
function on the voter’s identifier. In this way, the file re-
quester R can get the vote history of the voter even when
the voter is abruptly off line. Unlike the gossip protocol for
Credence deployed in Gnutella, in our design any peer’s vote
history can be gotten at once based on the DHT overlay.

4.2 Index Search
When the file requester R searches for his requested file,

he will get all the related indices from Iv. Any abnormal
information from certain nodes in Iv will be discerned in
the reason that the index information is considered to be
right only if the majority of index nodes connected agree on
it. On the other hand, if some attackers want to fabricate an
index, they should compromise at least half of the members
in Iv and all of these compromised index nodes should have
the same information on the very index.

Suppose the size of aforementioned collusion group is m

and the size of peers in system is n, then the probability of
a pseudo-randomly chosen index node hi belongs to the col-
lusion group is m

n
. As the size of the Iv is s, the probability

that t out of s members in Iv belongs to the same collusion
group is

P (s, t) =

(

s

t

)

(
m

n
)
t

(1 −
m

n
)
s−t

(3)

then the probability that the file requester can get the right

index from Iv is
∑⌊ s−1

2
⌋

t=0 P (s, t). Suppose the ratio of total
malicious peers in the system is β, then we can get that m

n
≤

β. With the tradeoff between the communication overhead
and degree of assurance, our design can provides adjustable
levels of security. For example, if β is 0.2, s is 5, then the
probability that the file requester can get the right index
from Iv is 94.2%, which is sufficient for common systems.
In the other words, with the redundancy mechanism, the
requester R can get the right indices for his requested file
with high probability.

Similarly, R can also get a voter’s vote history directly
from the voter or the vote maintainers. For the avoidance
of fabrication, R can aggregate the information from such
maintainers or directly from the voter.

4.3 Version Evaluation
Based on the above redundancy mechanism, the file re-

quester R can get the real indices of all the versions with the
same file. Due to the lack of authenticity verification, the
file requester R generally can not know, before downloading,

if the listed versions have been polluted by the file provider.
Here, we resort to the general reputation-based information
and the copy number of the version to help identifying and
isolating the potential polluted versions.

Unlike the traditional index record whose main function
is to help locating the file, in our design, the index record
〈Idv, Meta,Dig, V S, PS〉 of each version can provide us two
key components, namely, the voter set V S and file provider
set PS.

With V S, the file requester can know the voters and
get their vote histories. Based on such vote histories, the
file requester can compute the corresponding relation coeffi-
cient(denoted as θ) of each voter as the way in Credence [18].
Aggregating each voter’s opinion, the file requester can com-
pute a version v’s reputation Repi(v) as follows:

Repi(v) =

∑

j∈V Sv

Vj(v)θ(i,j)
∑

j∈V Sv

|θ(i,j)|
(4)

where V Sv, Vj(v) and θ(i,j) denotes the voter set of version v,
the vote value that peer j puts on version v, and the relation
coefficient between peer i, and peer j. Also we must point
out that Repi(v) ∈ [−1, 1], and we only consider peers j

when | θ(i,j) |≥ 0.5.
According to the file provider set PS, we can get the copy

number of a version, which reflects the popularity of the ver-
sion. Since a popular version with a large number of copies
can be downloaded more easily and faster in the swarming
downloads, many current P2P file sharing systems utilize
the property and let a popular version more possible to be
downloaded. Our design also embodies this idea, rendering
the version with more providers a higher probability to be
selected by the file requester.

Now we model our mechanism of the version evaluation
as follows. For file request i, the probability of selecting a
particular version v ∈ V (t) is:

pv(t) =
Rep′

i(v)nv(t)
∑

u∈V (t) Rep′
i(u)nu(t)

(5)

where nv(t) is the copy number of the version v with the file
t. For Repi(v) ∈ [−1, 1], in order to let pv(t) ≥ 0, we make
a linear mapping and let Rep′

i(v) = Repi(v) + 1.
In practice, a popular file always has a large number of

polluted versions, and this problem can not be solved by
Credence [18] because insufficient votes have been put on
such polluted versions. However, our design can work a
good effect on such condition. Even if the polluters change
their attack model and increase the copies of certain polluted
version, our design also can filter out the polluted version
for more number of honest users will experience the polluted
version and give the negative votes on the version, leading
the Rep′

i(v) to be very low. In addition, since the number of
malicious peers is limited and a peer generally can have one
copy of certain version, without the unintentional help of the
honest peers, it is difficult for malicious peers to produce a
version with a large number of copies.

4.4 Downloading with Probabilistic Verifica
tion

After the three stages above, the requester begins to down-
load the selected version from the associated file providers
in the form of swarming downloads. However, the version
may be polluted due to identifier corruption [2]. In order to

reduce the cost of the file requester, we make the requester
verify the authenticity of the version, without totally down-
loading the requested file. Note that, the index node pro-
vides the file requester the digests of each block, and with
such digests of blocks, the file requester can verify each block
when the block downloading is finished. When the file re-
quester finds that a downloaded block is polluted, he just
drops it and connect another file provider.

However, when the size of digests set Dig is very big, the
overhead of communication and computation for the verifi-
cation is high. To reduce the verification overhead, we fur-
ther present a block-oriented probabilistic verification pro-
tocol to partly verify the requested file without influencing
the integrity assurance of the verification significantly. Sup-
pose a version has N blocks {b1, b2, · · · , bN} and digests set
Dig is {d1, d2, · · · , dN}, our probabilistic verification proto-
col runs as follows:

• Step 1: The file requester gets the real digest set Dig

from the index nodes and checks it based on the equa-
tion (2).

• Step 2: The file requester connects each file provider
and asks for some certain blocks, supposing the num-
ber of such blocks is k.

• Step 3: The corresponding file provider responds with
the k blocks.

• Step 4: The file requester randomly chooses r out of
the above k blocks and computes the digests of such
blocks. If these computed digests match the digests in
Dig, then he should accept such k blocks; otherwise,
he rejects them.

The protocol can provide adjustable levels of security and
reduce the computation overhead. When a malicious node
tampers t out of k blocks and the file requester randomly
chooses r blocks to verify, the probability for the attacker to
succeed is

P (t, r, k) =

(

k−t

r

)

(

k

r

) =
(k − t)!(k − r)!

k!(k − t − r)!
(6)

The probability for the attacker to pollute the version drops
obviously when the attacker wants to pollute more blocks.
Generally, when 25% or more blocks are verified and 30%
or more blocks are polluted, the probability to detect the
pollution is very high.

After the download of the version, the file requester should
give feedback to the system. If the downloaded version is
polluted, the requester should take a vote on the version and
delete the version to avoid the diffusion, otherwise he should
give the positive vote on the version and publish the version.
As one of four interdependent procedures, the collaboration
among honest users plays an indispensable role to defend
against pollution.

5. EVALUATION
This section describes our evaluation through simulation

of our holistic mechanism (abbr., Holistic) and Credence
[18], comparing them with a baseline system (abbr., Base-
line) where each peer selects a version according to the popu-
larity of the version. Our analysis is based on two main met-
rics, i.e., accuracy and convergence. The former describes

Table 1: Fixed System Configuration

Parameter Value
total peers 1000
download sources 10
titles F 100
versions V 100
downloads rate 4 files/day

Shared Files(Start up) Honest Peers Polluters
decoy insertion 20 400
identifier corruption 20 50

the system’s ability to reduce pollution and is measured by
the fraction of daily unpolluted downloads. The latter re-
lates to the time it takes to reach a steady state that the
fraction of polluted downloads does not change significantly.
In section 5.1, we will describe our simulation model in de-
tail. Section 5.2 will present our main results.

5.1 Simulation Methodology
To evaluate the performance of Holistic in defending against

pollution attack, we build an event-driven simulator of P2P
file sharing system based on Chord [17]. The simulator has
the following components:

Network Model: We follow the model of Chord file shar-
ing network described in [17]. Moreover, swarming down-
loads and two redundancy mechanisms referring to the main-
tenance of the indices and the vote histories are deployed as
described in section 4. Finally, our simulation has some as-
sumptions, i.e., the query routing and peer/file discovery are
reliable with the transfer time being ignored.

Object Model: There are F unique titles and each title
has V unique versions with each version having a varying
number of copies over time. At simulation startup, files
shared by the peers are first selected by title, then its ver-
sion. Both selections follow Zipf distributions with param-
eter α = 0.8. Throughout our simulation, files to be down-
loaded are selected by first choosing the titles randomly and
then choosing the version according to the mechanisms of
Holistic, Credence and Baseline respectively.

Peer Model: There are two types of peers in our sim-
ulation, i.e., honest peers (fraction:70%) and malicious pol-
luters (fraction:30%). At simulation startup, honest peers
only hold unpolluted files with malicious peers only polluted
ones. Throughout our simulation, the number of downloads
per peer follows the uniform distribution. Both types of
peers may download polluted files and unpolluted files, how-
ever, malicious peers may give a positive vote on a polluted
file and a negative vote on an unpolluted file. For Holistic
and Credence, we update the correlation θ between the file
requester and all other peers immediately after each down-
load to optimize our system. As our focus is on the pollution
dissemination, we do not model the effects of intermittent
network connectivity and churn.

Pollution Attack Model: With various system config-
urations and peers’ malicious behavior patterns in a highly
malicious environment discussed above, we simulate content
pollution by following concrete attacks.

- Decoy insertion: a pollution mechanism made by in-
serting into the P2P system a polluted version of the
file with the same metadata of the original file but a

different identifier [9].

- Identifier corruption: a way of pollution made by gen-
erating a polluted file with the same identifier as the
original unpolluted file, exploiting the weakness of cur-
rent method of identifier generation or maliciously mod-
ifying the client software [2].

System Configurations: Some fixed parameters are
listed in the Table 1, where we set the number of polluted
versions per title smaller and the copies of corresponding
polluted versions larger than usual to create a severer envi-
ronment. The other parameters are described as follows:

- Pv: the probability that a peer gives a vote on the
version after a download.

- Pd: the probability that a user deletes a polluted ver-
sion immediately after a download.

- Pr: the probability that a user judges the quality of a
version correctly.

- Pt: the probability that a malicious polluter pretends
to be a honest peer and takes a correct feedback on
the downloaded file.

5.2 Results
We perform experiments of P2P file sharing system with

many configurations and obtain similar results. Without
especially noted, we set Pv = 1, Pd = 1, Pr = 0.9 and Pt =
0. In order to eliminate the error brought by experiment
deviation, each simulation result is an average of 5 runs.

Comparison.We present the comparison results by the
daily fraction of unpolluted downloads in Figure 2. For de-
coy insertion, by severely isolating polluted versions, Holis-
tic has a much better maximum accuracy than Credence
and Baseline, though Holistic converges as fast as Credence.
Even by the 30th day, Holistic achieves a high ratio of suc-
cess, maintaining roughly 90% correct classification; whereas
Credence can only have an accuracy of 66%.

For identifier corruption [2], since Holistic can use our
proposed probabilistic verification protocol to verify the au-
thenticity of the version during and after the download, it
guarantees that, from the 8th day on, at least 90% of daily
downloads are unpolluted. However, Credence and Baseline
do not perform well since they cannot filter the polluted
copies out of the selected version, and they take much longer
to converge to the same accuracy as Holistic does.

Adaptability under Decoy Insertion.As shown in Fig-
ure 3, by changing the values of Pv, Pr, Pt. Holistic per-
forms much better than Credence against decoy insertion.
Figure 3a shows that, less cooperation among users would
penalize the convergence speed of both systems. However,
when Pv = 0.2, without distinctive loss of accuracy, Holis-
tic achieves a high performance with a ratio of 80% of daily
downloads are unpolluted since the 15th day; whereas on the
same condition, Credence only has an accuracy with 42%.

In Figure 3b, we find that Pr has a strong influence on the
accuracy of Credence and Holistic that reducing Pr can re-
sult to the decline of both systems’ accuracy. However, Cre-
dence is more sensitive to the change of Pr. When the value
of Pr is changed from 0.9 to 0.8, the maximum accuracy for
Credence is approximately reduced by 33%; whereas, the
accuracy of our mechanism is only approximately reduced
by 6%.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

days

fr
a
c
ti
o
n
 o

f
u
n
p
o
llu

te
d
 d

o
w

n
lo

a
d
s

Baseline

Credence

Holistic

(a) Comparison under Decoy Insertion

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

days

fr
a
c
ti
o
n
 o

f
u
n
p
o
llu

te
d
 d

o
w

n
lo

a
d
s

Baseline

Credence

Holistic

(b) Comparison under Identifier Corruption

Figure 2: Effectiveness of Holistic

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

days

fr
a
c
ti
o
n
 o

f
u
n
p
o
llu

te
d
 d

o
w

n
lo

a
d
s

Credence(Pv=0.2)

Credence(Pv=0.6)

Credence(Pv=1)

Holistic(Pv=0.2)

Holistic(Pv=0.6)

Holistic(Pv=1)

(a) Impact of voting(Pv)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

days

fr
a
c
ti
o
n
 o

f
u
n
p
o
llu

te
d
 d

o
w

n
lo

a
d
s

Credence(Pr=0.7)

Credence(Pr=0.8)

Credence(Pr=0.9)

Holistic(Pr=0.7)

Holistic(Pr=0.8)

Holistic(Pr=0.9)

(b) Impact of vote correctness(Pr)

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

days

fr
a
c
ti
o
n
 o

f
u
n
p
o
llu

te
d
 d

o
w

n
lo

a
d
s

Credence(Pt=0.5)

Credence(Pt=0)

Holistic(Pt=0.5)

Holistic(Pt=0)

(c) Impact of tricky attack(Pt)

Figure 3: Adaptability under Decoy Insertion

In Figure 3c, we evaluate the performance of Holistic and
Credence against the tricky attack, in which polluters may
pretend to be honest peers by giving correct votes on files,
with the order to defraud the honest peers of credence. Then
the malicious polluters may attack some specific versions
by giving opposite votes. Figure 3c shows that, when con-
fronted with decoy insertion, compared with condition with-
out tricky attack, Credence works a lower accuracy, which is
approximately reduced by 50%. In addition, Credence un-
der this type of attack reaches its maximum accuracy in the
9th days and then declines, and the reason for this is that
honest peers can discern like-minded peers at the startup
but gradually be deceived by the malicious peers launching
tricky attack. Our mechanism is also influenced by this type
of attack and its maximum accuracy is reduced by about
15%; however, the above decline does not occur in Holistic
since that the statistical popularity information is utilized
to counteract the tricky attack’s influence.

Adaptability under Identifier Corruption. By prob-
abilistically verifying the authenticity of the blocks within
a file, Holistic keeps a high accuracy and convergence speed
when changing Pv, Pr and Pt as above.

Nevertheless, Credence is more sensitive to such changing
parameters, though it can also reduce pollution dissemina-
tion in the long run. Figure 4a shows that reducing Pv

can decelerate Credence’s convergence a lot since the file re-
quester cannot make a correct selection without sufficient
feedback on the potential versions from the other peers. Es-
pecially at the simulation startup, when Pv = 0.2, the per-

formance of Credence declines and the honest peers’ discern-
ment is tampered by the opposite votes taken by malicious
peers. Without up to 20 days to effect the stabilization,
Credence can not improve its performance.

Figure 4b shows that Pr has a strong impact on the con-
vergence of Credence against identifier corruption. Reduc-
ing Pr can significantly slow down Credence’s convergence
speed when facing the identifier corruption. When Pr de-
creases from 0.9 to 0.7, the fraction of daily unpolluted
downloads is reduced by approximately 48% in the 50th day.

Figure 4c shows that for identifier corruption, with the de-
ployment of probabilistic verification protocol, Holistic per-
forms perfectly, and is not sensitive to malicious peers’ tricky
attack. On the contrary, Credence is susceptible to this type
of attack. In the simulation startup, due to the help of the
malicious peers’ intentional hypocrisy, which partially im-
pels the honest peers’ discernment; however, in the long run,
such intentional hypocrisy will impact the system’s conver-
gence speed, and the phenomenon can be seen from the 30th

days.
We also measure the impact of peers’ deleting polluted

files under both types of attacks. For Credence, whether
honest peers delete the polluted versions does not influence
the effects because peers in Credence only choose the ver-
sion based on reputation but not employ the other helpful
information(e.g., the diffused state of the version). As a re-
sult, whether honest peers delete the polluted files has no
impact on the accuracy of the system. For Holistic, increas-
ing Pd favors the system’s convergence and accuracy to a

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

days

fr
a

c
ti
o

n
 o

f
u

n
p

o
llu

te
d

 d
o

w
n

lo
a

d
s

Credence(Pv=0.2)

Credence(Pv=0.6)

Credence(Pv=1)

Holistic(Pv=0.2)

Holistic(Pv=0.6)

Holistic(Pv=1)

(a) Impact of voting(Pv)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

days

fr
a

c
ti
o

n
 o

f
u

n
p

o
llu

te
d

 d
o

w
n

lo
a

d
s

Credence(Pr=0.7)

Credence(Pr=0.8)

Credence(Pr=0.9)

Holistic(Pr=0.7)

Holistic(Pr=0.8)

Holistic(Pr=0.9)

(b) Impact of vote correctness(Pr)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

days

fr
a

c
ti
o

n
 o

f
u

n
p

o
llu

te
d

 d
o

w
n

lo
a

d
s

Credence(Pt=0.5)

Credence(Pt=0)

Holistic(Pt=0.5)

Holistic(Pt=0)

(c) Impact of tricky attack(Pt)

Figure 4: Adaptability under identifier corruption

little extent. The more honest peers deleting the polluted
files, the better effect Holistic works, though the impact is
not very evident. Due to the space limit, we omit the two
corresponding figures.

6. CONCLUSION AND FUTURE WORK
Existing P2P file sharing systems suffer from pollution

attack. To address the problem, this paper presents a dis-
tributed and holistic mechanism which complements the de-
ductive reputation-based information with file-associated in-
formation to filter out the pollution. We deploy our holistic
mechanism in four stages involved in a transaction to opti-
mize our system and help users discern the quality of files. In
addition, simulation results demonstrate that our proposed
mechanism performs well and only very few downloads will
end up with polluted versions even in a highly malicious
environment.

For future work, we plan to introduce some other existing
advanced approaches to further improve the system perfor-
mance and extend our holistic mechanism to many other
overlays, including Gnutella, KaZaa, eDonkey and so forth.

7. REFERENCES
[1] Cachelogic: The picture of p2p file sharing,

http://www.cachelogic.com/research.
[2] N. Christin, A. S. Weigend, and J. Chuang. Content

availability, pollution and poisoning in file sharing
peer-to-peer networks. In ACM Conference on
Electronic Commerce, pages 68–77, 2005.

[3] C. P. Costa and J. M. Almeida. Reputation systems
for fighting pollution in peer-to-peer file sharing
systems. In Peer-to-Peer Computing, 2007.

[4] C. P. Costa, V. Soares, J. M. Almeida, and
V. Almeida. Fighting pollution dissemination in
peer-to-peer networks. In SAC, pages 1586–1590, 2007.

[5] E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
P. Samarati, and F. Violante. A reputation-based
approach for choosing reliable resources in
peer-to-peer networks. In ACM Conference on
Computer and Communications Security, 2002.

[6] A. Habib, D. Xu, M. Atallah, B. Bhargava, and
J. Chuang. Verifying data integrity in peer-to-peer
media streaming. In MMCN, pages 1–12, 2005.

[7] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management
in p2p networks. In WWW, pages 640–651, 2003.

[8] R. Kumar, D. D. Yao, A. Bagchi, K. W. Ross, and
D. Rubenstein. Fluid modeling of pollution

proliferation in p2p networks. In
SIGMETRICS/Performance, pages 335–346, 2006.

[9] J. Liang, R. Kumar, Y. Xi, and K. W. Ross. Pollution
in p2p file sharing systems. In INFOCOM, 2005.

[10] J. Liang, N. Naoumov, and K. W. Ross. The index
poisoning attack in p2p file sharing systems. In
INFOCOM, 2006.

[11] P. Maymounkov and D. Mazières. Kademlia: A
peer-to-peer information system based on the xor
metric. In IPTPS, pages 53–65, 2002.

[12] N. Michalakis, R. Soulé, and R. Grimm. Ensuring
content integrity for untrusted peer-to-peer content
distribution networks. In NSDI, 2007.

[13] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient
multicast packet authentication using signature
amortization. In IEEE Symposium on Security and
Privacy, pages 227–240, 2002.

[14] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp,
and S. Shenker. A scalable content-addressable
network. In SIGCOMM, pages 161–172, 2001.

[15] H. Rowaihy, W. Enck, P. McDaniel, and T. L. Porta.
Limiting sybil attacks in structured p2p networks. In
INFOCOM, pages 2596–2600, 2007.

[16] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware, 2001.

[17] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: a scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Trans. Netw.,
11(1), 2003.

[18] K. Walsh and E. G. Sirer. Experience with an object
reputation system for peer-to-peer filesharing
(awarded best paper). In NSDI, 2006.

[19] L. Xiong and L. Liu. Peertrust: Supporting
reputation-based trust for peer-to-peer electronic
communities. IEEE Trans. Knowl. Data Eng.,
16(7):843–857, 2004.

[20] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
Sybilguard: defending against sybil attacks via social
networks. In SIGCOMM, pages 267–278, 2006.

