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In many problems in computer vision, data in multiple ! ! ! ! ! !
classes lie in multiple low-dimensional subspaces of a high- Bl1] Bl
dimensional ambient space. However, most of the existing
classification methods do not explicitly take this structure Figure 1.In face recognition, the dictionary has a block structure where
into account. In this paper, we consider the problem of clas- the training images of each subject form a few blocks of the dictionary.

sification in the multi-subspace setting using sparse repre-

sentation techniques. We exploit the fact that the dictio- spaces. In fact, for many important problems in computer
nary of all the training data has a block structure where yisjon such as face recognitiond, motion segmentation
the training data in each class form few blocks of the dic- [5] and activity recognition {4], the data lie in multiple
tionary. We cast the classification as a structured sparse |gw-dimensional subspaces of a high dimensional ambient
recovery problem where our goal is to find a representation space. However, most existing classification methods do
of a test example that uses the minimum number of blocksyot explicitly take into account the multi-subspace structure
from the dictionary. We formulate this problem using two of the data.

different classes of non-convex optimization programs. We  An important class of methods that deals with data on
propose convex relaxations for these two non-convex pro-mytiple subspaces relies on the notion of sparsity. Specif-
grams and study conditions under which the relaxations are jca|ly, the sparse representation-based classification (SRC)
equivalent to the original problems. In addition, we show method [ 3 looks for the sparsest representation of a test
that the proposed optimization programs can be modified example in a dictionary composed of all training data across
properly to also deal with corrupted data. To evaluate the || classes. More formally, given a dictionafy and a test

proposed algorithms, we consider the problem of automatic exampley, it solves the following non-convex program
face recognition. We show that casting the face recognition

problem as a structured sparse recovery problem can im- Py, :

prove the results of the state-of-the-art face recognition al-

gorithms, especially when we have relatively small numberwhere||c||o denotes the number of nonzero elementg.of

of training data for each class. In particular, we show that Assuming that the underlying subspace for each class is

the new class of convex programs can improve the state-oflow-dimensional, the sparsest representation of a test exam-

the-art face recognition results BY% with only25% ofthe ~ ple ideally corresponds to the training data from the same

training data. In addition, we show that the algorithms are class. When it comes to the problem of robust classification,

robust to occlusion, corruption, and disguise. the SRC method offers a great advantage over many classi-
fication methods since it can effectively deal with corrupted
data within the same sparse representation framework.

...... BIn]

min |l¢|lp s.t. y = Be,

1. Introduction Challenges. While sparse representation-based methods
have been shown to be effective for classification, there still
remain questions about classification in the multi-subspace
setting using sparse representation which have not been suf-
ficiently explored or have not been answered yet.

Classification is one of the most fundamental problems
in machine learning and has numerous applications in dif-
ferent areas including computer vision. Given training data
from multiple classes, the task is to find the class to which
a test example belongs. C1- The SRC method looks for the sparsest representation

Recently, there has been an increasing interest in clas-of a test example with the hope that such a representation
sification problems where the data across multiple classesselects few training data from the correct class. However,
come from a collection of low-dimensional linear sub- as shown in Figuré, the dictionary of the training data has
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a structure in which data from each class form few blocks are linearly independent. We consider an arbitrary 1

of the dictionary.ls there a way to direct the SRC method and, motivated by practical problems such as face recogni-
to take into account the dictionary structure, e.g., by finding tion, we allow for arbitrary number of data in each block.

a representation of a test example that involves only a few To evaluate the classification performance of the two
blocks of the dictionary corresponding to the training data classes of convex programs, we consider the problem of
from a single classlf so, what would be the behavior of the automatic face recognition. By extensive experiments, we
new algorithms in dealing with corrupted data? show that the methods based on structured sparse represen-
tation improve the state-of-the-art face recognition results

C2—-When it comes to the problem of classification on mul- lassifving both ted and ted data. M
tiple subspaces, there is a fundamental gap between the thé‘prcassﬁymg oth uncorrupted and corrupted data. More

; - . specifically, we show that the proposed convex programs
ory of sparse recovery and the practice of machine leammg'irﬁprove thye face recognition respults by’ when thepnu?n-

C2a- When the number of training data in each class is o, of training data in each class is as small as the dimen-
large, we can better capture the underlying distribution of ;0 ¢ the face subspacd|{ In addition, we show that the

data and the classification performance increases. Nonethe oo ithms can efficiently handle corruption and occlusion.
less, existing sparse recovery algorithms do not have theo-

retical guarantees when it comes to highly redundant dic- Paper organization. In Section2, we review the sparse
tionaries and the conditions for their success almost neverrepresentation-based classification (SRC) method. In Sec-
hold. Can we fill the gap between the current sparse repre- tion 3, we formulate the classification problem as a struc-
sentation theory and the classification practice? tured sparse recovery problem using two different non-
C2b- When the number of training data in each class is CONVEx optimization programs and propose convex relax-
small, sparse recovery methods have good theoretical guardtions. In Sectior, we derive conditions under which the

antees. However, classification algorithms do not perform CONVex programs are equivalent to the original non-convex
formulations. In Sectio®, we evaluate the performance of

well. Can we have alternative methods based on sparse . X
representation that can lead to better classification results € Proposed algorithms on the problem of automatic face
recognition. Sectioé concludes the paper.

when the number of training data in each class is small?

Paper contributions.  The goal of this paper is to ad- 2 Classification via Sparse Representation
dress the aforementioned challenges. We show that instead

of looking for the sparsest representation of a test example In this section, we review the problem of classification
y in the dictionary of all the training dat®, a better crite- ~ of data in multiple subspaces using sparse representation.
rion for classification is to look for a representation of the Assume we have: classes and we are given; training

test example that involves the minimum number of blocks data{b;; € R”}7", for each class. We denote byB[i] €

from the dictionary. We formulate this problem using the R”*™: the collection of training data in theth class

following non-convex optimization programs

. Bji] £ [bil bio bimi] S RDxmia 3
Peyje, - win Y I(lelillly > 0) st y=Be, (1) and denote by the collection of all training data across all
=1
classes
and B2 (B[] B[2 Bn]]. @)

Given a test examplg € R”, which belongs to one of
then classes, our goal is to find the class to which the test
example belongs.

In this paper, we assume that the data in each class live in

Pz’q/&) : min ZI(”B[Z]C[Z]Hq >0)s.t. y=Be, (2)

i=1

wherel(-) is the indicator functiong > 1, andc[i] € R™:
are the entries of corresponding to théth block of the a low-dimensional linear subspace®f. More precisely,
dictionary, B[i] € RP>*™i, as shown in Figuré. We also  we assume that the data in th¢h class live in a subspace
show that both optimization programs can be properly mod- .S; of dimensiond;, whered; <« D. Thus, the training
ified to deal with corrupted data. data live in multiple low-dimensional subspaces of a high-
In order to solve these problems efficiently, we propose dimensional space. In fact, in several important problems
convex relaxations for the two classes of non-convex pro-in computer vision such as face recognitiors]] motion
grams and study conditions under which each class of con-segmentations], and activity recognition14] the data can
vex programs is equivalent to the original non-convex for- be well approximated by a union of subspaces. The SRC
mulation, hence can be used for classification. The state-of-method L] is based on the idea that in such cases, a test

the-art structured sparse recovery literatute?[ 7] consid-
ers the case whete= 2 and the training data in each block

example has a sparse representation in the dictionary of all
the training data across different classes. More precisely,
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since a test example belonging to one of the classes lives in

a low-dimensional subspace, its sparsest representation is
linear combination of a few training data from the correct
class. Thus, in principle, we are interested in solving the
following optimization problem

Py st. y= Beg, (5)

where| - ||o denotes the/, semi-norm and indicates the

o ¢ min ||c|lo
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Figure 2.Left: sparsest representation of a test example does not neces-
sarily come from the correct clasg.can be written as a linear combination

number of nonzero elements of the given vector. Since theOf one data point fron$s and one fromS3 as well as a linear combination

P, optimization program is NP-hard, a convex relaxation
of it is obtained by replacing th&, with the /; norm and
solving the following convex program

Py, : min ||c]; st y=Be (6)

of two data points fromf;. Right: training data in a class might be sep-
arated into several blocks. Thus, a test example can be written as a linear
combination of a few blocks in each class.

for classification. In order to see this, we consider the ex-
ample in Figure (left) where we havé classes whose data

An important advantage of classification methods basedﬁve in three Subspaces;l being a2-dimensional SubspaCE,

on sparse representation is their ability to deal with cor-
rupted data within the same framework. To see thisy/et
be a test example corrupted with an ereothat has a few
nonzero entried,e., y = y, + e. Note thaty, has a sparse
representation in the dictionary of the training d&aand

S2 and S; being1-dimensional subspaces. The test exam-
ple y, which belongs to class, can be written as a linear
combination of any two data points from classwhile it

can also be written as a linear combination of one data point
from class2 and one from clas8. Thus, from the sparsest

the error has a sparse representation in the standard basigpresentation perspective, there is no difference between

I (the identity matrix inR”). Thus, in a new dictionary

the two representations as they both have two nonzero el-

formed by concatenating the training data and the standarcements, while obviously from a classification perspective,

basis,y has a sparse representation that can be recovere
from

P, : min ||m||0 st y=[B 1] [Z] @

To solve this problem efficiently, we can use &nrelax-
ation and instead solve the following convex program

Py, ¢ min ||m”1 st. y=[B I [Z] )

We can then find the class of a given test example as th
class that best represents the test example using its trainin
data. More precisely, for a given test exampldf we de-
note byc* " = [¢* " [1] ¢ [n]] the optimal solution
of P,,, the class of can be obtained By

clasgy) = argmin [ly — Bli]c"[i] - 9)

3. Classification via Structured Sparsity

As discussed in the previous section, when the training

data in each class live in a low-dimensional subspace of a
high-dimensional ambient space, the classification problem

e

the first one is the desired solution. Now, if instead of look-
ing for the sparsest representation we look for a represen-
tation that uses the minimum number of blocks, we obtain
the desired solution for perfect classification.

In a general classification task, the dictionary of the
training data has a block structure where a few blocks of
the dictionary correspond to the training data in each class.
Thus, a test example can be represented as a linear combi-
nation of training data from a few blocks of the dictionary
corresponding to its class. For example, in Fig2i(eght),
the test examplg, can be written as a linear combination
of 1 block whiley, can be written as a linear combination
%t two blocks of the underlying clagsAs another example,
in the face recognition problem, each class consists of im-
ages of a single subject that can be separated into multiple
blocks based on different expressions as shown in Fityure

Structured sparse representation via?, .. Based on
what we have discussed so far, a better objective for classi-
fication is to solve

Py, ¢,: min»_I(|lefi]]ly > 0) st. y=Be, (10)

i=1

can be cast as the problem of finding the sparsest represen-

tation of a test data in the dictionary of all the training data.

In this section, we argue that looking for the sparsest rep-

where(-) is the indicator function angd > 1. While in
principle we could have chosen any valueqft> 0, we

resentation of a test example might not be the best criterionchooseq > 1 for reasons that will become clear shortly.

1For data corrupted with sparse outliers, we use the modified criterion
clasgy) = argmin; ||y — e* — Bi]c*[i]]|2.

2When each classconsists of several blocks indexed Y, the class
of a test examplgy is given by argnin; ||y — 3=, c o, Blile*[f]ll2-
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This optimization problem seeks the minimum number of single block. If for a test example that belongs to the
nonzero coefficient blocks that reconstruct the test exam-th class, we denote the optimal solution &f , by c*

ple. Note that the optimization prograf, ., is NP-hard  then for thel-th block we haveB[l]c*[l] = y. For other
since it requires searching exhaustively over all possible fewblocksi # I, while ¢* [i] might be nonzero, we always have
blocks of B and checking whether they span the giyen  BJ[i]c*[i{] = 0. Thus, thel-th class would minimize the
An (, relaxation of this program is given by classification objective function ire), ||y — Bl[i]c*[i]||2,

. ] resulting in correct classification.
Py /e, min Z lleldlly st vy = Be, (11) _ _ .
i Dealing with corrupted data. We will now show that the
proposed structured sparse recovery methods can also deal

which is a convex program when> 1. with corrupted data within the same framework. ygtbe a
Forg = 1, while the non-convex program®, ;,, and  test example corrupted by a sparse eedre. y = y, +e.
Py, are different, their convex relaxation%, ,,, and P, The uncorrupted datg, can be written as a linear combi-

are the same. Thugy, can also be thought of as a struc- pation of a few blocks of the training data dictionary. Also,
tured sparse recovery method that under appropriate condiz can be written as a linear combination of a few blocks of
tions, as will be discussed in the next section, finds a repre-the standard basi, where we treat each column Hfas a
sentation of the test example with the minimum number of pock of lengthl. Thus, the corrupted test examplg,can
nonzero blocks. be written as a linear combination of few blocks of a new
Structured sparse representation viaP, , . We will dictionary composed of the training data and the standard
basis. This structured sparse representation can be recov-

. B . . . a
also consider an alternative optimization program for the )
ered, after convex relaxation, by

classification problem, which can be formulated as
" B . n ' c
P, : min Y I(|Blileli]], > 0) st y=Be, (12) Pey/o mm; lclillla +llells st y=[B 1] {e] (14)
i=1 =
where we used the fact that the blocksIohave lengtht,
i.e, eli] € R. Thus, Zl Lleldlly = llellr. Similarly,
Py, can also deal with corrupted data, in which case we
have to solve the following convex program

whose/; relaxation forq > 1 gives the following convex
optimization program

Pé,q/&: mmZHB [l st. y= Be. (13)
Pro min BTl + el st v =[5 1]
Unlike P 4, that minimizes the number of nonzero
coefficient blocksc[i], the optimization programP, o/t (15)

minimizes the number of nonzero reconstructed vectors

Bjilc[i]. When the blocks consist of linearly independent

data, the solution OPéq/ZO has also the minimum number of In the previous section, we showed that when data

nonzero coefficient blocks, becausB]i]c[i]||, > 0 if and in multiple classes live in multiple low-dimensional sub-

only if ||c[i]||, > 0. However, this does not necessarily hold spaces, the classification problem can be cast as a structured

when the blocks consist of linearly dependent data. To seesparse recovery problem where we are interested in solving

this, consider a simple example where the data in each classhe non-convex optimization prograns ,,, and P, s

form a single block of the dictionary. Letbe a test exam- In this section, we study conditions under which the con-

ple belonging to class Thus, it can be written as a linear  vex relaxations, ,,, andPZ’q/g1 are equivalent to the orig-

combination of the training data in tiieh class. Since the inal non-convex programs. Unlike the state-of-the-art struc-

vectors in each block are linearly dependent, for eveéyl, tured sparse recovery literaturg B, 7] that only consider

we can choose a nonzee@] in the null space oB(i], i. the case wherg = 2 and the data in each block are lin-

| Blile[i][l, = 0, while [|c[i]||, > 0. Obviously, this dOGS early independent, our theoretical analysis allows for arbi-

not affect either the value of the cost function or the equality trary ¢ > 1. Also, motivated by practical problems such

constraintinf; ,, . as classification, we allow for arbitrary number of data in
Despite the above argument, we will uBga/ for clas- each block. In addition, our theoretical results can be sim-

sification in dictionaries whose blocks have Imearly inde- ply generalized to the convex prograrfs, ,,, and P, 0

pendent or linearly dependent data because it still gives thethat deal with corrupted data.

correct classification as pe®)( To see this, let us assume Recall that a dictionanyB consists of the training data

for simplicity that each class consists of training data in a from n blocks B[i] € RP*™i where the data in each

4. Theoretical Results
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block live in a low-dimensional subspaég of dimension
d; < D. We can characterize a dictionary from two dif-

Theorem 2 For a vector that can be written as a linear
combination ofi blocks of the dictionary, the optimization

ferent perspectives. On the one hand, we can capture thqarogramPéq /6, is equivalent tcPlfq /o if

relations between different blocks (interblock relation) and

on the other hand, we can capture the relations among data

in each block (intrablock relation). First, we characterize

the relations between different blocks of a dictionary by as-

suming that the collection of subspaces is disjoint.

Definition 1 A collection of subspace§S;}?; is called
disjoint if each pair of subspaces intersect only at the ori-

(2k — 1) s < (21)

1— ¢
1+ eg '
5. Experiments

In this section, we evaluate the performance of the two
classes of convex programs on the problem of automatic

gin. For a collection of disjoint subspaces, define the mutual ;e yecognition. We also investigate the robustness of the

subspace coherence as

x'z (16)

= Imax max NPT
ts i#j ®E€S;,zES; HwHQHZHQ

proposed algorithms in dealing with corrupted data.

5.1. Classifying Uncorrupted Images

Note that the mutual subspace coherence is equal to the co- !N this part, we evaluate the performance of the pro-

sine of the smallest principal angle among all pairs of dif-

posed methods as well as the state-of-the-art face recogni-

ferent subspaces. Next, we characterize the relation amondion algorithms for classifying uncorrupted data on the Ex-

the data in the blocks of the dictionary.

Definition 2 For a dictionary B, definee, as the smallest
constant such that for eveiythere exists a full rank subma-
trix of B[i], denoted byB[i] € RP*% such that for every
c[i] we have

(1 —eplleldllz < I Bllelilll3 < (1+ ¢g)lleli]

Also, definer, as the smallest constant such that for every

i andcli] we have
IBlilelilll; < oqlielll3. (18)

Wheng = 2 and the blocks are full ranke., B[i] = B]i],

€2 coincides with thel-block restricted isometry constant
defined in fI]. Thus,e, can be thought of as a more general
notion that allows for any; > 1 and arbitrary number of
data in each block.

Definition 3 For a dictionary B, definec;, as the smallest
constant such that for evefyandc[i] we have

(1 —eplIBlielilll < IBlielil]l3 < (1 + €) | Blile[i]|l;-
(19)

e; characterizes the relation between theand ¢, norms

of vectors inR” and does not depend on the number of the

data in each block. Note that for= 2, we have:, = 0.

The following results establish conditions under which
the convex programsy, /., andPg’q/,V,1 are equivalent to the

tended Yale B databasé(]. The Extended Yale B database
consists oR, 414 cropped frontal face images of= 38 in-
dividuals. For each subject, there are approximai¢face
images of sizé92 x 168 = 32, 256, which are captured un-
der various laboratory-controlled lighting conditions. Since
the dimension of the original face vectors is large, we re-
duce the dimension of the data using the following methods.
—We down-sample the images by a factosuch that the
dimension of the down-sampled face vector®is
—We use the eigenfaces approatH by projecting the face
vectors to the firstD principal components of the training
data covariance matrix.
—We multiply the face vectors by a random projection ma-
trix & € RP*32:256 which has i.i.d. entries drawn from a
zero mean Gaussian distribution with varia%e{ ].

In the experiments, we sé? = 132. For simplicity of
the analysis, we assume that all classes have the same num-
ber of training datayn; = m. To investigate the effect
of the number of training data in the classification perfor-
mance, we randomly seleet € {9, 18, 25,32} training
images for each subject, forming bloclji] € RP*™,
and use the remaining images for testing. For every test im-
age, we solve the convex progras ,,, and Pz/q/zl for
q € {1,2} and determine the identity of the test image us-
ing (9).> We compute the classification rate as the average
number of correctly classified test images for which the re-
covered identity matches the ground-truth. We repeat this

original non-convex programs. The proofs of the results canexperiment0 times for random choices of, training data

be found in [].

Theorem 1 For a vector that can be written as a linear
combination oft blocks of the dictionary, the optimization
programp /., is equivalent ta?, ,, if

o 1—e¢
k, | —2 k-1 < 4,
( 1+eq+ ),us 1+¢4

(20)

for each subject and compute the mean classification rate
among all the trials.

Note that, /., , which is equivalent td%, , corresponds
to the SRC methodl[3] that has previously reported the best

3Because of modeling error and noise in the real data, we use the
modified convex programs whose equality constraints are replaced with
lly — Be|2 < e. In our experiments; = 0.05.
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Downsampling, D = 132 Eigenfaces, D = 132 Randomfaces, D = 132
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Figure 3.Recognition results on the Extended Yale B database as a function of the number of training data in each class.

results on the database. Since the dataset contains a singlgtion rate. We compare the results of the robust structured
expression for each person, the training data for each subsparsity-based classification algorithrﬁ’gz/g1 and sz/el
ject form one block of the dictionary. Hence, one can think with three other methods. First, we use the robust version
of a classification method that looks for a subject whose un-of the SRC methodP,,. Next, we use the basic PCA to
derlying subspace is closest to the given test image. Thisproject the data into lower dimensions and use the NN clas-
method is known in the literature as the nearest subspacesifier. Third, we use the Independent Component Analysis
(NS) method §] and we use it as a baseline for comparison. (ICA) architecture | §] with a NN classifiert

The recognition results are shown in Figute As the Form € {7,19} training data in each class, the recogni-
results show, the NS method has, in general, lower perfor-tion rates as a function of the percentage of corrupted pixels
mance than methods based on sparse representation. Morere shown in Figuré. For both cases?,, ,, andP;, , as

over, for a fixed value of;, the convex progrant; ,, al- well asP,, achieve almost00% recognition rate with up to

most always outperformg;_,,, . 50% corruption, while the recognition rates of the two other
While the performances of different methods are close methods drop quickly to less th&0% when we havé0%

for large number of training data in each class, the differ- corrupted pixels. Note thd?[z/gl ::mdlﬁéw1 obtain better

ence in their performances becomes evident when the numclassification results thaf,, when the number of training

ber of data in each class decreases. Note that while the perdata in each class is smath(= 7). However, form = 19,

formance of all the algorithms degrade by decreasing thethe performances 0@2/41 andP,, are similar.

number of data in each class, the convex progré’rljr);;g1

are more robust to decreasing the number of training data.5.3. Robustness to Random Block Occlusion

Specifically, when the number of training data in each class In this section, we test the performance of the structured
is as small as the dimension of the face subspake.g., ' P

m=d =9, P, has almos10% higher recognition rate sparsity-based classification methods in dealing with cor-

/ : . i i
than the SRC method. It is also important to note that our _rupted data, where corruption appears in a block of a face

results are independent of the choice of featuies, the image instgad of bging distributed across all image pixels.
results follow the same pattern for the three types of fea- /& USe images in subsefand2) of the Extended Yale B
tures as shown in Figur® In all of themsz/Z1 andPlfl/e1 Fjatabase for training and USe Images in S_UBSEW test-
achieve the best recognition results. ing. We downfsample the images so thiat= 1,400. In
order to examine the robustness of the methods to occlu-
5.2. Robustness to Random Corruption sion_s we replace a randoml)_/ chosen square block of each
test image with an unrelated image and change the percent-
In this section, we test the robust versions of the struc- age of occlusion fronf) to 50 percent. Similar to the pre-
tured sparsity-based algorithms in dealing with random vious section, we compare the performancepf,, and
pixel corruption. To that end, we choose images in subsetPth/IZ1 against the SRC method, PCA+NN and ICA+NN.
1 (and2) of the Extended Yale B database for training and For m; < {7,19} training data in each class, the results
choose images in subsgfor testing. We downsample the  are shown in Figuré. Note that the sparse representation
images so thab = 1, 400. Without corrupting the images, based methods achieve alma86% recognition rate up to
this is not a hard problem and this choice is to isolate the 20% occlusion, while the recognition rates of PCA+NN and
effect of random corruption. Next, we corryppercentage  |CA+NN quickly drop as we increase the the percentage of
of randomly chosen pixels in each test image. We replacegcclusion. In addition, forn = 7, both 15@2/@1 andPéQ/gl
the values of the chosen pixels by i.i.d. values drawn from a
uniform distribution in the range of the image pixel values. — 4gor pca and ICA, we choose the number of basis components over
We changep from 0 to 90 percent and compute the recog- the range{100, 200, 300, 400} to give the best test performance.
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6. Conclusions

We formulated the problem of classification as a struc-
tured sparse recovery problem using two non-convex opti-
mization programs?,_ ., and PZ’MO. To solve them effi-
ciently, we proposed convex relaxations for the two non-
convex programs and studied conditions under which they
are equivalent to the original non-convex formulations. We

showed that the proposed algorithms can be modified to

Extended Yale B database as a func- alS0 deal with corrupted data. Our experiments on the face

recognition problem showed that the proposed classification
methods lead to better recognition results especially when
the number of training data in each class is relatively small.
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Figure 5.Recognition results on the Extended Yale B database as a func-
tion of the percentage of block occlusion. 2l
Table 1.Recognition rates on the AR database for robustness to disguise.
’ Algorithms\ Péz 0 \ Py, /e, \ Py, \ PCA+NN \ ICA+NN ‘

(3]

Sunglasses 66.5% | 80.5% | 84.3% | 57.5% 51.7%
Scarves | 41.7% | 59.8% | 35.2% | 10.5% 9.2%
All 54.1% | 70.2% | 59.8% | 34.0% 30.5% [4]

(5]
6]

obtain better recognition rates thah, for all percentages
of occlusion.

5.4. Robustness to Disguise 7

In this part, we examine the robustness of the proposed
algorithms to real malicious occlusions in images. We use (8]
the AR databasel[l] which consists of face images of
n = 100 individuals acquired under the same pose with
varying illuminations and expressions. Out of ffidmages [
for each subject, if6 images the subject is wearing sun-

glasses, roughly occludirz)% of the image, and i im- [10]
ages, the subject is wearing a scarf, occluding nei@ iy of
the image. We down-sample the images so fhat 1, 400. 1]

We randomly selectn = 9 images for each subject as the
training data and use the images with sunglasses and scarvgg
as test examples. We evaluate the recognition rates of the
structured-sparsity based algorithms as well as the SRC
method and the two other algorithms we used in the pre- (13
vious experiments: PCA+NN and ICA+NN. The results are
shown in Tablel. While P, obtains slightly better recog-
nition rate thanP,, ,,, for images with sunglasse#;, /;,
obtains abou25% higher recognition rate thaR,, for im-
ages with scarves.

(14]
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