Homework #4

1. Consider the following grayscale signal f:

 ![Grayscale Signal](image1.png)

 (a) Determine its threshold decomposition \mathcal{F}.
 (b) Is the stacking property satisfied?
 (c) Erode each cross section in \mathcal{F} by the flat structuring element $B = \{-1,0,+1\}$ and calculate the grayscale function f' after stacking the results.
 (d) Calculate the flat grayscale erosion $f'' = f \ominus B$. How does f' compare to f''?

2. Consider the following two grayscale signals f_1 and f_2:

 ![Grayscale Signals](image2.png)

 (a) Calculate the signal $f_1 \lor f_2$ using only set-unions.
 (b) Repeat part (a) for calculating the signal $f_1 \land f_2$.

3. Show the following four properties:
(a) \(f \ominus B \leq f \), if \(B \) contains the origin.
(b) \(f \ominus b_1 \geq f \ominus b_2 \), if \(b_1 \leq b_2 \).
(c) \((f \ominus b_1) \ominus b_2 = f \ominus (b_1 \oplus b_2) \).
(d) \(f \oplus b = (f^* \ominus b)^* \).

4. Show that, if \(\{ \psi_i \} \) is a collection of closings, then \(\bigwedge \psi_i \) is a closing as well.

5. Let \(\mathcal{F} = \{ F(t) | t \in Z, F(t) \neq \emptyset \} \) be the threshold decomposition of a grayscale image \(f \) and \(\Psi \) be an increasing set operator. Set \(g(x, y) = \psi(f)(x, y) = \max \{ t \in Z | (x, y) \in \Psi(F(t)) \} \). Show that:
(a) If \(\Psi \) is a dilation, then \(\psi \) is a dilation as well.
(b) If \(\Psi \) is idempotent, then \(\psi \) is idempotent as well.
(c) If \(\Psi \) is anti-extensive, then \(\psi \) is anti-extensive as well.
(d) If \(\Psi \) is an opening, then \(\psi \) is an opening as well.

6. An image \(f \) is corrupted with max-noise \(\eta \). Let \(P_{f:B}(k) \) and \(P_{\eta:B}(k) \) be the pattern spectra of the image and noise, respectively, based on a structuring element \(B \). After extensive experimentation, it has been determined that the optimal smoothing filter (in the sense of minimizing the expected absolute difference metric) is given by
\[
\psi(g) = (g - g\ominus3B) + (g\ominus5B - g\ominus10B) .
\]
If we assume that \(f \) and \(\eta \) are non-interfering, what is the relationship between \(P_{f:B}(k) \) and \(P_{\eta:B}(k) \)?

7. Suggest a morphological operator that extracts the “peaks” or “domes” of an image \(f \). You are only allowed to use translations and the conditional reconstruction operator \(r^*_B(f_n | f) \).