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Abstract

We consider the problem of finding a few representatives
for a dataset, i.e., a subset of data points that efficiently
describes the entire dataset. We assume that each data
point can be expressed as a linear combination of the rep-
resentatives and formulate the problem of finding the rep-
resentatives as a sparse multiple measurement vector prob-
lem. In our formulation, both the dictionary and the mea-
surements are given by the data matrix, and the unknown
sparse codes select the representatives via convex optimiza-
tion. In general, we do not assume that the data are low-
rank or distributed around cluster centers. When the data
do come from a collection of low-rank models, we show that
our method automatically selects a few representatives from
each low-rank model. We also analyze the geometry of the
representatives and discuss their relationship to the vertices
of the convex hull of the data. We show that our framework
can be extended to detect and reject outliers in datasets, and
to efficiently deal with new observations and large datasets.
The proposed framework and theoretical foundations are il-
lustrated with examples in video summarization and image
classification using representatives.

1. Introduction
In many areas of machine learning, computer vision, sig-

nal/image processing, and information retrieval, one needs
to deal with massive collections of data, such as databases
of images, videos, and text documents. This has motivated
a lot of work in the area of dimensionality reduction, whose
goal is to find compact representations of the data that can
save memory and computational time and also improve the
performance of algorithms that deal with the data. More-
over, dimensionality reduction can also improve our under-
standing and interpretation of the data.

Because datasets consist of high-dimensional data, most
dimensionality reduction methods aim at reducing the
feature-space dimension for all the data, e.g., PCA [25],
LLE [34], Isomap [36], Diffusion Maps [7], etc. However,
another important problem related to large datasets is to find

a subset of the data that appropriately represents the whole
dataset, thereby reducing the object-space dimension. This
is of particular importance in summarizing and visualizing
large datasets of natural scenes, objects, faces, hyperspec-
tral data, videos, and text. In addition, this summarization
helps to remove outliers from the data as they are not true
representatives of the datasets. Finally, memory require-
ment and computational time of classification and cluster-
ing algorithms improve by working on a reduced number of
representative data as opposed to a large number of data.
Prior Work. To reduce the dimension of the data in the
object-space and find representative points, several meth-
ods have been proposed [19, 21, 26, 27, 38]. However,
most algorithms assume that the data are either distributed
around centers or lie in a low-dimensional space. Kme-
doids [26], which can be considered as a variant of Kmeans,
assumes that the data are distributed around several clus-
ter centers, called medoids, which are selected from the
data. Kmedoids, similar to Kmeans, is an iterative algo-
rithm that strongly depends on the initialization. When
similarities/dissimilarities between pairs of data are given
and there is a natural clustering based on these similarities,
Affinity Propagation [19], similar to Kmedoids, tries to find
a data center for each cluster using a message passing al-
gorithm. When the collection of data points is low-rank,
Rank Revealing QR (RRQR) algorithm [5, 6] tries to se-
lect a few data points by finding a permutation of the data
that gives the best conditioned submatrix. The algorithm
has suboptimal properties, as it is not guaranteed to find the
globally optimal solution in polynomial time, and also re-
lies on the low-rankness assumption. In addition, random-
ized algorithms for selecting a few columns from a low-rank
matrix have been proposed [38]. For a low-rank matrix with
missing entries, [2] proposes a greedy algorithm to select a
subset of the columns. For a data matrix with nonnegative
entries, [17] proposes a nonnegative matrix factorization us-
ing an `1/`∞ optimization to select some of the columns of
the data matrix for one of the factors.
Paper Contributions. In this work, we study the problem
of finding data representatives using dimensionality reduc-
tion in the object-space. We assume that there is a subset
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Figure 1. Some frames of the Society Raffles video and the automatically computed representatives of the whole video sequence using our algorithm. The
representatives summarize the video as follows: 1) there is a nicely-decorated living room, with a door stage left and a settee in front of an open window
in the foreground; 2) a man in the room is talking to someone across the window; 3) a couple enter the room, a man and a woman who is wearing a white
gown, and a jeweled tiara. Someone, probably the first man, is standing on the other side of the room; 4) the man who entered with the woman is talking
to her and bowing, probably he wants to leave; 5) the first man is sitting with the woman and is reaching for her tiara; 6) the first man is leaving the room,
a person is standing across the window and examining the tiara; 7) the woman is entering back to the living room, so she had followed the first man to the
door; 8) the woman is clutching her head seeing the bandit across the window; 9) the woman is fainting on the sofa and the bandit has disappeared.

Figure 2. Some frames of a tennis match video, which consists of multiple shots, and the automatically computed representatives of the whole video
sequence using our algorithm. Depending on the amount of activities in each shot of the video, we obtained one or a few representatives for that shot.

of data points, called representatives, such that each point
in the dataset can be described as a linear combination of a
few of the representative points. More specifically, collect-
ing N data points of a dataset in Rm as columns of a data
matrix Y ∈ Rm×N , we consider the optimization problem

min ‖Y − Y C‖2F s.t. ‖C‖row,0 ≤ k, 1>C = 1>, (1)

where C ∈ RN×N is the coefficient matrix and ‖C‖row,0

counts the number of nonzero rows of C [24, 37]. In other
words, we wish to find at most k � N representatives that
best reconstruct the data collection. This can be viewed as
a sparse dictionary learning scheme [1, 30, 33] where the
atoms of the dictionary are chosen from the data points and,
instead of letting the support for the sparse codes be arbi-
trary, we enforce them to have a common support.

The self-expressiveness property, Y = Y C, has been
studied for subspace clustering using sparse representation
[11, 15] and low-rank representation [18, 29]. However,
these algorithms are not targeted at finding representatives
because of the norms they use for C. A framework simi-
lar to that in (1), with a nonnegativity constraint on C and
without the affine constraint, has been used for nonnegative
matrix factorization for the problem of hyperspectral imag-
ing endmember identification [17], without the analysis of
the selected columns. In the context of dictionary learning,

[4] and [31] use ‖C‖row,0 to design compact dictionaries
and to select similar patches in an image, respectively.

In this work, we propose an algorithm for solving a con-
vex relaxation of (1) and provide an analysis of the theoreti-
cal guarantees of the algorithm. Our work has the following
contributions with respect to the state of the art:

– Unlike prior works, we do not assume that the data are
low-rank or distributed around cluster centers. We only re-
quire the total number of representatives to be much smaller
than the number of actual points in the dataset.

– When the data come from a collection of low-rank mod-
els, we show that our method automatically selects a few
data points from each model.

– We analyze the geometry of representatives and show that
they correspond to vertices of the convex hull of the data.

– We propose a framework to detect and reject outliers from
the dataset using the solution of the proposed optimization
program. We also show how to deal with new observations
and large datasets efficiently.

– We demonstrate the proposed framework in applications
to video summarization (Figs. 1-2) and classification using
representatives.



2. Problem Formulation
Consider a set of points in Rm arranged as the columns

of the data matrix Y =
[
y1 . . . yN

]
. In this section,

we formulate the problem of finding representative objects
from the collection of data points.

2.1. Learning Compact Dictionaries

Finding compact dictionaries to represent data has
been well-studied in the literature [1, 16, 25, 30,
33]. More specifically, in dictionary learning problems,
one tries to simultaneously learn a compact dictionary
D =

[
d1 . . . d`

]
∈ Rm×` and coefficients X =[

x1 . . . xN

]
∈ R`×N that can efficiently represent the

collection of data points. The best representation of the data
is typically obtained by minimizing the objective function

N∑
i=1

‖yi −Dxi‖22 = ‖Y −DX‖2F (2)

with respect to the dictionary D and the coefficient matrix
X , subject to appropriate constraints. When the dictionary
D is constrained to have orthonormal columns and X is
unconstrained, the optimal solution for D is given by the k
leading singular vectors of Y [25]. On the other hand, in the
sparse dictionary learning framework [1, 16, 30, 33], one
requires the coefficient matrix X to be sparse by solving
the optimization program

min
D,X
‖Y −DX‖2F s.t. ‖xi‖0 ≤ s, ‖dj‖2 ≤ 1, ∀i, j, (3)

where ‖xi‖0 indicates the number of nonzero elements of
xi (its convex surrogate can be used as well). In other
words, one simultaneously learns a dictionary and coeffi-
cients such that each data point yi is written as a linear com-
bination of at most s atoms of the dictionary. Besides being
NP-hard due to use of the `0 norm, this problem is noncon-
vex because of the product of two unknown and constrained
matrices D and X . As a result, iterative procedures are
employed to find each unknown matrix by fixing the other,
which often converges to a local minimizer [1, 16].

2.2. Finding Representative Data

The learned atoms of the dictionary almost never co-
incide with the original data [30, 31, 33], hence, can not
be considered as good representatives for the collection of
data points. To find representative points that coincide with
some of the actual data points, we consider a modification
to the dictionary learning framework, which first addresses
the problem of local minima due to the product of two un-
known matrices, i.e., the dictionary and the coefficient ma-
trix. Second, it enforces selecting representatives from the
actual data points. To do that, we set the dictionary to be the

matrix of data points Y and minimize the expression

N∑
i=1

‖yi − Y ci‖22 = ‖Y − Y C‖2F (4)

with respect to the coefficient matrix C ,
[
c1 . . . cN

]
∈

RN×N , subject to additional constraints that we describe
next. In other words, we minimize the reconstruction error
of each data point as a linear combination of all the data. To
choose k � N representatives, which take part in the linear
reconstruction of all the data in (4), we enforce

‖C‖0,q ≤ k, (5)

where the mixed `0/`q norm is defined as ‖C‖0,q ,∑N
i=1 I(

∥∥ci∥∥
q
> 0), where ci denotes the i-th row of C

and I(·) denotes the indicator function. In other words,
‖C‖0,q counts the number of nonzero rows of C. The in-
dices of the nonzero rows of C correspond to the indices
of the columns of Y which are chosen as the data repre-
sentatives. Similar to other dimensionality reduction meth-
ods, we want the selection of representatives to be invariant
with respect to a global translation of the data. We thus en-
force the affine constraint 1>C = 1>. This comes from
the fact that if yi is represented as yi = Y ci, then for a
global translation T ∈ Rm of the data, we want to have
yi − T =

[
y1 − T · · · yN − T

]
ci.

As a result, to find k � N representatives such that each
point in the dataset can be represented as an affine combi-
nation of a subset of these k representatives, we solve

min ‖Y − Y C‖2F s.t. ‖C‖0,q ≤ k, 1>C = 1>. (6)

This is an NP-hard problem as it requires searching over ev-
ery subset of the k columns of Y . A standard `1 relaxation
of this optimization is obtained as

min ‖Y − Y C‖2F s.t. ‖C‖1,q ≤ τ, 1>C = 1>, (7)

where ‖C‖1,q ,
∑N

i=1

∥∥ci∥∥
q

is the sum of the `q norms
of the rows of C, and τ > 0 is an appropriately chosen pa-
rameter.1 We also choose q > 1 for which the optimization
program in (7) is convex.2

The solution of the optimization program (7) not only
indicates the representatives as the nonzero rows of C,
but also provides information about the ranking, i.e., rel-
ative importance, of the representatives for describing the
dataset. More precisely, a representative that has a higher
ranking takes part in the reconstruction of many points in

1We use τ instead of k since for the k optimal representatives, ‖C‖1,q
is not necessarily bounded by k.

2We do not consider q = 1 since ‖ · ‖1,1 treats the rows and columns
equally and does not necessarily favor selecting a few nonzero rows.



the dataset, hence, its corresponding row in the optimal co-
efficient matrix C has many nonzero elements with large
values. On the other hand, a representative with lower
ranking takes part in the reconstruction of fewer points in
the dataset, hence, its corresponding row in C has a few
nonzero elements with smaller values. Thus, we can rank k
representatives yi1 , . . . ,yik

as i1 ≥ i2 ≥ · · · ≥ ik, i.e., yi1
has the highest rank and yik

has the lowest rank, whenever
for the corresponding rows of C we have∥∥ci1∥∥

q
≥
∥∥ci2∥∥

q
≥ · · · ≥

∥∥cik∥∥
q
. (8)

Another optimization formulation, which is closely re-
lated to (6) is

min ‖C‖0,q s.t. ‖Y − Y C‖F ≤ ε, 1>C = 1>, (9)

which minimizes the number of representatives that can re-
construct the collection of data points up to an ε error. An
`1 relaxation of it is given by

min ‖C‖1,q s.t. ‖Y − Y C‖F ≤ ε, 1>C = 1>. (10)

This optimization problem can also be viewed in a compres-
sion scheme where we want to choose a few representatives
that can reconstruct the data up to an ε error.

3. Geometry of Representatives
We now study the geometry of the representative points

obtained from the proposed convex optimization programs.
We consider the optimization program (10) where we set
the error tolerance ε to zero. First, we show that (10), with
a natural additional nonnegativity constraint on C, finds the
vertices of the convex hull of the dataset. This is, on its own,
an interesting result for computing the convex hulls using
sparse representation methods and convex optimization. In
addition, the robust versions of the optimization program,
e.g., ε > 0, offer robust approaches for selecting convex
hull vertices when the data are perturbed by noise. More
precisely, for the optimization program

min ‖C‖1,q s.t. Y = Y C, 1>C = 1>, C ≥ 0, (11)

we have the following result whose proof is provided in
[10].

Theorem 1 Let H be the convex hull of the columns of Y
and let k be the number of vertices ofH. The nonzero rows
of the solution of the optimization program (11), for 1 <
q ≤ ∞, correspond to the k vertices of H. More precisely,
the optimal solution C∗ has the following form

C∗ = Γ

[
Ik ∆
0 0

]
, (12)

where Ik is the k-dimensional identity matrix, the elements
of ∆ lie in [0, 1), and Γ is a permutation matrix.

Theorem 1 implies that, if the coefficient matrix is nonneg-
ative, the representatives are the vertices of the convex hull
of the data, H.3 Without the nonnegativity constraint, one
would expect to choose a subset of the vertices of H as the
representatives. In addition, when the data lie in a (k − 1)-
dimensional subspace and are enclosed by k data points,
i.e., H has k vertices, then we can find exactly k represen-
tatives given by the vertices ofH. More precisely, we show
the following result [10].

Theorem 2 Let H be the convex hull of the columns of Y
and let k be the number of vertices ofH. Consider the opti-
mization program (10) for 1 < q ≤ ∞ and ε = 0. Then the
nonzero rows of a solution correspond to a subset of the ver-
tices ofH that span the affine subspace containing the data.
Moreover, if the columns of Y lie in a (k − 1)-dimensional
affine subspace of Rm, a solution is of the form

C∗ = Γ

[
Ik ∆
0 0

]
, (13)

where Γ is a permutation matrix and the k nonzero rows of
C∗ correspond to the k vertices ofH.

4. Representatives of Subspaces
We now show that when the data come from a collection

of low-rank models, the representatives provide information
about the underlying models. More specifically, we assume
that the data lie in a union of affine subspaces S1, . . . ,Sn of
Rm and consider the optimization program

min ‖C‖1,q s.t. Y = Y C, 1>C = 1>. (14)

We show that, under appropriate conditions on the sub-
spaces, we obtain representatives from every subspace (left
plot of Figure 3) where the number of representatives from
each subspace is greater than or equal to its dimension.
More precisely, we have the following result [10].

Theorem 3 If the data points are drawn from a union of
independent subspaces, i.e., if the subspaces are such that
dim(⊕iSi) =

∑
i dim(Si), then the solution of (14) finds

at least dim(Si) representatives from each subspace Si. In
addition, each data point is perfectly reconstructed by the
combination of the representatives from its own subspace.

Since the dimension of the collection of representatives in
each subspace Si is equal to dim(Si), the dimension of the
collection of representatives from all subspaces can be as as
large as the dimension of the ambient space m by the fact
that

∑
i dim(Si) = dim(⊕iSi) ≤ m.

3Note that the solution of the `1 minimization without the affine and
nonnegativity constraints is known to choose a few of the vertices of the
symmetrized convex hull of the data [8]. Our result is different as we place
a general mixed `1/`q norm on the rows of C and show that for any q > 1
the solution of (11) finds all vertices of the convex hull of the data.
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Figure 3. Left: coefficient matrix corresponding to data from two sub-
spaces. Right: coefficient matrix corresponding to a dataset contaminated
with outliers. The last set of points corresponds to outliers.

The optimization program (14) can also address the
connectivity issues [32] of subspace clustering algorithms
based on sparse representation [11, 15, 35] or low-rank rep-
resentation [18, 29]. More precisely, as discussed in [15],
adding a regularizer of the form ‖C‖1,2 to the sparse [11]
or low-rank [29] objective function improves the connectiv-
ity of the points in each subspace, preventing the points in
a subspace to be divided into multiple components of the
similarity graph.

5. Practical Considerations and Extensions
We now discuss some of the practical problems related

to finding representative points of real datasets.

5.1. Dealing with Outliers

In many real-world problems, the collection of data in-
cludes outliers. For example, a dataset of natural scenes,
objects, or faces collected from the internet can contain im-
ages that do not belong to the target category. A method that
robustly finds true representatives for the dataset is of par-
ticular importance, as it reduces the redundancy of the data
and removes points that do not really belong to the dataset.
In this section, we discuss how our method can directly deal
with outliers and robustly find representatives for datasets.

We use the fact that outliers are often incoherent with
respect to the collection of the true data. Hence, an out-
lier prefers to write itself as an affine combination of itself,
while true data points choose points among themselves as
representatives as they are more coherent with each other.
In other words, if we denote the inliers by Y and the out-
liers by Y o ∈ Rm×No , for the optimization program

min ‖C‖1,q
s.t.

[
Y Y o

]
=
[
Y Y o

]
C, 1>C = 1>,

(15)

we expect the solution to have the structure

C∗ =

[
∆ 0
0 INo

]
. (16)

In other words, each outlier is a representative of itself,
as shown in the right plot of Figure 3. We can therefore

identify the outliers by analyzing the row-sparsity of the
solution. Among the rows of the coefficient matrix that
correspond to the representatives, the ones that have many
nonzero elements correspond to the true data, and the ones
that have just one nonzero element correspond to outliers.

In practice, C∗ might not have exactly the form of (16).
However, we still expect that an outlier take part in the rep-
resentation of only a few other outliers or true data points.
Hence, the rows of C∗ corresponding to outliers should
have very few nonzero entries. To detect and reject outliers,
we define the row-sparsity index of each candidate repre-
sentative ` as

rsi(`) =
N
∥∥c`∥∥∞ − ∥∥c`∥∥1
(N − 1) ‖c`‖1

∈ [0, 1].4 (17)

For a row corresponding to an outlier, which has one or a
few nonzero elements, the rsi value is close to 1, while for
a row which corresponds to a true representative the rsi is
close to zero. Hence, we can reject outliers by selecting
representatives whose rsi value is larger than a threshold δ.

5.2. Dealing with New Observations

An important problem in finding representatives is to
update the set of representative points when new data are
added to the dataset. Let Y be the collection of points that
has already been in the dataset and Y new be the new points
that are added to the dataset. In order to find the represen-
tatives for the whole dataset including the old and the new
data, one has to solve the optimization program

min ‖C‖1,q
s.t.

[
Y Y new

]
=
[
Y Y new

]
C, 1>C = 1>.

(18)

However, note that we have already found the representa-
tives of Y , denoted by Y rep, which can efficiently describe
the collection of data in Y . Thus, it is sufficient to see if
the elements of Y rep are a good representative of the new
data Y new, or equivalently, update the representatives so
that they can well describe the elements of Y rep as well as
Y new. Thus, we can solve the optimization program

min ‖C‖1,q
s.t.

[
Y rep Y new

]
=
[
Y rep Y new

]
C, 1>C = 1>,

(19)

on the reduced dataset
[
Y rep Y new

]
, which is typically of

much smaller size than
[
Y Y new

]
, hence it can be solved

more efficiently.5

Using similar ideas we can also deal with large datasets
using a hierarchical framework. More specifically, we can

4We use the fact that for c ∈ RN we have ‖c‖1 /N ≤ ‖c‖∞ ≤ ‖c‖1.
5In general, we can minimize ‖QC‖1,q , for a diagonal nonnegative

matrix Q, which gives relative weights to keeping the old representatives
and selecting new representatives.
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Figure 4. Number of representatives for each event in the video found by
our method for several values of the regularization parameter. Left: Tennis
match video. Right: Political debate video.

divide Y into Y 1, . . . ,Y `, and find the representatives for
each portion of the data, i.e., Y rep,1, . . . ,Y rep,`. Finally,
we can obtain the representatives by solving the proposed
optimization programs for

[
Y rep,1 . . . Y rep,`

]
.

6. Experimental Results
In this section, we evaluate the performance of the pro-

posed algorithm for finding representatives of real datasets
on several illustrative problems. Since, using Lagrange
multipliers, either of the proposed optimization programs
in (7) or (10) can be written as

minλ ‖C‖1,q +
1

2
‖Y − Y C‖2F s.t. 1>C = 1>, (20)

in practice, we use (20) for finding the representatives. We
implement the algorithm using an Alternating Direction
Method of Multipliers (ADMM) optimization framework
[20]. As data points with very small pairwise coherences
may lead to too-close representatives, similar to sparse dic-
tionary learning methods [1], one can prune the set of rep-
resentatives from having too-close data points.

6.1. Video Summarization

We first demonstrate the applicability of our proposed
algorithm for summarizing videos. First, we consider a
1, 536-frame video taken from [39], which consists of a se-
ries of continuous activities with a fixed background (a few
frames are shown in Figure 1). We apply our algorithm in
(20) and obtain 9 representatives for the whole video. The
representatives are shown as frames inside the red rectan-
gles. A summary of the video is provided in the caption of
Figure 1. Note that the representatives obtained by our al-
gorithm captured the main events of the video. Perhaps the
only missing representative to have a complete description
of the whole video is the frame where the man is passing
the tiara to the bandit (second row).

Next, we consider a video sequence of a Tennis match
(a few frames are shown in Figure 2). The video consists
of multiple shots of different scenes where each shot con-
sists of a series of activities. We apply our algorithm in (20)
and obtain 11 representatives for the whole video, which are
shown in Figure 2 as frames inside the red rectangles. For

Figure 5. Representatives found by our algorithm for the images of digit
2. Note that the representatives capture different variations of the digit.

the first and the last shots, which consist of more activities
relative to the other shots, we obtain 4 and 3 representa-
tive frames, respectively. On the other hand, for the middle
shots, which are shorter and have less activities, we obtain
a single representative frame.

To investigate the effect of changing the regularization
parameter λ in the quality of obtaining representatives, we
consider the tennis match video as well as a political de-
bate video. We run our proposed algorithm with λ = λ0/α,
where α > 1 and λ0 is analytically computed from the data
[10]. Figure 4 shows the number of representatives found
by our method for each of the events in the videos for sev-
eral values of α. Note that first, we always obtain one or
several representatives for each of the events. Second, in
both videos, the number of representatives for each event
does not change much as we change the regularization pa-
rameter. Finally, depending on the amount of activities in
an event, we obtain an appropriate number of representa-
tives for that event.

6.2. Classification Using Representatives

We now evaluate the performance of our method as well
as other algorithms for finding representatives that are used
for classification. For training data in each class of a dataset,
we find the representatives and use them as a reduced train-
ing dataset to perform classification. Ideally, if the represen-
tatives are informative enough about the original data, the
classification performance using the representatives should
be close to the performance using all the training data.
Therefore, representatives not only summarize a dataset and
reduce the data storage requirements, but also can be effec-
tively used for tasks such as classification and clustering.

We compare our proposed algorithm, which we call as
Sparse Modeling Representative Selection (SMRS), with
several standard methods for finding representatives of
datasets: Kmedoids, Rank Revealing QR (RRQR) and sim-
ple random selection of training data (Rand). We evaluate
the classification performance using several standard clas-
sification algorithms: Nearest Neighbor (NN) [9], Nearest
Subspace (NS) [22], Sparse Representation-based Classi-
fication (SRC) [40], and Linear Support Vector Machine
(SVM) [9]. The experiments are run on the USPS dig-
its database [23] and the Extended YaleB face database
[28].6 For each class, we randomly select 1, 000 (USPS)

6USPS digits database consists of 10 classes corresponding to hand-
written digits 0, 1, . . . , 9. Extended YaleB face database consists of 38



Table 1. Classification Results on the USPS digit database using 25 rep-
resentatives of the 1, 000 training samples in each class.

NN NS SRC SVM
Rand 76.4% 84.9% 83.5% 98.6%

Kmedoids 86.0% 89.7% 89.6% 99.2%

RRQR 59.1% 81.3% 78.3% 94.3%

SMRS 83.4% 93.8% 91.7% 99.7%

All Data 96.2% 96.4% 98.9% 99.7%

Table 2. Classification Results on the Extended YaleB face database using
7 representatives of the 51 training samples in each class.

NN NS SRC SVM
Rand 30.4% 71.3% 82.6% 87.9%

Kmedoids 37.9% 80.0% 89.1% 94.5%

RRQR 32.2% 88.3% 92.9% 95.3%

SMRS 33.8% 84.0% 93.1% 96.8%

All Data 72.6% 96.0% 98.2% 99.4%

/ 51 (YaleB) of the samples for training and obtain the rep-
resentatives and use the remaining samples in each class for
testing. We apply our algorithm in (20) with a fixed λ for
all classes, which selects, on average, 25 representatives for
each class of the USPS database (Figure 5) and 7 represen-
tatives for each class of the Extended YaleB database. To
have a fair comparison, we select the same number of rep-
resentatives using Rand, Kmedoids7, and RRQR. We also
compute the classification performance using all the train-
ing data. Tables 1 and 2 show the results for the USPS
database and the Extended YaleB database, respectively.
From the results, we make the following conclusions:

a– SVM, SRC and NS work well with the representatives
found by our method. Note that SRC works well when
the data in each class lie in a union of low-dimensional
subspaces [12, 14], and, NS works well when the data in
each class lie in a low-dimensional subspace. On the other
hand, as we discussed earlier, our algorithm can deal with
data lying in a union of subspaces, finding representatives
from each subspace, justifying its compatibility with both
SRC and NS. The good performance of the NS in Table 2
using the representatives obtained by RRQR comes from
the fact that the data in each class of the Extended YaleB
dataset can be well modeled by a single low-dimensional
subspace [3, 28], which is the underlying assumption be-
hind the RRQR algorithm for finding the representatives.

b– For the NN method to work well, we often need to have
enough samples from each class so that given a test sam-
ple, its nearest neighbor comes from the right class. Thus,
methods such as Kmedoids that look for the centers of the
data distribution in each class perform better with NN. For

classes of face images corresponding to different individuals captured un-
der a fixed pose and varying illumination.

7Since Kmedoids depends on initialization, we use 100 restarts of the
algorithm and take the result that obtains the minimum energy.
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Figure 6. Left: percentage of outlier representatives for different algo-
rithms as a function of the percentage of outliers in the dataset. Right:
ROC curves for the proposed method for different percentages of outliers.

the NN method in the Extended YaleB dataset, the large
gap between using all the training data and using the rep-
resentatives obtained by different algorithms is mainly due
the fact that the data in different classes are close to each
other [13, 15], hence using a subset of the the training data
can significantly change the inter and intra class distances
of the training data.

6.3. Outlier Rejection

To evaluate the performance of our algorithm for reject-
ing outliers, we form a dataset ofN = 1, 024 images, where
(1 − ρ) fraction of the images are randomly selected from
the Extended YaleB face database. The remaining ρ frac-
tion of the data, which correspond to outliers, are random
images downloaded from the internet. For different values
of ρ in {0.1, 0.2, 0.3, 0.4, 0.5}, we run our algorithm as well
as Kmedoids and RRQR to select roughly 100 representa-
tives for the dataset. Figure 6 (left) shows the percentage of
outliers among the representatives as we increase the num-
ber of outliers in the dataset. We show the result of our
algorithm prior to and after rejecting representatives using
rsi > δ, where for all values of ρ we set δ = 0.16. As
expected, the percentage of outliers among representatives
increases as the number of outliers in the dataset increases.
Also, all methods, select roughly the same number of out-
liers in their representatives. However, note that our pro-
posed algorithm has the advantage of detecting and reject-
ing outliers by simply analyzing the row-sparsity of the co-
efficient matrix C. As shown in the plot, by removing the
representatives whose rsi value is greater than δ = 0.16, the
number of outlier representatives significantly drops for our
algorithm (we still keep at least 90% of the true represen-
tatives as shown in the ROC curves). Figure 6 also shows
the ROC curves of our method for different percentages of
outliers in the dataset. Note that, for all values of ρ, we
can always obtain a high positive rate, i.e., keep many true
representatives, with a relatively low false positive rate, i.e.,
select very few outliers in the representatives.

7. Discussion
We proposed an algorithm for finding a subset of the data

points in a dataset as the representatives. We assumed that



each data point can be expressed efficiently as a combina-
tion of the representatives. We cast the problem as a joint
sparse multiple measurement vector problem where both
the dictionary and the measurements are given by the data
points and the unknown sparse codes select the represen-
tatives. For a convex relaxation of the original nonconvex
formulation, we showed the relationship of the representa-
tives to the vertices of the convex hull of the data. It is
important to note that the convex relaxation takes into ac-
count the value of the norm of the coefficients, hence prefers
representatives with such geometrical properties. As we
show in [10], greedy algorithms that are insensitive to the
norm of the coefficients lead to representatives with differ-
ent geometrical properties. When the data come from a col-
lection of low-rank models, under appropriate conditions,
we showed that our proposed algorithm selects represen-
tatives from each low-rank model. It is important to note
that our proposed algorithm also allows to incorporate the
prior knowledge about the nonlinear structure of the data
using kernel methods and weighting the coefficient matrix
into the optimization program [10].

Acknowledgment
E. Elhamifar would like to thank Ewout van den Berg for fruit-

ful discussions about the paper. E. Elhamifar and R. Vidal are sup-
ported by grants NSF CNS-0931805, NSF ECCS-0941463, NSF
OIA-0941362, and ONR N00014-09-10839. G. Sapiro acknowl-
edges the support by DARPA, NSF, and ONR grants.

References
[1] M. Aharon, M. Elad, and A. M. Bruckstein. The k-svd: An algorithm

for designing of overcomplete dictionaries for sparse representations.
IEEE TIP, 2006. 2, 3, 6

[2] L. Balzano, R. Nowak, and W. Bajwa. Column subset selection with
missing data. NIPS Workshop on Low-Rank Methods for Large-Scale
Machine Learning, 2010. 1

[3] R. Basri and D. Jacobs. Lambertian reflection and linear subspaces.
IEEE TPAMI, 2003. 7

[4] S. Bengio, F. Pereira, Y. Singer, and D. Strelow. Group sparse coding.
NIPS, 2009. 2

[5] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approxi-
mation algorithm for the column subset selection problem. Proceed-
ings of SODA, 2009. 1

[6] T. Chan. Rank revealing qr factorizations. Lin. Alg. and its Appl.,
1987. 1

[7] R. Coifman and S. Lafon. Diffusion maps. Applied and Computa-
tional Harmonic Analysis, 2006. 1

[8] D. L. Donoho. Neighborly polytopes and sparse solution of under-
determined linear equations. (preprint), 2004. 4

[9] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-
Interscience, 2004. 6

[10] E. Elhamifar, G. Sapiro, and R. Vidal. Sparse modeling for finding
representative objects. in preparation. 4, 6, 8

[11] E. Elhamifar and R. Vidal. Sparse subspace clustering. CVPR, 2009.
2, 5

[12] E. Elhamifar and R. Vidal. Robust classification using structured
sparse representation. CVPR, 2011. 7

[13] E. Elhamifar and R. Vidal. Sparse manifold clustering and embed-
ding. NIPS, 2011. 7

[14] E. Elhamifar and R. Vidal. Block-sparse recovery via convex opti-
mization. IEEE TSP, 2012. 7

[15] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algo-
rithm, theory, and applications. IEEE TPAMI, submitted., Available:
http://arxiv.org/abs/1203.1005. 2, 5, 7

[16] K. Engan, S. O. Aase, and J. H. Husoy. Method of optimal directions
for frame design. ICASSP, 1999. 3

[17] E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin. A con-
vex model for non-negative matrix factorization and dimension-
ality reduction on physical space. Technical report, Available:
http://arxiv.org/abs/1102.0844, 2011. 1, 2

[18] P. Favaro, R. Vidal, and A. Ravichandran. A closed form solution to
robust subspace estimation and clustering. CVPR, 2011. 2, 5

[19] B. J. Frey and D. Dueck. Clustering by passing messages between
data points. Science, 2007. 1

[20] D. Gabay and B. Mercier. A dual algorithm for the solution of non-
linear variational problems via finite-element approximations. Comp.
Math. Appl., 1976. 6

[21] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a
strong rank-revealing qr factorization. SIAM Journal on Scientific
Computing, 1996. 1

[22] J. Ho, M. H. Yang, J. Lim, K. Lee, and D. Kriegman. Clustering
appearances of objects under varying illumination conditions. CVPR,
2003. 6

[23] J. J. Hull. A database for handwritten text recognition research. IEEE
TPAMI, 1994. 6

[24] R. Jenatton, J. Y. Audibert, and F. Bach. Structured variable selection
with sparsity-inducing norms. JMLR, 2011. 2

[25] I. Jolliffe. Principal Component Analysis. Springer, 2002. 1, 3
[26] L. Kaufman and P. Rousseeuw. Clustering by means of medoids.

In Y. Dodge (Ed.), Statistical Data Analysis based on the L1 Norm
(North-Holland, Amsterdam), 1987. 1

[27] N. Keshava and J. Mustard. Spectral unmixing. IEEE Signal Pro-
cessing Magazine, 2002. 1

[28] K. C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for
face recognition under variable lighting. IEEE TPAMI, 2005. 6, 7

[29] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank
representation. ICML, 2010. 2, 5

[30] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discrimi-
native learned dictionaries for local image analysis. CVPR, 2008. 2,
3

[31] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local
sparse models for image restoration. ICCV, 2009. 2, 3

[32] B. Nasihatkon and R. Hartley. Graph connectivity in sparse subspace
clustering. In CVPR, 2011. 5

[33] I. Ramirez, P. Sprechmann, and G. Sapiro. Classification and clus-
tering via dictionary learning with structured incoherence and shared
features. CVPR, 2010. 2, 3

[34] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, 2000. 1

[35] M. Soltanolkotabi and E. J. Candes. A geometric anal-
ysis of subspace clustering with outliers. Available:
http://arxiv.org/abs/1112.4258. 5

[36] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 2000. 1

[37] J. A. Tropp. Algorithms for simultaneous sparse approximation. part
ii: Convex relaxation. Signal Processing, special issue ”Sparse ap-
proximations in signal and image processing”, 2006. 2

[38] J. A. Tropp. Column subset selection, matrix factorization, and
eigenvalue optimization. Proceedings of SODA, 2009. 1

[39] R. Vidal. Recursive identification of switched ARX systems. Auto-
matica, 2008. 6

[40] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face
recognition via sparse representation. IEEE TPAMI, 2009. 6


