Problem 1.

(a) If we erode F by a disk structuring element B that is centered at the origin, we will obtain image $F \ominus B \subseteq F$. If we subtract this image from F, we will obtain the edges of F. Therefore, a useful morphological edge detector is

$$\Psi_{\text{edge}}(F) = F \setminus F \ominus B \subseteq F.$$

By taking the diameter of B to be 1, we obtain the following result:

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image.png}
\caption{Diagram illustrating the edge detection process.}
\end{figure}

(b) We can choose the diameter of B to be equal to 2ϵ, where $\epsilon \ll 1$. Then, $\Psi_{\text{edge}}(F)$ will produce the same result as before but with thickness ϵ. This will reduce the edge thickness to a thin line of width ϵ.

Problem 2.

(a) Since F is B-open, we have that $F = G \oplus B$ with $G = F \ominus B$. Then, $F \ominus B = (G \oplus B) \ominus B = G \bullet B$. Therefore, $F \ominus B$ is equivalent to the structural closing $G \bullet B$.

(b) Since $(\Psi_{\epsilon}, \Psi_{\delta})$ is an adjunction, we have that $\Psi_{\epsilon} \Psi_{\delta} \Psi_{\epsilon}(F) = \Psi_{\epsilon}(F)$ and $\Psi_{\delta} \Psi_{\epsilon} \Psi_{\delta}(F) = \Psi_{\delta}(F)$. In this case, $\Psi_{\epsilon} \Psi_{\delta} \Psi_{\epsilon} \Psi_{\delta} \Psi_{\epsilon}(F) = \Psi_{\epsilon} \Psi_{\delta}(F) \supseteq F$.

Problem 3. We have the following results:

Clearly, $F_1 \subseteq F_2$, F_3, F_4, $F_3 \subseteq F_2$, and $F_4 \subseteq F_2$, but we cannot order F_3 and F_4.

Problem 4. Let S be a 2×2 square structuring element that contains the origin. Then, $F \ominus S$ contains the centers of all 2×2 squares in F. In this case,

\[F_1 = \Psi_1(F) = F \setminus R_B(F \ominus S | F) \quad \text{and} \quad F_2 = \Psi_2(F) = R_B(F \ominus S | F), \]

where R_B is the binary reconstruction operator.

Problem 5. The best morphological operator for this case is given by

\[\Psi(G) = \bigcup_{n \in Q^+} [G \ominus nB \setminus G \ominus (n + 1)B], \]

where $Q^+ = \{ n \geq 0 \mid P_N(n) < P_F(n) \}$.

From the given pattern spectra, it is clear that $Q^+ = \{2, 5, 6\}$. Therefore,

\[\Psi(G) = (G \ominus 2B \setminus G \ominus 3B) \cup (G \ominus 5B \setminus G \ominus 6B) \cup (G \ominus 6B \setminus G \ominus 7B) \]

\[= (G \ominus 2B \setminus G \ominus 3B) \cup (G \ominus 5B \setminus G \ominus 7B). \]
Problem 6.

(a) For $0 \leq t \leq 0.5$, we have the situation depicted below.

Note that $|F \circ tB| = |F_1| + |F_2|$, where

$|F_1| = 2 - 3 \left(t^2 - \frac{\pi t^2}{4} \right) = 2 - 3t^2 + \frac{3}{4}\pi t^2$

$|F_2| = 1 - 2 \left(t^2 - \frac{\pi t^2}{4} \right) = 1 - 2t^2 + \frac{1}{2}\pi t^2.$

Therefore,

$S_F(t) = 2 - 3t^2 + \frac{3}{4}\pi t^2 + 1 - 2t^2 + \frac{1}{2}\pi t^2 = 3 - 5t^2 + \frac{5}{4}\pi t^2 = 3 - 1.075t^2.$

Hence

$S_F(t) = 3 - 1.075t^2,$ for $0 \leq t \leq 0.5,$

which leads to the following plot:
(b) At \(t = 0 \), \(S_F(t) \) gives the area of the object, which equals to 3 in this case. As \(t \) increases, \(S_F(t) \) is a continuous function of \(t \) and decreases monotonically. This indicates that \(F \) contains no objects smaller than a disk of radius \(1/2 \) (otherwise a discontinuity will occur).

Problem 7.

(a) An operator that distributes over intersections.

(b) An operator that is increasing, extensive and idempotent.

(c) An operator that is increasing and idempotent.

(d) The operator composed of the translation-invariant erosion followed by the adjunct translation invariant dilation.

(e) The reconstruction operator when the marker shape is the structural opening of image \(F \) with a structuring element \(A \).