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Abstract. This paper describes a method based on metric structures
for anatomical analysis on a large set of brain MR images. A geodesic
distance between each pair was measured using large deformation
diffeomorphic metric mapping (LDDMM). Manifold learning approaches
were applied to seek a low-dimensional embedding in the high-
dimensional shape space, in which inference between healthy control
and disease groups can be done using standard classification algorithms.
In particular, the proposed method was evaluated on ADNI, a dataset
for Alzheimer’s disease study. Our work demonstrates that the high-
dimensional anatomical shape space of the amygdala and hippocampi
can be approximated by a relatively low dimension manifold.
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1 Introduction

In the past decade, computational anatomy (CA) [1] has emerged as a discipline
to study the neuroanatomical variability via morphometric mapping algorithms.
Quantitative analysis of anatomy has thus become possible. This paper stud-
ies the problem of embedding healthy control (HC) and Alzheimer’s disease
(AD) subjects into an anatomical shape space by computing a dissimilarity rep-
resentation between subjects. Manifold learning techniques are applied on the
dissimilarity representation to obtain embeddings for different subjects followed
by classification in the embedded space. A widely-used framework in CA, large
deformation diffeomorphic metric mapping (LDDMM) [2] was used for dissimi-
larity measurement. The proposed method was evaluated on a dataset of 385 MR
images obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[3]. Instead of studying the whole brain, here we consider only two anatomical
structures, hippocampus and amygdala, which have been reported to be affected
morphologically by AD.
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There have been several related methods proposed in the literature to ap-
ply manifold learning methods to dissimilarities measured on structural images.
Most of them quantify inter-subject dissimilarity based on volume image data.
For example, a similarity measurement called bending energy is employed in [4].
In [5, 6], random forest has been used to measure dissimilarity on some statisti-
cal region-based features extracted from volume images. In [7], dissimilarity was
calculated via a small deformation to approximate a large deformation for com-
putational efficiency. Similar approximations can be found in [8, 9, 4]. However,
the explosive growth of computing power along with parallel computing resources
have made the problem of computation less severe. Thus a full large deformation
diffeomorphic metric is adopted in this paper. In this study, we couple the vol-
ume imagery to surfaces, and track the variations of shape using surface models.
Studying surfaces allows us to capture the variation of neurodevelopment very
efficiently [8].

Low-dimensional embedding can be calculated from the dissimilarity informa-
tion via standard manifold learning approaches, such as multidimensional scaling
(MDS) used in [5, 6, 10], Isomap used in [4, 8, 9], Laplacian Eigenmaps (LE)
used in [7].

After the embedding in low-dimensional space is calculated, statistical infer-
ence is often carried out. One choice is classification between different cohorts.
Classification accuracy then becomes an important criteria for evaluating the
dimension of the embedding. We note that we only consider the two-class classi-
fication problem, i.e., HC and AD. In this paper, a number of standard manifold
learning and classification algorithms were employed. Section 3 presents our ex-
periments and result. Compared with related works mentioned above, our inves-
tigations are more extensive, i.e., we consider a larger dataset. Our methodology
achieves comparable classification accuracy.

2 Methods

In this section, the framework of our method is described step by step. The
flowchart is presented in Figure 1.

2.1 Data Acquisition

The dataset used in our experiment contains 385 T1 weighted MR images ob-
tained from ADNI [3]. Although there are more than 800 subjects with 4000
scans in ADNI database, we considered the healthy control and disease groups,
with the baseline, i.e. the first scan, for each subject. Some scans (84 out of
840) were excluded if they suffered severe degradation due to motion artifacts or
significant clinical abnormalities (e.g., hemispheric infarction). A dataset of 756
subjects was formed after this unbiased selection, including 210 subjects of HC,
175 subjects of AD, and 371 subjects of Mild Cognitive Impairment (MCI). We
only considered the HC and AD here. Table 1 presents detailed information of
this dataset.
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Fig. 1. The flowchart of the framework: data acquisition, segmentation, surface extrac-
tion, rigid registration, LDDMM-surface mapping, manifold learning, and classification

Table 1. Demographic characteristics of the dataset used in this paper

Group HC AD

number of subjects 210 175

number of male subjects 109 94

Age (year) 76.25 ± 5.01 75.28 ± 7.49

2.2 Preprocessing: Segmentation and Iso-surface Extraction

We followed a similar procedure as used in [11], in which template surfaces are
used to initialize the topology of the subcortical structures upon which the infer-
ence will be performed, and then target surfaces are inserted into the segmenta-
tions from Freesurfer [12, 13] via LDDMM mapping. These transformed template
surfaces towards different target surfaces are accurate since the LDDMM map-
pings used are smooth, and mediate the noise which may be sometimes inherent
in segmentations. These surfaces then become the manifolds that our inference
proceeds based on.

2.3 Diffeomorphic Metric Mapping

To measure dissimilarity between two subjects, diffeomorphic metric mapping is
calculated via LDDMM surface mapping [14, 15]. The diffeomorphisms φt are
constructed as a flow of ordinary differential equation:

φ̇t = vt(φt), φ0 = Id, t ∈ [0, 1] , (1)

where vt is the velocity vector field which determines the corresponding flow φt.
The boundary value of this ODE is the identity map denoted as Id.

The LDDMM surface mapping algorithm seeks the optimal velocity field to
minimize a loss function combining smoothness and goodness of fit of the map-
ping φ. Given a pair of surfaces I and J , a dissimilarity ρ(I, J) between them
is calculated by integrating the norm of velocity vector field associated with the
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geodesic φt over time, where σ is the parameter for trade-off between smoothness
and goodness of fit.

ρ(I, J) =

∫ 1

0

‖v∗t |dt, where v∗t = argmin
v∈V

∫ 1

0

‖vt‖vdt+ 1

σ2
‖I · φ−1

1 − J‖L2 (2)

The second term, goodness of fit, implies this is not an exact matching prob-
lem, because the exact matching problem does not have a well defined solu-
tion. Thus ρ(I, J) is not a precise metric for it is not symmetric, and this
effect has been studied in [16]. Here we took the “averaging” strategy , i.e.

ρ′(I, J) = ρ′(J, I) � (ρ(I,J)+ρ(J,I))
2 , to make it symmetric. In addition, prior to

LDDMM a rigid registration was carried out to remove the variation caused by
different poses in image acquisition stage.

2.4 Manifold Learning and Classification

Manifold learning is a popular approach of non-linear dimension-reduction. It
attempts to find a low-dimensional embedding (i.e., the manifold) in the high-
dimensional space. The hypothesis is that the data points are samples from a
low-dimensional manifold. There are a number of algorithms in the manifold
learning family. Here we consider three of them, i.e., classical MDS, Isomap [17],
and Laplacian Eigenmaps (LE) [18].

Four widely used classification algorithms, K-Nearest Neighbor (KNN) and
Fisher’s linear discriminant analysis (LDA), Support Vector Machine (SVM),
and Random Forest (RF) were employed to discriminate HC and AD cohorts.

For SVM, LIBSVM was used [19]. Beside the original linear SVM, another
nonlinear kernel function, Radial Basis, was tried. Random forest [20] is an
extension of traditional decision tree, which makes an overall prediction based
on decisions of all individual trees.

3 Experiments and Results

We tested the proposed method on two anatomical structures, the hippocam-
pus and amygdala. For each subject, four surfaces including both left and right
sides are studied. On any of these surfaces, an inter-subject dissimilarity was
calculated via LDDMM following a rigid registration as described in 2.3.

After surface mapping finished, one of three manifold learning methods, MDS,
Isomap, and Laplacian Eigenmaps, was employed to calculate embedding, on
which several classifiers were trained and tested. A 6-fold cross-validation was
carried out to evaluate the performance on 385 subjects (210 HC and 175 AD).
The performance was measured using misclassification rate.

In order to understand whether the dimension of representation for the
anatomical shape space is large or small, misclassification rate was calculated
by varying the dimensions of the embedding. In particular, we considered the
first d dimensions corresponding to the largest d eigen-values for d = 1, ...90.
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Fig. 2. Misclassification rate as a measure of the embedding dimensions from the left
hippocampus via MDS

As a result, a curve of misclassification rates over different dimensions was ob-
tained for each classification algorithm. Figure 2 presents misclassification rates,
using MDS followed by a certain classification algorithm, as a function of the
number of embedding dimensions calculated from the left hippocampus. From
the misclassification curves, one can observe that the misclassification rate first
decreases rapidly then increases slowly, as the embedding dimensions increases.
Thus, a low dimension embedding is sufficient to achieve a low misclassification
rate. However, increasing the dimensionality can lead to noises and over-fitting.
The dimensions with lowest misclassification rate under our setup, is 15 to 20
for most classification algorithms approximately. This suggests that anatomi-
cal shape lies in a space of relatively low dimensionality. Other combinations of
{MDS, Isomap, Laplacian Eigenmaps} and {left/right hippocampus, left/right
amygdala} give similar results and are not reported here due to space constraints.

Table 2 is a full comparison of minimum misclassification rates and the corre-
sponding number of dimensions from different embedding algorithms and classi-
fication algorithms (on left/right hippocampus). In that table, SVML indicates
SVM using linear kernel (original version). SVMR represents the radial basis ker-
nel. RF represents random forest. The number of dimension corresponding to min-
imum misclassification rates, are highlighted in each column. The standard error
for each of entry of Table 2 is approximately one percent. The minimum misclas-
sification rate is around 14% which is achieved via Laplacian Eigenmaps on the
left hippocampus. Lowermisclassification rates are achieved on the left hippocam-
pus than on right hippocampus regardless of which manifold learning algorithm
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is used. Similar phenomena can be observed for the amygdala. Manifold learning
algorithms, MDS, Isomap, and Laplacian Eigenmaps give comparable results.

Table 3 is a summary comparison of performance reported in related works.
Note that it only lists the methods strongly similar to our methodology, i.e.,
computation of dissimilarity followed by manifold learning and classification. It
is difficult to compare the classification accuracy directly with other published
methods, given that the difference may be caused by the different datasets used
(different database or different subset of ADNI). Our embedding achieves clas-
sification accuracy comparable with related works.

Table 2. Smallest Misclassification rate L* and the corresponding dimension d*

Classifier
Left Hippocampus Right Hippocampus

Isomap MDS LE Isomap MDS LE
L* d* L* d* L* d* L* d* L* d* L* d*

LDA 18.7% 9 15.3% 15 14.0% 26 20.2% 7 19.5% 25 21.3% 20

RF 19.2% 65 16.9% 16 17.9% 27 21.3% 13 21.3% 33 22.6% 6

SVML 18.2% 53 14.8% 19 14.8% 42 19.2% 17 19.2% 27 22.1% 3

SVMR 17.4% 53 15.6% 15 15.6% 25 18.9% 38 20.8% 16 22.3% 3

30-NN 19.2% 24 17.1% 88 18.9% 13 21.6% 20 21.3% 55 22.3% 3

60-NN 17.7% 43 17.1% 39 18.4% 7 19.5% 26 22.1% 18 21.0% 9

Table 3. Summary of representative methods in the literature1

Method [4] [5] [6] [7] [10] Our method

{#subjects of HC}/{#subject of AD} 25/25 69/71 37/35 116/103 57/44 210/175

Accuracy 76-84% 87% 83% 86% 77% 85%

3.1 Comparison to Template Based Classifiers

In the framework of LDDMM, we calculated a geodesic from the template co-
ordinate space to the target coordinates. The method proposed in this paper is
template-free, since there does not exist a fixed template. For template-based
methods, given a fixed template, the anatomical variability within a group of
subjects is encoded via the geodesic. In [21], computational tools are provided
for comparing these geodesic transformations and derived a fundamental “con-
servation of momentum” property of these geodesics: the initial momentum
encodes the geodesic connecting the template to the subject. Anatomical dif-
ferences among different target groups can, therefore, be studied by analyzing
the initial momentum associated with different subjects. In [22], the initial mo-
mentum space is demonstrated to be linear, and thus linear statistical analysis
such as the principal component analysis (PCA) can be applied to that space.
Another paper [23] successfully utilized the initial momentum space associated
with volume to discriminate disease groups. In our experiment, we combined

1 The accuracy listed here is only that based on MR images (one scan for each subject).
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PCA and LDA to differentiate HC and AD. According to the cross-validation
results, we observed, in terms of misclassification rate, 15%, 19%, 20%, and 21%
respectively from the PCA+LDA procedure applied on the initial momentum
space of left hippocampus, right hippocampus, left amygdala, and right amyg-
dala. This implies the performance of our template-free method proposed in this
paper is comparable to the template-based classification method.

4 Conclusion

In this paper, we present a framework of embedding anatomical shape infor-
mation into a low-dimensional space and discriminating subjects with AD from
healthy controls using various classification algorithms. The LDDMM algorithm
was used for measuring dissimilarity between every pair of anatomical shapes.
This is in some sense a special way to extract biomarkers from MR image data.
This framework achieves the comparable performance with similar application
of manifold learning in discriminating subjects with cognitive dementia from
healthy controls. A potential application or extension of our work is to combine
the shape information extracted using this method and other imaging features
extracted from different imaging modalities with their fusion improving classifi-
cation accuracy [5–7].

Our result suggests that a suitable representation of anatomical shape space
is inherently of low dimension. Another conclusion can be drawn from the result
is that the key step in this manifold learning framework is the dissimilarity
measurement because as shown in Section 3 similar results can be achieved when
different manifold learning or classification algorithms were used.
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