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ABSTRACT

Given a set of data points drawn from multiple low-dimen-
sional linear subspaces of a high-dimensional space, we con-
sider the problem of clustering these points according to the
subspaces they belong to. Our approach exploits the fact that
each data point can be written as a sparse linear combination
of all the other points. When the subspaces are independent,
the sparse coefficients can be found by solving a linear pro-
gram. However, when the subspaces are disjoint, but not in-
dependent, the problem becomes more challenging. In this
paper, we derive theoretical bounds relating the principal an-
gles between the subspaces and the distribution of the data
points across all the subspaces under which the coefficients
are guaranteed to be sparse. The clustering of the data is then
easily obtained from the sparse coefficients. We illustrate the
validity of our results through simulation experiments.

Index Terms— Subspace clustering, sparsity, subspace
angles, disjoint subspaces.

1. INTRODUCTION

Given a set of data points drawn from a union of subspaces,
subspace clustering refers to the problem of finding the num-
ber of subspaces, their dimensions, a basis for each subspace,
and the segmentation of data. This is an important problem,
which finds numerous applications in signal and image pro-
cessing, e.g., [1, 2], and computer vision, e.g., [3, 4]. In
most of these applications the data are embedded in high-
dimensional spaces, while the underlying subspaces are low-
dimensional. Under this assumption, a number of methods
have been developed, including algebraic methods [5], spec-
tral clustering-based methods [3] and statistical methods [6].

Recently, [7] proposed a subspace clustering method
based on sparse representation. The key observation is that
each data point in a union of linear subspaces can be writ-
ten as a sparse linear combination of all other points. The
segmentation of data can be obtained by applying spectral
clustering to a similarity matrix built from the sparse coeffi-
cients. The question is then: how to efficiently find such a
sparse representation? [7] proves that for independent sub-
spaces, i.e., subspaces such that the dimension of their union
is the sum of their individual dimensions, a sparse represen-
tation can be found exactly by using convex `1 optimization.

However, requiring the subspaces to be independent is a
strong assumption in practice. For instance, when segment-
ing multiple rigid-body motions in a video sequence, the
subspaces become partially dependent for articulated objects,
or for objects moving in a common plane, as shown in [4].

In this paper, we address the more general problem of
clustering disjoint subspaces. That is, every pair of subspaces
intersects only at the origin, but the dimension of the union
of all subspaces need not be the sum of their dimensions.
We show that under certain conditions relating the princi-
pal angles between the subspaces and the distribution of the
data points across all the subspaces, the sparse coefficients
can still be found by using convex `1 optimization. This re-
sult represents a significant generalization with respect to the
sparse recovery literature, which addresses the sparse recov-
ery of signals in a single subspace, see e.g., [8]. The subspace
clustering problem addressed in this paper is also much more
challenging than recent work on block-sparse signal recov-
ery, whose goal is to write a signal as a linear combination of
a small number of known subspace bases [9, 10, 11]. First,
we do not know the basis for any of the subspaces nor do we
know which data points belong to which subspace. Second,
we do not have any restriction on the number of subspaces,
while existing methods require this number to be large.

2. PROBLEM STATEMENT

Let {Si}ni=1 be an arrangement of n linear subspaces of RD

of dimensions {di}ni=1. We will distinguish between the fol-
lowing two types of arrangements.

Definition 1 n subspaces {Si}ni=1 are called independent if
dim(

⊕n
i=1 Si) =

∑n
i=1 dim(Si), where

⊕
is the direct sum.

Definition 2 Two subspaces are said to be disjoint if they in-
tersect only at the origin. n subspaces {Si}ni=1 are said to be
disjoint if every two subspaces are disjoint.

Notice that the notion of independence is stronger than the
notion of disjointedness. For example, n ≥ 3 distinct lines in
R2 are disjoint, but not independent.

Consider now a given collection of N =
∑n

i=1Ni

noise-free data points drawn from the n subspaces {Si}ni=1.
We denote the matrix whose columns are the Ni points
drawn from subspace Si as Y i =

[
yi1, · · · , yiNi

]
∈

RD×Ni and the matrix containing all the data points as



Y =
[
Y 1, . . . , Y n

]
Γ, where Γ ∈ RN×N is an un-

known permutation matrix. We assume that we do not know
a priori the bases for each one of the subspaces nor do we
know which data points belong to which subspace. The sub-
space clustering problem refers to the problem of finding
the number of subspaces, their dimensions, a basis for each
subspace, and the segmentation of the data from Y .

The sparse subspace clustering (SSC) algorithm (see [7])
addresses the subspace clustering problem using techniques
from sparse representation theory. This algorithm is based
on the observation that each data point y ∈ Si can always
be written as a linear combination of all the other data points
in {Si}ni=1. However, generically, the sparsest representation
is obtained when the point y is written as a linear combina-
tion of points in its own subspace. In this case, the number
of nonzero coefficients corresponds to the dimension of the
subspace. It is shown in [7] that when the subspaces are in-
dependent and low-dimensional, i.e., di � D, this sparse
representation can be obtained by using `1 minimization. The
segmentation of the data is found by applying spectral cluster-
ing to a similarity graph formed using the sparse coefficients.
More specifically, the SSC algorithm proceeds as follows.

Algorithm 1 : Sparse Subspace Clustering (SSC)
Input: A set of points {yi}Ni=1 lying in n subspaces {Si}ni=1.

1: For every data point yi, solve the following optimization
problem:

min ‖ci‖1 subject to yi = Xici (1)

where Xi = [y1, . . . ,yi−1,yi+1, . . . ,yN ].
2: Form a similarity graph withN nodes representing theN

data points. Connect node i, representing yi, to the other
N − 1 nodes by edge weights wij = |cij |+ |cji|.

3: Form the graph Laplacian matrix L ∈ RN×N . Infer the
segmentation of the data from the n eigenvectors of L
corresponding to the n smallest eigenvalues using the K-
means algorithm [12].

Output: Segmentation of the data: Y 1,Y 2, . . . ,Y n.

In this paper, we extend the SSC algorithm to the more
general class of disjoint subspaces. We show that under cer-
tain conditions on the principal angles between the subspaces
and the distribution of the data points across all the subspaces,
a sparse representation can still be recovered by `1 minimiza-
tion. The subspace angles are defined as follows.

Definition 3 The first (smallest) principal angle between two
subspaces Si and Sj , denoted by θij , is defined as:

cos(θij) = max
x∈Si,z∈Sj

x>z

‖x‖2‖z‖2
(2)

From the definition it is clear that for two disjoint subspaces,
the first principal angle is always greater than zero.

3. CLUSTERING OF DISJOINT SUBSPACES

In this section, we derive conditions that generalize SSC from
independent to disjoint subspaces. Specifically, we show that
when the smallest angle between any two subspaces is greater
than a bound determined by the distribution of the data points
across all the subspaces, a sparse subspace representation can
be found by `1 minimization. By sparse subspace representa-
tion we mean writing a point in a subspace as a sparse linear
combination of data points in the same subspace. Notice that,
by contrast with the standard sparse recovery problem [8] or
the block-sparse recovery problem [9, 10, 11], we are not con-
cerned with the uniqueness of such a sparse representation, as
long as it comes from the data points in the true subspace.

Our approach for tackling the sparse subspace recovery
problem is the following. We will show that the `1 norm of
the sparse vector of coefficients for an arbitrary point in each
subspace Si with respect to all data points from the same sub-
space, Y i, is bounded from above. That is, for each Y i, there
is a βi > 0 such that for all y ∈ Si we have ‖c∗i ‖1 ≤ βi,
where

c∗i = argmin‖c‖1 subject to y = Y i c. (3)

We will also show that the `1 norm of the sparse vector
of coefficients of an arbitrary point in each subspace Si

with respect to the data points from all other subspaces,
Ŷ i = [Y 1, . . . ,Y i−1,Y i+1, . . . ,Y n], is bounded from be-
low. That is, for each i there exists a γi > 0 such that for all
y ∈ Si, we have γi ≤ ‖ĉ∗i ‖1, where

ĉ∗i = argmin‖c‖1 subject to y = Ŷ i c. (4)

Finally, we will show in Theorem 1 that the sufficient condi-
tion βi < γi for all i ∈ {1, 2, · · · , n} guarantees the correct-
ness of the `1 minimization, because it implies that

‖c∗i ‖1 ≤ βi < γi ≤ ‖ĉ∗i ‖1. (5)

Loosely speaking, this condition ensures that each point
prefers to write itself as a linear combination of data points in
its own subspace, hence the SSC algorithm is applicable.

3.1. Upper bound on the norm of the solution

We will first establish the upper bound on the `1 norm of the
solution of the minimization problem when we choose points
from the same subspace.

Let Wi be the set of all submatrices Y̆ i ∈ RD×di of Y i

that are full column rank. We can write any point y ∈ Si as:

y = Y̆ ic̆i ⇒ c̆i = (Y̆
>
i Y̆ i)−1Y̆

>
i y. (6)

Using vector and matrix norm properties, we have:

‖c̆i‖1 ≤
√
di‖c̆i‖2 =

√
di ‖(Y̆

>
i Y̆ i)−1Y̆

>
i y‖2

≤
√
di ‖(Y̆

>
i Y̆ i)−1Y̆

>
i ‖2,2‖y‖2 =

√
di

σdi
(Y̆ i)

‖y‖2, (7)



where σl(Y̆ i) denotes the l-th largest singular value of Y̆ i.
Thus, for the optimization problem in (3), we get:

‖c∗i ‖1 ≤ min
Y̆ i∈Wi

‖c̆i‖1 ≤ min
Y̆ i∈Wi

√
di

σdi
(Y̆ i)

‖y‖2 , βi. (8)

3.2. Lower bound on the norm of the solution

In this part, we consider the problem of writing a point y ∈ Si

as a linear combination of data points in all subspaces except
Si. Our goal is to lower bound the `1 norm of ĉ∗i given by (4).

Let ĉ∗i = [ĉ>1 , . . . , ĉ
>
i−1, ĉ

>
i+1, . . . , ĉ

>
n ]> denote the solu-

tion of (4). We have:

y = Ŷ iĉ
∗
i (9)

If we multiply both sides of (9) from left by y>, we get:

‖y‖22 = y>y = y>Ŷ iĉ
∗
i (10)

Applying the Holder’s inequality (|z∗x| ≤ ‖z‖∞‖x‖1) to the
above equation, we obtain:

‖y‖22 ≤ ‖Ŷ
>
i y‖∞‖ĉ∗i ‖1. (11)

By recalling the definition of the smallest principal angle be-
tween two subspaces from Definition 3, we can write:

‖y‖22 ≤ max
j 6=i

max
1≤k≤Nj

|y>yjk| ‖ĉ
∗
i ‖1

≤ max
j 6=i

cos(θij) ∆i ‖y‖2 ‖ĉ∗i ‖1, (12)

where θij is the first principal angle between Si and Sj and

∆i , max
j 6=i

max
1≤k≤Nj

‖yjk‖2. (13)

In other words, ∆i is the maximum `2 norm of all data points
in all subspaces except subspace i. We can rewrite (12) as:

γi ,
‖y‖2

maxj 6=i cos(θij) ∆i
≤ ‖ĉ∗i ‖1 (14)

which establishes the lower bound on the `1 norm of the so-
lution.

3.3. Sufficient condition for sparse subspace recovery

By combining the results in (8) and (14), we obtain our main
result. Theorem 1 gives a sufficient condition under which
the solution to the `1 optimization problem in (1) has nonzero
elements corresponding only to the points in Si.

Theorem 1 Consider a collection of data points drawn from
n subspaces {Si}ni=1 of dimensions {di}ni=1. Let Y i denote
the data points on Si and Ŷ i denote the data points on the

other subspaces. Let Wi be the set of all full rank submatrices
Y̆ i ∈ RD×di of Y i. If the sufficient condition

max
Y̆ i∈Wi

σdi
(Y̆ i) >

√
di ∆i max

j 6=i
cos(θij) (15)

is satisfied for all i ∈ {1, . . . , n}, then for every nonzero y ∈
Si, the solution to the following optimization problem[

c∗i
ĉ∗i

]
= argmin

∥∥∥∥[ci

ĉi

]∥∥∥∥
1

subject to y = [Y i, Ŷ i]
[
ci

ĉi

]
(16)

gives the sparse subspace solution with c∗i 6= 0 and ĉ∗i = 0.

Proof. We prove the theorem by contradiction. Assume ĉ∗i 6=
0 and define

ȳ , y − Y ic
∗
i = Ŷ i ĉ∗i ∈ Si.

Since ȳ lives in Si, we can write it as a linear combination of
points in Si. Let

c̄∗i = argmin ‖c‖1 subject to ȳ = Y i c.

Also, from ȳ = Ŷ i ĉ∗i , we have that ȳ is in the range space
of Ŷ i. Let

c̃∗i = argmin ‖c‖1 subject to ȳ = Ŷ i c.

Since ȳ = Ŷ iĉ
∗
i = Ŷ ic̃

∗
i , from the optimality of c̃∗i in the

above optimization problem, we have ‖c̃∗i ‖1 ≤ ‖ĉ
∗
i ‖1. Using

(8) and (14), the sufficient condition in (15) guarantees that
(5) is satisfied for c̄∗i and c̃∗i , so we have ‖c̄∗i ‖1 < ‖c̃

∗
i ‖1 ≤

‖ĉ∗i ‖1. Finally, from y = Y i(c∗i + c̄∗i ) = [Y i Ŷ i]
[
c∗i
ĉ∗i

]
we

get:
‖c∗i + c̄∗i ‖1 ≤ ‖c∗i ‖1 + ‖c̄∗i ‖1 < ‖c∗i ‖1 + ‖ĉ∗i ‖1 =

∥∥∥∥[c∗iĉ∗i

]∥∥∥∥
1

which contradicts optimality of
[
c∗>i ĉ∗>i

]>
.

Loosely speaking, the sufficient condition in Theorem 1
states that the first principal angle between any pair of sub-
spaces needs to be above a certain bound that depends on the
distribution of the data points across all the subspaces. No-
tice that this bound can be rather high when the norms of the
data points are oddly distributed, e.g., when the maximum
norm of the data points in one subspace is much smaller than
the minimum norm of the data points in all other subspaces.
Since the segmentation of the data does not change when the
data points are scaled, a weaker sufficient condition can be
obtained when all the data points are scaled so that they have
the same `2 norm. In this case, the sufficient condition in (15)
reduces to

max
Y̆ i∈Wi

σdi(Y̆ i) >
√
di max

j 6=i
cos(θij) (17)

where the columns of all matrices Y̆ i in Wi are normalized
so that their `2 norm is equal to one. This suggest applying
the SSC algorithm after normalizing the data points so that
‖yjk‖2 = 1, for all j and k.



4. EXPERIMENTAL RESULTS

In [7], SSC was applied to the segmentation of a large
database of 155 video sequences. The results showed that
SSC outperforms state-of-the-art motion segmentation algo-
rithms by a factor of 3. In this section, our goal is not to
demonstrate the performance of SSC on a large database.
Instead, we aim to evaluate the validity of the proposed theo-
retical results through simulation experiments.

We consider n = 3 subspaces of the same dimension
d embedded in a D = 100 dimensional space. We gen-
erate bases {U i}3i=1 for the subspaces in such a way that
rank([U1,U3]) = 2d and U2 is in the range space of
[U1,U3], i.e., rank([U1,U2,U3]) = 2d. For a fixed value
of d, we change the minimum angle between subspaces, θ,
as well as the number of points in each subspace Ng . For
each pair of (θ,Ng), we compute two different errors. First,
we measure the error in the sparse recovery of data points
{yi}

3Ng

i=1 , where ‖yi‖2 = 1 for all i, by

SpErr =
1

3Ng

3Ng∑
i=1

(1−
‖c∗iqi

‖1
‖c∗i ‖1

) ∈ [0, 1], (18)

where c∗i = [c∗>i1 , c
∗>
i2 , c

∗>
i3 ]> is the solution of the `1 mini-

mization and qi ∈ {1, 2, 3} denotes the index of the subspace
to which yi belongs. Second, we measure the percentage of
data points which have been assigned to the wrong subspace
(misclassification rate), after applying spectral clustering to
the similarity graph obtained from the sparse coefficients. We
generate subspaces with a minimum subspace angle θ in the
interval cos(θ) ∈ [0.50, 0.99]. We also change the number of
points in each subspace in the interval of Ng ∈ [d + 1, 20d].
For each (θ,Ng), we perform 20 trials and compute the aver-
age of each one of the two errors. The results for two different
values of d = 2 and 5 are shown in Figures 1 and 2. Blue de-
notes zero error and red indicates high value of the error.

As the results show, when either θ or Ng is small, which
means that the sufficient condition is less likely to be satisfied,
we get higher errors. By increasing the values of θ or Ng , we
get lower errors and when values of both (θ,Ng) are suffi-
ciently large, we get zero error. Also, the results verify that
the misclassification rate is highly dependent on the sparse re-
covery error. Specifically, both errors follow the same pattern
showing that the success of clustering relies on the success of
sparse subspace recovery.
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Fig. 1. Sparse recovery error (left) and misclassification rate (right)
for d = 2 as a function of (cos(θ), Ng).
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Fig. 2. Sparse recovery error (left) and misclassification rate (right)
for d = 5 as a function of (cos(θ), Ng).
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