
Automatic Detection of the Head of the

Hippocampus

Camille Izard
Center for Imaging Science

The Johns Hopkins University

Université Paris XI
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Abstract

In order to analyze Magnetic Resonance brain Images (MRI), neu-
robiologists need to define landmarks. These points characterize the
anatomy and are identifiable on each subject, so that they can be
used as a reference system. Manually detecting these points in 3D
structures is tricky even for experienced neuroscientists. This work
focuses on the automatic detection of the Head of the Hippocampus
from the gray levels of the MRI. The proposed algorithm is composed
of two parts. Firstly it deals with a training set in order to learn a
template, which is a random image. Secondly it takes in input new
images and predict the Head of the Hippocampus location, using the
template. The predicted point is the location where the template fits
the best in the image. This approach had to face with image normal-
ization and gray level distributions estimation. In addition in order
to reduce the computation time, the informative voxels were selected
using conditional variance. Finally, experimental results are obtained
on images provided by Craig Stark, Department of Psychological and
Brain Sciences, the Johns Hopkins University, USA.
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1 Introduction

The central difficulty of the analysis of functional neuroimaging studies is
the huge variability of the brain’s structures. The alignment of the scans
is the first step of any study. However classical methods are not accurate
enough to allow a powerful comparison between experiments. Defining some
points in the brain, called landmarks, will facilitate the alignment process,
even if up to now the landmarking has been a manual step. The challenge is
to complete this tough task automatically.
To make the correspondence between two images, point-based registration
methods need suitable landmarks. Two different approaches of the automatic
detection of landmarks may be distinguished. In the first case a landmark is
defined as a point where the surface curvature is strong [1]. They may also
but not necessarily corresponds to manually defined landmarks. The main
strategy for automatic detection uses 3D filters, to identify high response lo-
cations as potential landmarks. Consequently this method has to deal with
false positive, but several solutions are proposed.
In the second case, the landmark is previously manually defined as a point
which characterizes the anatomy and which is detectable in all scans. Points
like the Anterior Commissure (AC) or the Posterior Commissure (PC), used
by J. Talairach and P. Tournoux [2] to perform the so-called Talairach trans-
formation on MRI, offer a coordinate system for the whole brain. Although
this aligning transformation has been performed on the images, some struc-
tures are not clearly located in the brain. Therefore it is necessary to add
landmarks which characterize the structure location, independently to the
reference system. These points are often extreme voxels of a structure, like
the apex of the hippocampal head or the tail of the hippocampus. Once
these two landmarks have been detected, the location of the hippocampus is
perfectly known, allowing to align accurately the structures.
We will focus on the second class of landmarks, and more particularly on the
head of the hippocampus (HoH). There is no literature in the detection of
such points in Magnetic Resonance Images. The exceptions are AC and PC
[3] [4], but they are singular points, whose detection may be considered as
easier than detecting the head of the hippocampus for example. To perfect
the alignment seven to eleven points are needed, we chose to start with only
one landmark, the apex of the left hippocampal head.
The algorithm we are going to use is composed of two parts. The first one is
the off-line algorithm that consists in learning the location of the landmark
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thanks to the training set’s images. It takes in input the gray levels of the
image and gives in output a probability map, which is called a template in
the rest of this thesis. The second part is the online algorithm, which takes
in input new images, and gives in output a prediction of the HoH location,
using for the prediction the template created in the first step.
This thesis is structured as follows. We will firstly discuss in section 2 the
issue of images’ manual landmarking and in section 3 the normalization of
the images. Secondly we will introduce in section 4 the model we use to
predict the landmark location. Then, once we have obtained the template
(section 5), we will consider different ways to select informative variables in
this template (section 6). Finally, some results obtained on new images are
presented (section 7).
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2 The tricky detection of the Head of the

Hippocampus

2.1 The Hippocampus in the brain

The brain is described in three parts:

• the forebrain is the largest part of the brain, mainly made of the cere-
brum and that contains also the thalamus, the hypothalamus and the
limbic system.

• the hindbrain includes the cerebellum, the pons and the medulla ob-
longata.

• the midbrain is a structure between the forebrain and the hindbrain.
This is the region where connections between the spinal cord and the
brain are made.

A great and simple introduction to Brain anatomy can be found at [5].
The Hippocampus is a part of the limbic system, a neuronal system com-
posed of disparate anatomical structures, with common functions. Among
its different units there are the Hippocampus itself and some immediate sur-
rounding structures, like the amygdala and the subiculum. The hippocampus
received its name because of its seahorse shape. It is described with three
parts, the body which is sagitally oriented, the head and the tail which are
both transversally oriented. It is composed of two interlocking U-shaped
laminae, consisting of the cornu Ammonis and the gyrus dentatus. The
reader is referred to [6] for additional details about the anatomy. The figure
1 presents the spatial organization of the structures close to the hippocampus
in a sagittal slice.

2.2 Working on Magnetic Resonance brain Images

Professor Stark from the Department of Psychological and Brain Sciences,
The Johns Hopkins University, USA, provided MRI of the brain, acquired
on a Philips Intera 3-Tesla scanner with resolution of 1mm3. The images are
161 × 191 × 151 mm and visualized with the software AFNI [7]. They were
manually transformed to the Talairach space. The purpose of this step is
to surround the entire brain within a grid system, so that all the scans can
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Figure 1: MRI image, Sagittal section of the brain centered on the hippocampus, Bar,
10mm. The dot corresponds to the apex of the head of the hippocampus. 1, hippocampal
head cornu Ammonis, 1’, hippocampal head gyrus dentatus, 2, hippocampal tail, 3, uncal
apex, 4, temporal horn of the lateral ventricle, 5, amygdala, 6, subiculum, 7, parahip-
pocampal gyrus, 8, cerebellum, 9, lateral ventricle, 10, middle cerebral artery

be aligned in the same position. It is a rigid transformation to a coordinate
system based on the line between the anterior commissure (AC) and the
posterior commissure (PC). Three other lines are used: the vertical AC and
the vertical PC which are perpendicular to the AC-PC line, and the midline,
which follows the interhemispheric fissure. The volume obtained is limited by
a set of landmarks on the cortical periphery, [2]. Since this transformation is
already performed on the images we will use as a training set, the proposed
method must be used after the Talairach transformation.
Even if it is often manually perform, some methods exist to perform it auto-
matically. We found two papers that describe automatic identification of AC
and PC for the Talairach registration. Both papers distinguish two steps,
first the midsagittal plane extraction and then the detection of the land-
marks. (Vérard et al., 1997) [3] used scene analysis to determine the location
of AC and PC once the midsagittal plane has been extracted. (Han and
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Park, 2003) [4] find AC and PC by template matching, using template of
well conserved surrounding shapes in the image like the corpus callosum’s
edge. These methods are efficient for the AC and PC automatic detection,
however the used approaches are specific to these particular points, consid-
ered as easy to detect, since they are isolated in the brain structures.
Once the alignment has been performed, we note remaining variability of
approximately 10 mm for the apex of the head of the hippocampus. It shows
that even if the transformation has a great accuracy at the whole-brain scale,
it ignores the neuroanatomical boundaries or landmarks.

2.3 Manual Detection of the Head of the Hippocampus
(HoH)

The apex of the head of the hippocampus is defined as the extreme point
of the hippocampus in the sagittal slice that corresponds to the largest ex-
tension of the head. This point is really tough to landmarked with precision
because of the three dimensional structure of the hippocampus. The angle
of the structure with the slices orientation varies from one image to another.
Consequently, neuroscientists have to imagine the 3D image to find the best
slice and then landmark the extreme point on the head, which is sometimes
almost spherical. A white thin line that outlines the boundary with the
amygdala helps to locate the apex.
The result obtained with an automatic detector depends largely on the train-
ing set precision. Even if it is difficult to evaluate the human performance
in HoH landmarking, we ask to both an expert and a graduate student to
landmark twice the same images, with several weeks between the two ex-
periments. The mean Euclidian distance between the two landmarks of the
expert is 0.93mm with standard deviation (σ) 0.96. We consider it as a stan-
dard reference for our scans. Student’s results are slightly different, leading
to a mean distance of 3.92mm with a standard deviation of 1.98. To finish,
we measured the distance between student’s and expert’s landmarks. The
mean distance is 3.26mm (σ = 0.98). Even if the student may reach the pre-
cision of the expert with further training, these results show how challenging
it is to landmark the HoH, even manually.
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3 Modelling the gray levels to normalize the

images

To use the gray levels it is previously necessary to normalize the images.
Magnetic Resonance brain Images should ideally be composed of only three
intensities corresponding to the three matters that are in the brain. The
lowest intensities correspond to the Cerebrospinal Fluid (CSF), the interme-
diate gray levels to the gray matter (GM) and the highest intensities to the
white matter (WM). Of course there are also some intermediate intensities
due to the mixed voxels which make the segmentation of MRI a challenging
problem. In our case we are looking for a continuous segmentation, to reduce
the space of the gray levels to a three dimensional space. One intensity is
then characterized by its probability to be in each of the three matters.
Different approaches, that might be complicated, are used in order to solve
this problem, we will first consider the easiest, that is to model the gray levels
distribution as a mixture of 3-Gaussian distributions.

One image is considered as a set of voxels {s ∈ S}, each voxel being
associated with a gray level intensity xs ∈ I. The location of the apex of the
hippocampal head is notated y and corresponds to one voxel of the image.

3.1 Mixture of Gaussian distributions

Let’s define the random variable Zs that gives the type of matter j ∈
{CSF,GM,WM} at the voxel s, then the Gaussian mixture can be written,
for a given image i:

P (Xs = xs) =
3∑

j=1

P (Xs = xs|Zs = j)P (Zs = j) =
3∑

j=1

αjgj(xs)

with gj(xs) =
1

√

2πσ2
j

exp−
|xs − µj|

2

2σ2
j

The eight parameters of the mixture are estimated on each image by an
EM algorithm [8]. The algorithm consists in two alternative and iterative
steps: Expectation and Maximization. We define a starting point by kmeans
and a maximal number of iterations. The log-likelihood of the marginal
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density is maximized over the parameters θ, the hidden variables α.

max
α,θ

∑

s∈S

log

∫

pθ(α, xs)dµ(α)

The solution is given by the derivative under θ. It is equivalent to say
that:

Eθ

[
d

dθ
log pθ(., xs)|xs

]

= 0 (1)

So θn+1, given θn, is solution of: Eθn
[ψ(θn+1|xs)] = 0.

In case of a Gaussian mixture, one has to maximize over θ and α for the
given the image i:

∑

s∈S

log
3∑

j=1

αj
√

2πσ2
j

exp

(

−
|xs − µj|

2

2σ2
j

)

Here θ = (αj, µj, σ
2
j ) and the αj are the hidden variables containing the

proportions of the matters in the mixture. Let’s define:

pθ(j, xs) =
αj

√

2πσ2
j

exp

(

−
|xs − µj|

2

2σ2
j

)

(2)

Given the result of the nth iteration, the posterior probability (2) can be writ-
ten thanks to the parameters of the previous iteration, this is the Expectation
step.

pθn
(j|xs)

(n+1) =
α

(n)
j g

(n)
j (xs)

∑3
j′=1 α

(n)
j′ g

(n)
j′ (xs)

For the Maximization step, one has to solve the equation (1). In case of a
mixture of Gaussian distributions, the partial derivatives of (2) admits an
analytic solution.

∂ log pθ(j, xs)

∂µj

= δjj′(xs − µj′)

so µ
(n+1)
j =

∑

s∈S pθn
(j|xs)xs

∑

s∈S pθn
(j|xs)
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With N the cardinal of S, the solution for the other parameters is:

α
(n+1)
j =

∑

s∈S pθn
(j|xs)

N
and σ2

j′
(n+1)

=

∑

s∈S |xs − µ
(n)
j |2pθn

(j|xs)
∑

s′∈S pθn
(j|xs′)

3.2 Results on the images

The normalization is performed on all the images independently, both on the
training set and on the testing set. The full histogram of one image is too
huge and contains also voxels from the background. Therefore we decided to
use a 41-by-41-by-41 voxel box centered on AC (this point is already known
since all the images are displayed in the Talairach view). We assume that
this box contains the same structures, even if it also contains a small area of
the brain that may be variable. The histograms obtained on this box vary
from one image to the other, so we can distinguish three types of histograms,
figure 2. The first type (2a) is formed by three easy to separate peaks that

Figure 2: Gaussian mixture parameters estimation on the 41-by-41-by-41 voxel box
around AC. In red are the three estimated Gaussian distributions, the dot green line
represents the cumulative distribution. (a) corresponds to a histogram with well sepa-
rated peaks, (b) corresponds to a case with unclear boundary between GM and WM, (c)
corresponds to a pathologic case: there are almost no CSF peaks.

respectively correspond to the CSF, the GM and the WM. In some other
histograms (2b) the gray matter and the white matter do not have a clear
boundary, so there is one large peak accumulating the two classes. The third
type (2c) is characterized by a really small amount of CSF, so that there are
no clear peaks.
The result of the EM algorithm varies a lot from one image to another,
depending on the histogram. The (2a) type gives good results and is mod-
eled by three separated Gaussian distributions. The (2b) histograms have

11



a correct Gaussian for the WM, but the CSF and GM are modeled with
large variance distributions, that fit badly to the observations. The (2c) his-
tograms correspond to the worse results. The estimated parameters lead to
a higher probability of GM than the probability of CSF even in the lowest
intensities. Some common effects are also observed. The peaks of GM and
WM, sometimes the CSF’s too, are really sharp, that lets think that the
Gaussian distribution is not accurate to model the gray levels distribution.
We are more concerned about the behavior of the CSF peak. It is shifted
to the right because of the distribution truncation in the negative values.
The concern is also for the tails of the distributions. Because of its larger
variance, in case (2b), the gray matter will be more likely in the very high
intensities than the white. We decided not to take care on this aspect first,
considering that these voxels are rare enough to be neglected.
For the training set, we kept 14 images whose graylevels distribution is cor-
rectly modeled.

3.3 Improving the model of the gray levels

There are different ways to improve the model accuracy. The problem of
modelling the gray levels has been studied as a segmentation problem by
many researchers. The reader is refereed to a good tutorial on MRI segmen-
tation, [9]
One of the options is to model separately the pixels that contain more than
one matter, either GM and CSF or GM and WM.These sets are called the
partial volumes. This approach is important when one wants to estimate the
volume of a structure with accuracy [10]. The simplest way to these voxels
in account is to introduce two additional Gaussian distributions to obtain a
five component mixture. This mixture fits better, but there are still some
problems in the distribution choice and in the EM results.
If one has an hand-segmentation of the image or of a part of it, then a more
complicated model can be used. This time the number of Gaussian compo-
nents is not fixed at the beginning. Each matter is itself subdivided as a
Gaussian distribution mixture without a priori information about the num-
ber of components [11]. Even if there are some solutions to the number of
components determination problem that are proved to be efficient asymptot-
ically, the problem is still debated in the finite situations.
Adding constraints on the parameters during the estimation, so that the gray
for example could not be modeled with a large variance distribution is an-
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other way to improve the accuracy of the graylevel model. For example it is
possible to introduce a prior distribution on the parameters.
Finally it might also be interesting to try a mixture of different type of dis-
tributions. We may lost the possibility to write analytic solutions for the EM
but it may allow us to fit better the observed histograms.

4 The translation model

Our approach uses the gray levels of a subset of voxels A ⊂ S to predict the
location of the landmark Y . Xs and Zs are respectively the gray level inten-
sity and the matter at the voxel s. We would like to express the expectation
of the HoH location given the observations at the voxels of A, E[Y |XA].
To express this expectation we are making some assumptions.

• 1st assumption: the prior distribution. The observed location
of the landmark in the training set is contained in a 7-by-8-by-8 voxel
box. Since it would introduce a large error to underestimate the initial
variance, we decided to enlarge the initial box. We assumed that the
prior is a Uniform distribution p(y) on a 11-by-12-by-12 voxel box V .
The problem is then to find one voxel in this set.

p(y) =
1

|V |
(3)

• 2nd assumption: conditional independence of the intensities.
We assume that the intensities Xs are independent given the location
of the HoH Y . It simplifies a lot the expression of the expectation.

P (XA|Y ) =
∏

s∈A

P (Xs|Y ) (4)

• 3rd assumption: the translation model. We assume that the
matter j observed in the image i at the voxel s depends only on the
translation between s and the HoH location y.

Pi(Zs = j|Y = y) = πs−y(j) (5)
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• 4th assumption: conditional independence of the intensity and
the location of the HoH. We assume that given the matter j ob-
served at the voxel s the intensity xs and the location of the HoH y are
indenpendent.

Pi(Xs = xs|Zs = j, Y = y) = Pi(Xs = xs|Zs = j) (6)

• 5th assumption: Gaussian distributions. We assume that the
intensity Xs at the voxel s given the matter Zs follows a Gaussian
distribution. We arrive to the model of Gaussian mixture introduced
in the section 3.

Pi(Xs = xs|Zs = j) = gij(xs) (7)

The third and the fourth assumptions allow us to distinguish the photometry
and the geometry of the image. The photometry is modeled as a mixture of
Gaussian distributions and the geometry with the translation model. These
two parts of the model can be modified independently. The expression of the
expectation is now much easier to write.
For the image i,

E[Y |XA] =
∑

y∈S

y
Pi(XA|Y )p(y)

∑

y′∈S Pi(XA|Y )p(y′)

by (3) =
∑

y∈V

y
Pi(XA|Y )

∑

y′∈V Pi(XA|Y )

And we can write:

Pi(XA|Y ) =
∏

s∈A

Pi(Xs = xs|Y = y) by (4)

by the Bayes formula =
∏

s∈A

3∑

j=1

Pi(Xs = xs|Zs = j, Y = y)Pi(Xs = xs|Zs = j)

by (5) and (6) =
∏

s∈A

3∑

j=1

Pi(Xs = xs|Zs = j)πs−y(j)

by (7) =
∏

s∈A

3∑

j=1

πs−y(j)gij(xs)
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5 The template

The proportions of the matters πs−y(j) have to be estimated at each voxel.
The resultant 3-channel random image, learned on the training set, is called
the template.
The first step of its computation is to superimpose all the images of the
training set, centered on the landmark location y0. So there are as many
points as images in the training set to estimate by an EM algorithm the
proportions in each location. With j the matter, i the image of the training
set and y the location of the HoH, the log-likelihood to maximize over the
πs−y(j) can be written:

∑

i

log
3∑

j=1

πs−y(j)
√

2πσ2
ij

exp

(

−
|x

(i)
s − µij|

2

2σ2
ij

)

In the template, figure 3, each point is defined as a translation to origin
y0, the head of the hippocampus. The different channels of the RGB image
represent the probability to observe at a given translation from y0 the three
matters. There are three types of points in the template. Some are mixed
corresponding to a very variable part from an image to another, the rest has
pure color and is either located in a large volume of same color or on an edge.
When the color is pure it means that in most of the image this point is in
the corresponding matter.
It is noticeable that the closer to y0 a structure is, the sharper and more
precise its edges are. However, small structures around the hippocampus
disappear. For example the white line that is used by neuroscientists as a
boundary between the amygdala and the hippocampus, is particularly thin,
so the variability between the images erases it.
When more images are used for the computation, some structures are blurred,
and the template is smoothed even if there are still really sharp boundaries.
This computation gives an image which is as large as the original, but obvi-
ously many voxels have either no links with the location of the head of the
hippocampus or bring redundant information. Therefore, it is necessary to
select carefully the relevant locations in order to reduce the computing time
without loosing in accuracy.
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Figure 3: The template, sagittal slice containing the landmark, the red or black dot. The
top left image is an example of raw data, the top right is the RGB representation of the
template (Red = πs−y0

(CSF ), Green = πs−y0
(GM), Blue = πs−y0

(WM)). The second
line (a, b, c) represents the separated channels (from left to right: CSF, GM, WM), the
high intensity corresponds to a high probability of observing the matter at this location.

6 Selection of the informative voxels

The aim of the selection step is to drastically reduce the number of voxels
necessary to compute the expectation. The challenge is to discrimine the
informative voxels among a lot of not informative ones.

6.1 Ranking the voxels

Sorting the voxels by their amount of information about the HoH location is
a natural idea. In a first method, which we called the ranking method (R),
the voxels which bring more information than a fixed threshold are picked.
We need to define a measure of the information.
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6.1.1 Expectation of the Conditional Variance

The problem allow us to use the Euclidian distance and the variance. We
choose to rank the voxels by the expectation of the conditional variance.

EY,Xs
‖Y − EY (Y |Xs)‖

2
2 (8)

(8) measures the expected variance reduction of the head location Y , due
to the knowledge of the intensity observed at the voxel s. However the
computation of this value is really heavy, therefore the expectation of the
conditional variance, given the matter at each voxel s is preferred.

EY,Zs
‖Y − EY (Y |Zs)‖

2
2 (9)

and one has

EY,Zs
‖Y − EY (Y |Zs)‖

2
2 ≤ EY ‖Y − EY (Y )‖2

2

It is noticeable that (9) is equivalent to (8), if for each image i, all the matters
have distinct supports. With the usual notations,

If I =
3⋃

j=1

Ij with ∀{j, j′} ∈ {1, 2, 3}2, Ij ∩ Ij′ = ∅,

then ∀xsj′
∈ Ij′ ,

P (Y = y|Xs = xsj′
) =

3∑

j=1

P (Y = y|Zs = j)P (Zs = j|Xs = xsj′
)

= δjj′P (Y = y|Zs = j)

also EY [Y |Xs = xsj
] = EY [Y |Zs = j].

Even if we are not in this case, we can assume that (9) is close to (8).
The lower the conditional variance is, the more informative the voxel is. The
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expectation (9) can be developed,

Y =





Y1

Y2

Y3



 with y =





y1

y2

y3



 , and ∀k ∈ {1, 2, 3}, yk ∈ Vk

EY,Zs
‖Y − EY (Y |Zs = j)‖2

2

=
3∑

k=1

EYk,Zs
‖Yk − EYk

(Yk|Zs = j)‖2
2

=
3∑

k=1

3∑

j=1

∑

yk∈Vk

[
(y − EYk

(Yk|Zs = j))2P (Yk|Zs = j)P (Zs = j)
]

=
3∑

k=1

3∑

j=1

∑

yk∈Vk







yk −
∑

y′

k
∈Vk

y′
k

πs−y′

k
(j)

∑

y′′

k
∈Vk

πs−y′′

k
(j)





2

πs−yk
(j)

∑

y′′

k
∈Vk

πs−y′′

k
(j)





=
3∑

k=1





3∑

j=1

∑

yk∈Vk

y2
k

πs−yk
(j)

∑

y′′

k
∈Vk

πs−y′′

k
(j)

−
3∑

j=1

(
∑

yk∈Vk

yk

πs−yk
(j)

∑

y′′

k
∈Vk

πs−y′′

k
(j)

)2




The last expression can be computed by convolutions so that the total com-
putation of the variance takes around thirty minutes.
The conditional expectation measures the information which is brought by
a voxel. The histogram, figure 4, shows that there is only few information
in the knowledge of the matter observed at one given voxel. The best voxels
give a conditional standard deviation around 5.10 when the initial value is
5.84. In addition most of the voxels have really little information about the
landmark location, it confirms the importance of the selection.

6.1.2 Simulation

In order to understand where the informative voxels are located in the tem-
plate, simulated images were generated using the same gray levels parameters
and hippocampus location in the image than in the training images. Each
image is composed of a large sphere centered on a virtual hippocampal head,
and a second smaller sphere. The intensity of the voxels contained in the
background, the large sphere and the smaller sphere was simulated using the
parameters of respectively the CSF, the Gray Matter or the White Matter.
We used the usual algorithm to compute the template and the information
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Figure 4: Histogram of the information contained in the template. We represent here
the squared root of the expected variance, i.e. the conditional standard deviation.

map (map of the expected variance reduction). The experiment was repeated
three times, changing the relation between the spheres and the location of
the landmark in the simulated images, figure 5.

The points with lowest variance or standard deviation, which are repre-
sented in blue in the information map, are the most informative. The first
experiment shows that the points contained in a large constant color volume
are useless for the prediction. The most informative points correspond to a
symmetric tube along the template edges which are connected to the head of
hippocampus location, i.e. the sharp edges of the template. When an edge
is not linked to the HoH location, like the small sphere in the second simu-
lation or the large sphere in the last simulation, the corresponding template
edge is blurred and neglected by the edge detector we built previously. This
simulation mainly shows that the expected variance reduction is acting as a
sharp edge detector on the template.

6.1.3 Applying the edge detector on MR Images

Applying the edge detector to MR Images produces an information map,
figure (6), whose correspondence with the anatomical structures are difficult
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Figure 5: Simulated images genrerated with the parameters of the training set images
and the location of HoH in the training set. The left column represents the template
obtained in the 3 experiments and the right column contains the resultant information
map. The bar represents the conditional standard deviation scale. In the experiment
(a), both the small and the large sphere are rigidly linked to the HoH location. In the
experiment (b), the smaller sphere is totally independent. In the experiment (c), the large
sphere is linked to the location of the HoH, but with a little noise.20



to find. The informative parts of the brain are represented in blue, since the

Figure 6: Sagittal slice of the information map. the black dot represents the HoH location
and the color bar the conditional standard deviation scale. Blue corresponds to low values
and red to high values.

conditional variance is low. The front and back edges of the cerebrum seem
to be interesting, whereas the top part is less informative, probably because
of the circumvolutions variability. The most informative part is close to the
landmark (the black dot) and corresponds to the boundary of white matter
and gray matter. In addition, the cerebellum edges response to the edge
detector, even if there is no easy anatomical explanations.
We have some informative points, but it remains the question of the number
of points to use. In the easiest method we threshold the ranking and keep all
the points below the limit. Even if the size reduction is already huge, most
of the selected voxels are redundant, so that we believe it is still possible
to remove lots of them. However using redundant variables may have some
advantages like protecting from overfitting, [12].

6.2 Avoiding redundancy thanks to spatial constraints

We believe that close voxels contain similar information, and that it is pos-
sible to select only few points and to reach a comparable accuracy. Spatial

21



constraints are added to the selection process, which is then called (R+SC).
The points are now chosen if and only if they are at least 5mm away from
all the previously selected voxels. To compare the selected points in the two
methods we ran this second algorithm on the sets of selected points, see the
table 6.2. The effective of points drop off, because most of the them were
spatially related. On the one side, spatial constraints partially suppress the
redundancy but on the other side, the set of selected points becomes sensitive
to overfitting. This selection process has a complexity of O(N), with N the
initial number of points.

Method Nb of selected points selected
R 186 2230 5846 13,902 30,348 62,178

R + SC 6 40 91 204 402 724

Table 1: Number of voxels selected with the Ranking method (R) or with
the Spatial Constraints method (R+SC). The set of R corresponds exactly
to all the voxels below the threshold, and lot of voxels are removed from this
set thanks to the spatial constraints. The different thresholds are 5.10, 5.20,
5.25, 5.30, 5.35, 5.40.

6.3 Voxel Selection by Conditional Variance

6.3.1 Principle

Another way to pick the best voxels would be to select the set A = {t(1), ..., t(K)}
of voxels that minimizes EY,Zs

‖Y −EY (Y |Zt(1), ..., Zt(K))‖
2
2. But this expres-

sion required to estimate 2K+1 probabilities with a reduced size of sample.
In (Fleuret, 2003) [13], the author proposes a new approach based on con-
ditional mutual information to solve an equivalent selection problem. He
deals with the trade-off between the information given by a feature and the
independence to the already picked features. We adapted the method to the
conditional variance and called it R+CV. The selection follows the iterative
scheme:

t(1) = arg min
s

E‖Y − E(Y |Zs)‖
2
2 (10)

∀k, 2 ≤ k < K, t(k + 1) = arg min
s

{

max
l≤k

E‖Y − E(Y |Zs, Zt(l))‖
2
2

}

(11)
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To interpret this minmax criterion, one can write it:
Zt an already selected voxel, Zs a remaining voxel, Ak the subset of voxels
selected after k iterations:

∀s ∈ S,∀t ∈ Ak, E‖Y − E(Y |Zs, Zt)‖
2
2

= E‖Y − E(Y |Zs)‖
2
2 − E‖E(Y |Zs) − E(Y |Zs, Zt)‖

2
2

Because

EY EZs,Zt




(Y − E(Y |Zs, Zt)) · (E(Y |Zs) − E(Y |Zs, Zt))

︸ ︷︷ ︸

φ(Zs,Zt)

|Zs, Zt






= EY



φ(Zs, Zt) EZs,Zt
[(Y − E(Y |Zs, Zt))|Zs, Zt]

︸ ︷︷ ︸

0



 = 0

Finally (10) can be written as

min
s

{

E‖Y − E(Y |Zs)‖
2
2 − min

t
E‖E(Y |Zs) − E(Y |Zs, Zt)‖

2
2

}

(12)

The first part of (12) favors informative voxels, whereas the second favors
voxels different from the previous picked ones. For two informative voxels s

and s′, if s is equivalent to an already picked voxel, then the second term is
zero. If s′ is different then the second part add a negative term, that makes
the total smaller; so s′ is chosen.

6.3.2 Implementation

The implementation of this selection is more complicated. We obtained by
personal communication from François Fleuret, an efficient algorithm to com-
pute it. Whereas the naive implementation has a complexity of O(K×S×T )
with K the number of features to select, S the total number of features, T

the number of already picked features at a given step, he introduces a huge
reduction in variance calculation. During the iteration the quantity whose
minimum is looking for, can only increase when updated. Consequently it is
useless to update during this iteration all the scores that are already above
the temporary selected one. Adapted to the variance, it gives the algorithm
1.
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Algorithm 1: Selection algorithm using the conditional variance

initialization;
for s = 1..S do

ps(s) ← E‖Y − E(Y |Zs)‖
2
2;

m(s) ← 0;
end
m(1) ← arg mins(ps);
for s = 1..S do

ps(s) ← E‖Y − E(Y |Zs, Zm(1))‖
2
2;

m(s) = 1;
end
main iterations;
for t=2:K do

s∗ = E‖Y − E(Y )‖2
2;

for s = 1 : S do
while ps(s) < s∗ and m(s) < t − 1 do

m(s) = m(s) + 1;
ps(s) = max

(
ps(n), E‖Y − E(Y |Zs, Znu(m(s)))‖

2
2

)
;

end
if ps(s) < s∗ then

s∗ = ps(s);
nu(t) = s;

end
end

end
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There are 2 initialization loops on all the features because of the properties
of the conditional variance. The shortcut described above is applying from
iteration 3 up. Indeed the second loop is computing the conditional variance,
but this variance is always inferior to the initialization, so that to find the
minimum we have to calculate all the scores.

∀s ∈ S,E‖Y − E(Y |Zs, Zm(1))‖
2
2 ≤ E‖Y − E(Y |Zs)‖

2
2 (13)

It takes around 60 minutes to select 700 points among 60,000, whereas the
time-consuming computation of (12).

7 Results

The algorithm is tested on the training set and then on new images. For
numerical reasons we are not able to compute the expectation E[Y |XA], the
product of probabilities is rounded to zero when the cardinal of A is too
large. For the following results, the prediction of the HoH location is given
by the point of V that maximizes the probability P (XA|Y ). All the selection
methods are tested with the online algorithm. The test is computed for the
R method with 186, 2230 and 6000 points; it corresponds to all the points
that have an expected standard deviation below respectively 5.1, 5.20 and
5.25. The second test is performed using the R+SC method with up to 750
points. Finally the R+CV method is tested using the same effective of points
than in the second experiment.
The prediction error is the Euclidian distance between the expert’s landmark
and the predicted location, figure 7 and figure 8.

7.1 Testing on the training set

Whichever selection method is chosen, the mean error decreases when the
number of voxels increases. However, the amount of points necessary to ob-
tain a stable accuracy depends on the selection method.
For the ranking method, it is already stabilized with 2230 voxels. When
spatial constraints or constraints on the conditional variance are added, this
threshold drop off to 750 voxels.
We compare the results of the different methods. the best accuracy achieved
is 1.98mm (σ = 0.82). With only 750 voxels the second and the third meth-
ods achieve an accuracy of respectively 1.53mm (σ = 1.37) and 2.96mm
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(σ = 1.95). We obtain the smallest variance with the first selection and the
best mean error with the second. As for the computation time, it takes sev-
eral minutes to predict a location thanks to the first method and only several
seconds with the second and third one. We believe that the ranking selection
is a lot more robust to overfitting; it could explain its low mean error and its
low variance. The less robust is probably the Conditional Variance selection
where redundancy is almost totally removed. The results seem to confirm
this lack of robustness since its variance and mean error are the highest. Be-
cause of the computation time and the best achieved accuracy, we prefer the
selection of voxels with spatial constraints.
If we compare the results with the human performance, see subsection 2.3,
it is clear that the algorithm is learning the location of the HoH, since it al-
most reaches the expert’s accuracy (1.53mm, σ = 1.37; 0.93mm, σ = 0.96).
However we have to keep in mind that the final error mean is to add to the
initial error of the expert in the training set.
Surprisingly, the algorithm is unable to predict the location of the HoH for
one of the images of the training set. Looking at the singular image, we
notice that it is an image with almost pathological gray levels behavior. We
will verify in the subsection 7.2 that this gray level modelling may have an
influence on the prediction quality.

7.2 Testing on a new set of images

We firstly use 5 images whose gray levels are correctly modeled. As in case
of the training set, the mean error decreases when voxels are added. The
thresholds of stability seem to be the same even if the final results are not
as good as the results previously reached. The best accuracy achieved is
a mean error of 3.91mm with σ = 2.08 with the ranking method. Adding
spatial constraints modifies a little the results with a mean error of 4.14mm

and σ = 1.75. The results are worse with the third selection algorithm,
achieving a mean error of 5.32mm (σ = 2.55).

The more voxels are used, the best the results are. The method with
constraints on the conditional variance is less robust than the other: both the
resultant mean error and variance are high. Even with the ranking selection
that is using up to 6000 points to do the prediction, the results seem to be
quite not good, even if they are comparable to student’s results. This high
generalization error could be explained by the small size of the training set.
At each location 2 parameters are estimated, plus the selection of only few
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voxels. It may explain the overfitting of the training set. Using more images
may help to learn more variability and to decrease the generalization error.
Secondly we made the same prediction on four images whose graylevels are
badly modeled. They are from the third group described in the figure 2.
Because the probability of the CSF is always low, the distinction between
the CSF and the GM is not good. Therefore we thought that the model
would not be able to predict correctly the location of the HoH. The test
on this set of images do not confirm this intuition. Indeed the results are
similar to those obtained on the other testing images. (R: 3.50mm,σ = 1.93;
R+SC: 4.14mm,σ = 2.09). To explain that, we made the hypothesis that
the algorithm is using more voxels on boundaries between GM and WM than
on boundaries between CSF and GM. We will need to look more carefully at
the location of the selected voxels, to validate or invalidate this hypothesis.

8 Conclusion and Future work

The method we proposed is applicable at any location of the brain and pre-
dicts a location in only few seconds. The first improvements will be to use
more images for the template estimation and to overcome the numerical lim-
itations to obtain the expectation and the covariance matrix. We will then
be able to know how the candidates voxels are distributed. We also hope
that this complementary information about the prediction error will help us
to understand why sometimes the algorithm is unable to predict the good
location.
Since in the model the photometry is separated from the geometry of the
image, we can imagine improvements independently for these two questions.
For the photometry, the priority is to improve the model of the gray levels.
It could be helpful to add constraints in the EM and/or to modify the dis-
tributions in the mixture to fit the peaks of the histogram. We could also
consider a new volume, built by neuroscientists that would decrease the noise
in the normalization box.
As for the geometry, the model deals only with translation between the land-
mark and the observed voxels. We will try to take in account other trans-
formations or deformations in the model. Up to now we are only using the
gray levels of the image. We will use other features combined with the gray
levels.
Since several landmarks have to be detected, we can try to work pairwise or
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even with more landmarks at the same time. Indeed we believe that detect-
ing simultaneously the head and the tail of the Hippocampus for example
may be more efficient than detecting them independently.
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Figure 7: From top to bottom the graphics represent the prediction error depending on
the number of voxels used in the online algorithm with respectively the R, R+SC and
R+CV method. A bar corresponds to a single image of the training set.

29



6 40 91 186 402 750
0

2

4

6

8

10

12

Number of voxels used for the prediction

E
rr

or
 (

m
m

)

Method: Spatial Constraints (Testing Set)

Figure 8: From top to bottom the graphics represent the prediction error depending on
the number of voxels used in the online algorithm with respectively the R, R+SC and
R+CV method. A bar corresponds to a single image of the testing set.
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