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Big data in computer vision

300 hours
of video/minute

20,500 terabyt
. of imageeZZt}é - You Tu he

3720 terabytes
of photos & videos

136,000 photos
every minute

Most collected data are unlabeled /weakly labeled
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Subspace clustering

- High-dimensional visual data often lie in low-dimensional subspaces

- Subspace clustering is the problem of clustering data into subspaces
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Planar segmentation
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outliers

This work addresses sensitivity
of subspace clustering to outliers



Data self-representation

Given data X = [x1, -+ ,xXpn].
S1: Compute self-representation:

min |lc;|l;  s.t. x; = Xcj, ¢;; =0
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X: inliers outliers
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X; 18 an inlier:
lc;]i # 0 — x; is inlier

X; 18 an outlier:
[c;]i # 0 — x; can be
both inlier and outlier
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Random walk

S2: Define a random walk:
X5 =7 X if [Cj]z' 7£ 0

- No transition from inliers
to outliers

_ Any random walker will a ‘r\
end up in the inliers q . } ‘. )
S3: Compute stationary

distribution: J I
=(T) — % Z'f:l —(0) pt =(T) M. I .................. —

Theorem: [7?]5-00) = 0 <> x, is an outlier
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Experiments on Extended Yale B

Datasets: Extended Yale B (shown here), Caltech-256, Coil-100
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- Our method achieves the best outlier detection performance.
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Conclusion

- In many computer vision problems, data are unlabeled,
composed of multiple groups and corrupted by outliers

- We designed an algorithm to reject outliers by
combining self-representation with random walk

- Our method is provably correct
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