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Abstract

The construction of classification trees is nearly always top-down, locally
optimal and data-driven. Such recursive designs are often globally inefficient,
for instance in terms of the mean depth necessary to reach a given classification
rate. We consider statistical models for which exact global optimization is
feasible, and thereby demonstrate that recursive and global procedures may

result in very different tree graphs and overall performance.
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1 Introduction

Most of the literature on classification (or decision) trees is about inducing them
from a training set L of labeled feature vectors in order to classify unlabeled data.
Usually a tree Tj,. is built in a top-down, recursive fashion from a pool of “tests”

” “questions”) which are functions of a single feature. First the root

(“experiments,
is assigned a test, then each child of the root, and so forth until a stopping rule
is enforced. At each internal node, each test in the pool is ranked according to a
criterion based on information gain (e.g., entropy reduction) and the best test is
assigned to the node; the gains are estimated from £. The construction £ — Tj,.
is then data-driven and based on local optimization. Performance is often measured
by classification error, and sometimes also by the efficiency of the representation (for
example expected depth). Two seminal works are [8] and [25], and applications are
numerous in statistics, pattern recognition, machine learning and other fields.

An alternative approach - the one here - begins with a statistical model M for the
joint distribution of the tests and the classes (labels); then a tree T, is characterized
by a global criterion for efficient classification. The construction M — Ty, is then
model-driven and based on global optimization. The model M might be estimated
from data or derived in a Bayesian sense from a “forward model” for the distribution of
the data given the class together with a “prior model” for the marginal distribution of
the class variable. The optimality criterion might involve a tradeoff between accuracy
(e.g., measured by the average entropy at the leaves or misclassification error) and
computation (e.g., the average number of tests performed). A different notion of
optimality based on efficient coding is discussed in [26]. Generally, calculating optimal
trees is computationally prohibitive, whether model-driven or data-driven, and the
literature is correspondingly sparse; see [18], [22] and the approximations in [26].

Our goal is to demonstrate that, in the model-based situation, the performance
of tree classifiers based on recursive designs, e.g., stepwise entropy reduction, can

be markedly inferior to those based on global designs. (The same is true of data-



driven trees, although this is more difficult to demonstrate as explicitly.) Another
analysis of this discrepancy appears in the work of Garey [17] and others in the special
case in which the test outcomes are determined by the classes (“constrained twenty
questions”). The difference is especially pronounced with skewed priors, i.e., when a
priori some classes are much more likely than others.

A simple example is given in Figure 4 for a model M with two classes {a, b}, one of
which (class a) is rare; T}y, is on the left and minimizes entropy level-by-level and Ty,
is on the right and minimizes a criterion based on both accuracy and computation.
Both trees have the same error rate, but the expected depth of Tj,. is about twice
that of T,, and the testing strategy in T}, is virtually the “opposite” of the greedy
one. The expected depth necessary to reach a given level of accuracy is of particular
importance when the tests are costly or when L is small and hence the estimation of
information gains quickly becomes unstable. In another example (see Figure 5) the
prior is uniform, both trees have average depth around ten, but the error rate of 7Tj,.
is many times that of T,.

Exact computations of optimal strategies, whether by brute force or clever reduc-
tions, are scarce, at least apart from the work cited above and a few very special
cases in which they can be expressed in closed form, analytically. The emphasis here
is on direct computation when the tests are repeatable, conditionally independent
given the classes and the cost of a tree is a linear combination of the average terminal
entropy and the average depth. Computing 7}, is then sometimes feasible, although
intensive, because the optimal test to perform at any interior node is determined by
the depth of the node and the conditional distribution on classes at the node. In
other words, the posterior distribution is a “sufficient statistic” in that it carries all
the information in the previous tests which is relevant for deciding how to continue.
Optimal trees can then be generated from dynamic programming and variants thereof.

The complexity of an exact computation depends on the number M of distinct

tests (in distribution) and the maximum depth D of the tree. We focus on complexity



as a function of D for fixed, relatively modest values of M. In one variant, the
complexity is of order D*™_ which is feasible, in contrast to M2, which is the the
total number of possible trees, i.e., the order of a brute force computation without
exploiting the independence assumption. Some of these observations can be traced
back to DeGroot’s 1970 classic text [15], where fized-length optimal trees are discussed
under the above assumptions, although none are actually constructed, probably due
to a lack of computing resources.

In the following two sections we review the stochastic framework for tree-structured
classification and the standard construction by stepwise entropy reduction; we also
introduce a cost functional which accounts for both mean depth and mean terminal
entropy and describe a simple recursion that characterizes minimal cost trees. A spe-
cial case in which the test results are determined by the class is considered briefly in
Section 4. In Section 5, we specialize to the independent model. We present a simple
characterization of the cost-minimizing testing strategy in terms of the posterior dis-
tribution as well as analyze the resulting complexity of global optimization; in fact,
two algorithms are presented, one top-down and the other bottom-up, for computing
minimal cost trees. Bounds on the information gain are given in Section 6 and in
Section 7 examples are given which illustrate the superiority of global strategies in

several cases. Finally, some concluding remarks are made in Section 8.

2 Tree-Structured Classification

The goal is to assign a class label from a finite set Y = {a, b, ¢, ...} to a “feature vector”
€ = (&,&, ..., &). Classification is based on a finite tree graph 7. The terminal nodes
(denoted @T) are each labeled by a class. The internal nodes (denoted 7°) are each
labeled by a “test” - a discrete function X (£) of the feature vector. For simplicity we
will use only binary tests, for example X = Iy .y, which is the standard form of the

tests in CART [8] and other algorithms. We write X = {X, X», ..., X3/} for the pool



Figure 1: Example of a classification tree.

of available tests. The index of the test assigned to t € 7 is denoted 7 (t) € {1, ..., M},
the depth of ¢ by d(t) (the depth of the root node is 0) and the set of observations
preceding t by Q.

We regard the set of tests as random variables (relative to a background probability
space) and we assume there is a true class Y € ), another random variable. The class
Y may or may not be determined by the tests or by the underlying feature vector. Let
M denote the joint probability distribution of Y and X; we will write po(y),y € Y, for
the marginal (or “prior”) distribution of Y and g(x|y) for the conditional distribution
PX=x|Y =y),xe {0, 1}, ye ).

Let T' = T(X) denote the resulting random variable taking values in 07 ; thus,
Q¢ is the event {T = t},t € 07, and depends on the outcomes of the tests X,
at internal nodes s along the branch from the root to ¢. The classifier is denoted
by Y7 = Y7(X) and takes values in ). The class assigned to ¢ € 9T is always the
mazimum a posteriori estimator, i.e., the class y which maximizes P(Y = y|T = t).

Figure 1 is an example of a classification tree with two classes a,b. As indicated,
the test performed at the root is Xy. If {Xy = 0} is observed, test X is performed;
if {Xy, =0} N{X; =0} is observed then class a is inferred; and so forth. The history
of the terminal node ¢ € 07 labeled b is @Q; = {X, = 0} N {X; =1} N {X; = 0}.



3 Testing Strategies

For simplicity, we will write P;(.) for conditional probability P(.|Q;), and p; for the
posterior distribution of ¥ given Q;: pi(y) = P(Y = y|Q:). The conditional (Shan-

non) entropy of Y at node ¢ is

H(Y)=H(Y|Q) ==Y P(Y =y)log, B(Y =y).

If P(Q:) =0, we set H;(Y) = 0. The entropy at the root of 7 is H(Y).

3.1 Local Optimization

If we perform test m at ¢t € 7, the average class entropy given this test and the

previous outcomes is
Hy(Y|Xpm) = Pi(Xm = 0)Hy, (V) + Pi(Xrn = 1) Hy, (V),

where %y and ¢; are the two descendents of t. (If ¢ is the root node, we will write
H(Y|X,,) for H(Y|X,,), and if P(Q,) = 0 or P(Q4,) = 0, we set H(Y|X,,) =
Hy(Y).) The standard “one step ahead” testing strategy is

7(t) = arg _nglinMHt(Y|Xm). (1)

It can also be characterized as choosing the test X, which most reduces the mean
Kullback-Liebler distance between the (random) conditional distributions p;(y|X,,)
and p;(y|X). Together with a stopping rule, this is the recursive design for building
ijlOC'

3.2 Global Optimization

The aim of a global strategy is to build a tree classifier that balances error and

computation. The former is measured by average terminal entropy

H(Y|T)= > P(Q)HY)

tedT

6



and the later by ezxpected depth:
Ed(T)= ) P(Q)d(t) = Y P(Qy)
tedT seTF
(The second equality results from writing d(t) = 3,7 I{s<s}, where s < t indicates
s precedes t in 7, and then interchanging the sums.) One could minimize entropy
subject to a bound on expected depth, or vice-versa, but hard constraints are difficult
to enforce. Instead we introduce a control parameter A > 0 and define the cost of T

as

C(T, M) = H(Y|T) + \Ed(T) (2)

We write C(T, M) to emphasize that the cost depends on the distribution of (Y, X).
One global optimization problem is then to minimize C(T, M) over all T. Instead,
we will minimize C'(T, M) subject to a maximum depth D = maxcs7 d(t).

The expected depth is of course the expected number of tests performed in order to
reach a terminal node. Trees minimizing a cost function based instead on the maximal
depth or the total number of tests would be very different. In fact, for a fixed error
rate, reducing the expected depth necessitates increasing the allowable maximum
depth. Notice also that tests with varying costs can easily be accommodated by
replacing Ed(T) by

> c(m(t))P(Qr)

teT

where ¢(m) is the cost of test X,,. We will always assume ¢(m) = 1.

3.3 A Recursion

Let C*(M, D) be the minimum value of C(T, M) over all trees whose maximal depth
is bounded by D. Consider a tree with test m at the root and let 7y and 7; be the
left and right subtrees, respectively. Then clearly
C(T,M) = A+ P(X,,=0)(HY|Ty, X;n =0) + AEd(Ty))
+ PX,=1)(HY|T,Xn=1)+ EdT)).

7



It follows that C*(M, D) obeys the following recursion:

Proposition 1 For D =0,
C*(M,0) = H(po)-

For D > 0,

H (po);
C*(M, D) = min A+ min P(X,, =0)C*(M(.|X,, =0),D —1)+
mee M by 1) M X = 1), D = 1)
(3)

The minimal cost C*(M, D) is positive and decreasing in D, and hence converges
as D — oo to the minimal cost of an unbounded tree. We approximate this cost by
C*(M, D) for a large enough value of D. Direct evaluation of C*(M, D) is computa-
tionally prohibitive (except for small numbers of tests and small depths). However,
if the tests are conditionally independent, then exact computation becomes feasible

in non-trivial cases, as we shall see shortly.

4 Constrained Twenty Questions

Perhaps the simplest model is the one underlying the familiar parlor game of “twenty
questions”: The class is determined by the tests (in particular M > log, |)|) and
the tests are determined by the class (i.e., there is no randomness once Y is known).
The model M is then determined by py and the binary string of M test results for
each class. Since doing all the tests determines Y, the natural problem is to find the
testing strategy which asks the fewest number of questions on average in order to
determine Y, i.e., the tree Ty, which minimizes Ed(T) subject to H(Y|T) = 0.

Since Y determines X, we have Hy(Y|X,,) = Hy(Y, X;n) — Hi(Xin) = H(Y) —
Hy(X,,). Hence (1) reduces to

7(t) = arg _ max Hy(X.n),

=1,...

8



which amounts to choosing the test at node ¢ which divides the classes into two groups
whose masses (measured by p;) are as equal as possible.
If there is a test for every subset of classes (“complete tests”), then the best global

strategy is the Huffman code for py and
H(po) S Ed(Tglo) S Ed(Tloc) S H(pO) + 1.

(We omit the proof of the last inequality.) However, the general problem of com-
puting T, is NP complete [22]. Dynamic programming leads to an algorithm [17]
which is exponential in either M or ||, and is feasible for “small” values of these
parameters. Garey and Graham [18] consider the case in which pg is uniform and
compare the performance of greedy and optimal strategies over all possible families

of tests, showing that the former can perform very poorly depending on this family.

5 Conditionally Independent, Repeatable Tests

In contrast to constrained twenty questions, suppose the tests are (conditionally)
non-degenerate, an obviously more realistic case. However, in order to achieve com-
putational feasibility, at least for “small” problems, we add the assumption of “re-
peatability” This provides a richer framework than constrained twenty questions in
which to display the disparity in efficiency between local and global strategies.
Specifically, we suppose from here on that the tests are conditionally independent

given Y:

g(x|y) = T_[1 Im(Tm|y),

where gn,,(z|y) = P(X,, = z|Y = y),z € {0,1},y € Y. Suppose further that the
tests are infinitely repeatable in the sense that there are many independent copies of
each type of test. We shall continue to write X = {Xi,..., X3/} for a generic set
of distinctly-distributed tests. The full family of available tests is then {X;, X, ...},
where X;,j = 1,2, ..., are independent, identically distributed copies of X. The model
is then determined by {po, g}



Remarks on Repeatability: i) This differs from constrained twenty questions in
that the same test (in distribution) may now appear several times along the same
branch of 7.

ii) This setting (conditional independence and repeatability) is precisely the one in
[15]. More generally, it is at the intersection of sequential statistics [12], game theory
[6] and adaptive control processes [5]. In these domains, optimal strategies can, in
principle, be computed using dynamic programming; still, cases in which they can be
expressed in simple analytic terms are uncommon and the emphasis is on asymptotic
results (e.g., Ed(T) — oo) for greedy procedures. See also [13], [20] and [11], in which
printed characters are classified with trees based on the assumption the image values
are class-conditionally independent.

iii) This paper was motivated by experiments in pattern recognition (see the Note in
§7). In most such applications, repeatability is not a realistic assumption, and nor
is conditional independence for that matter, at least in strict terms. However, when
the original feature vector is varied and high-dimensional (as in image processing),
and the number of classes is small, it may often be the case that certain subsets
of tests have nearly the same conditional distribution and are nearly conditionally

independent.

5.1 Sufficiency of the Posterior

The key observation is that the evolution of the distribution of (X,Y) as tests are
performed depends only on the evolution of the posterior distribution of Y. More
specifically, if () denotes a history of tests, then the posterior is p(y|Q) = P(Y = y|Q)

and

PX=xY=9Q) = pylQ)PX=x|Q,Y =y)
= p(ylQ)9(x|y)
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Here X represents a “fresh copy” of tests conditionally independent of those appearing
in ). It follows that, for the independent model, we can just as well index the minimal
cost C* by the posterior p; as M.

Updating the posterior based on a new test X,, is very simple:
P(Xnm =2|Q,Y =y)P(Y =y|Q)P(Q)
Xyey P(Xm =2|QY =y )P(Y =¢|Q)P(Q)
gm(z|y)p(y|Q)
Yy Im(zy)p(y'Q)

In particular, at the children ¢, and t¢; of an internal node ¢, we obtain p;,(y) and

p(y|Q> Xy = .’L‘) =

pi, (y) from pi(y) by choosing @ = Q¢,m = 7(t) and = = 0,1, respectively. In a
similar manner, we see that
H(Y|Qt, Xm) = > > gm(@y)pe(y)H(Y|Q1, Xim = z)) (4)
2=0,1 yey
where p(y|Qq, Xim),y € Y can be expressed in terms of g, and p; as above.

The consequence for the local strategy (1) is that computing H(Y |Qy, X)) under
the model {py, gm} is the same as computing H(Y'|X,,) under the model {p, g }. One
implication of this was pointed out in [15]: If there is a dominating test X, in the
sense that H (Y| X,,«) < min,, H(Y|X,,) under any prior py, then only this test would
appear in both Tj,. and Ty,. Needless to say, such tests never exist in practice.

Turning to global strategies, the test assignment 7* of the optimal tree now has a
very simple characterization. Let Py = {po} and, for k£ > 0, let P, denote the set of
all possible posterior distributions after k tests, i.e., all possible distributions p(.|Q)
where () is a conjunction of & test results. In particular, p; € Pgy. Then depending

on A and the model {py, g, }, there is a sequence of functions
\Ilk : Pk — {1,2,...,M}, 0< k < D—-1

which gives the optimal test at depth k£ as a function of the posterior after k£ tests.
Here again D is the maximum allowable depth. In other words, at any internal node

t of the optimal tree:
T (t) = Va) (pr) (5)

11



Consequently, due to conditional independence, the complexity of computing a global
strategy reduces to counting posteriors, which, as we shall see in the following sections,

is further simplified by the assumption of repeatability.

5.2 Computational Complexity

If the number of tests M and the maximum depth D are small enough we can compute
C*(po, D) and the corresponding tree 7y, very efficiently. The interest of this cost
analysis is that within these constraints one can display comparisons between exact
and virtually exact minimal cost trees T, and the corresponding greedy trees Tj,.
and thereby asses the performance loss as well as the feasibility of alternatives to
stepwise entropy reduction.

The important computational issue is the growth of P, as k increases and how
finely we quantize it if we forgo an exact computation (as in Example 3 in the following
section). For example, in the simplest case of just two classes {a, b}, suppose we
quantize p(a|Q) € [0,1] into L levels; obviously p(b|@) =1 — p(a|@). The complexity
of using dynamic programming in order to compute the minimal cost tree (under the
approximation resulting from this quantization) is then only O(M LD). However, this
a priori quantization induces errors and a better approximation to Ty, is discussed
in §5.2.2.

We can compute the complexity of an exact recursion. In order to determine
C*(po, D) we need C*(p(.|X,, = z),D —1) for x = 0,1 and m = 1,..., M. In other
words, we need C*(p, D — 1) for

peP ={p(|X;=12),1<i< M,z €{0,1}}
which in turn requires C*(p, D — 2) for
pE P? = {p(‘XZ = $i,Xj = xj); 1 S Za.] S Mamiaxj € {O’ 1}}a

and so forth. Hence we need to compute the size of each P,. This is of course

also evident from a backwards induction argument based on the characterization of

12



Tree Depth (O | 1| 2| 3| 4| 5| 6 7 8 9| 10| total
No. Posteriors | 1 |4 |10 |20 | 35 | 56 | 84 | 120 | 165 | 220 | 286 | 1001

Figure 2: Possible posteriors after k£ tests, £ = 0...10.

the optimal strategy given by (5); see §5.2.1 below. If k tests are performed, the
posterior obviously depends only on the number of events of each “type” (m,x),
where m = 1,2,...., M and = € {0,1}. The order in which these events occur along
the branch is irrelevant. Let 7; be the number of events of type j = 1,2,...,2M
relative to some ordering of the 2M pairs (m,z). Then of course 0 < 7; < 2M
and >7;m; = k. We want the number of distinct sequences (71, ...,m2n7). But there
is a 1-1 correspondence between these and sequences «; = 1 + --- + 7; + j for

j=1,2,...,2M — 1. Since
1<y <oy <---<oguy—1 <k+2M -1,

we have

k+2M—1
|P’“|_< oM —1 )

Values for M = 2 and k = 0,...,10 are given in Figure 2. Notice that |P| grows
slowly with k& compared with (2M)¥, which is the number of possible situations after
k tests. This simple argument allows us to compute optimal trees in reasonable time
for 10< D<20and 2< M < 4.

The computation of Ty, can be organized either iteratively and “bottom-up” using
standard dynamic programming or recursively and “top-down” using (3). The latter
is slower in simple cases but has the advantage that it can be easily modified to yield
an approzimation of the optimal tree when the number of tests gets relatively large.
This approximation is different from, and superior to, the one mentioned earlier based

on a priori quantization of the posterior.
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5.2.1 Bottom-up Computation

We start at the terminal nodes and work up:
e Step 0: For each p € Pp, compute and store C*(p,0) = H(p)

e Step 1: For each p € Pp_;, compute and store C*(p, 1) using equation (3) and
the values stored in Step 0.

e Step D — 1: For each p € P;, compute and store C*(p, D — 1) using equation

(3) and previously stored values.
e Step D: Compute C*(pg, D) using equation (3) and previously stored values.

Hence, the algorithm amounts to filling in a table with D + 1 rows corresponding
to different depths. The entries in row k are a variable length set of vectors - all the
distributions in Py - and the minimal costs; the first row has only py. The first row
filled is row D; it has |Pp| entries. Then row D — 1 is filled using the entries in row
D; it has |Pp_1| entries, and so on. After the table is made it is a simple matter to
generate the functions {¥,} and hence Ty, itself (equivalently, the optimal testing
strategy 7) by a top-down pass collecting the minimizing tests at each level.

Since at each step there is a loop over posteriors and possible tests, the total

complexity as a function of D and M is proportional to

MZIPkI—MZ<k+2M 1>:M<D+DQM> (6)

The first equality was derived in the previous section and the second one can be found
for example in [23], p. 54. Consequently, the complexity in D is bounded by D*V.
Notice that this bound is independent of the number of classes.

In case of M = 2 and D = 10 the effective computing time on a 225 Mhz PC
is one-tenth of a second. Figure 3 shows the value in (6), in thousands, when the

number of tests is M = 2, 3,4 and the maximal depth is D = 10, 20, 30.

14



2 3 4
10| 2 24 175
20 | 21 691 | 12,432
30 | 93| 5,843 | 195,613

Figure 3: Value of équation (6), in thousands, for 2, 3 or 4 test types and maximum

depth 10, 20 or 30.

5.2.2 Top-down Computation

The computation can also be organized recursively, but top-down. The algorithm still
involves completing the table mentioned above, but the computations are performed
in a different order corresponding to a depth-first examination of the M-ary tree
associated with (3). Thus the core of the program is a recursive procedure that
computes C*(p, k). Start with £ = D and p = py; if this value is in the table return
it. If not, go to (3) and look for C*(p, k) for k = D—1 and p = p(.|X,,, = z) for x =0
and m = 1; p is computed from {py, g} as indicated above. If this entry is not in
the table, call the same procedure again for £k = D — 2, each time computing the new
posterior and checking to see if it is in the table. At the beginning the procedure is
called D times until we simply compute C*(p,0) = H(p) for posterior corresponding
to the event Q = {X1; = 0,X12 = 0,...,X;p = 0} where X;;,1 < j < D are
independent copies of X;. The main program is a call to this procedure with the
parameters p = py and k = D.

Although this implementation is more demanding than dynamic programming,
the amount of computation is much less than it appears. Very quickly most, and
then all, of the entries needed to compute C*(p, k) are found in the table. Moreover,
the recursive method can be easily modified to approrimate an optimal tree as follows:
Instead of looking for an exact match for the posterior, check if the optimal cost has

been already computed at the given depth for a distribution sufficiently close to the
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desired posterior. This provides a much better approximation to the optimal tree
than a prior: quantization of the posterior, which is problematic as the number of

classes increases.

6 Bounds on the Information Gain

In this section we consider maximum possible gains and minimum possible costs due
to a set of tests. Let t € 7. The information gain at node ¢ is Hy(Y) — H(Y|Xrw),
and the information gain due to T is H(Y) — H(Y|T). Note that since the tree 7
already provides a binary coding of the values of 7', and since the mean code length

of a random variable is always larger than its entropy, one always has
H(Y) - H(Y|T) < H(Y,T) - H(Y|T) = H(T) < Bd(T).

Proposition 3 provides a better bound in the case of conditionally independent, re-
peatable tests. It is based on the following identity, the proof of which follows easily

by induction on the number of leaves.

Proposition 2

H(Y) = H(Y|T) =} P(Q)(H(Y) — H/(Y | Xx()) (7)

In the case of conditionally independent tests, there is a simple, tractable bound on
the information gain of any 7. For each m = 1, ..., M, define the “channel capacity”
[14]

c(Xm,Y)=max[H(Y) — HY|X,,)]-

po
The maximum is over all possible distributions for Y. Let ¢ be an internal node of
T; the information gain H;(Y) — Hy(Y| X)) is determined by p; and {g)}. Hence
the information gain at ¢ is bounded by ¢(Xy(),Y). Substituting this bound into (7)

16



and using the characterization in §3 of expected depth as a sum over internal nodes,
we arrive at the following bound on the total information gain, which may also be

interpreted as a coupled constraint on H(Y|T') and Ed(T):

Proposition 3 For any tree T and any model {py, gm},

HY)-H(Y|T) < EdT) max c(Xy,Y) (8)

me{l,...,M}

Since ¢(X,,Y) < 1, this bound is better than the general one given earlier.

7 Experiments

We now give several examples to illustrate the difference in performance between Tj,,
using the recursion (1) and Ty, using the cost functional (2). The behavior we exhibit
remains the same if Shannon entropy is replaced by another “purity measure”; indeed,
changing the splitting criterion does not seem to have a great effect on performance
in general ([8],[10]). Moreover, although the examples are based on the independent
model of Section 5, we believe the disparity observed might be even greater with a
non-trivial, conditional dependency structure among the tests. However, constructing

globally optimal trees for general models is not practical.

Example 1: The performance of classification trees made using (1) may degrade
considerably if max,cy po(y) is near one. Here is a toy example in which the greedy
strategy selects the “wrong” tests at small depths, resulting in an expected depth 1.6
times larger than Ty, in order to achieve the same error rate or final entropy.

There are two classes with py(a) = 10~* and py(b) = 1 — 10 * and two tests with
g1(1]a) =1 and ¢,(1]b) = 0.5

g2(1]a) = 0.5 and g,(1]b) = 0.

17



Figure 4: Left: Locally optimal tree. Right: Globally optimal tree. The error rates

are the same but the mean depth of the global tree is smaller.

In other words, X; always answers “yes” on the rare class and answers randomly on

the common class, and vice-versa for Xs.

Note: This example was motivated by experiments with learning algorithms for vi-
sual selection [3]; the rare class corresponds to an “object” being present at a fixed
location in a large scene and the common class to “background.” The first test has
false negative error zero (i.e., “loses” no objects) but has false positive error 0.5, and
vice-versa for X,. Given such tests are available (and of equal cost) and given a
dynamic testing strategy, how does one minimize computation subject to an error

constraint?

The cost function for the globally optimal tree is (2) with maximum depth D = 6
and A = 10~%. The tree which minimizes cost is displayed in Figure 4; it was computed
using the exact top-down recursion discussed in Section 5.2.2. The terminal nodes are

labeled according to the mode of the posterior distribution. The error rate is 0 when
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Y =bandis % when Y = a, concentrated in the deep node labeled b which is reached
with probability approximately i. The mean depth is small because the probability
of reaching the depth one (resp. depth two) terminal is nearly % (resp. i), resulting
in Ed(Ty,) ~ 3. (The righthand side of (8) is 2.5 x .32 which is much larger than the
actual information gain because the starting entropy is small: H(Y) = 0.0015.)

The locally optimal strategy always prefers test X, because

H(Y|X)) ~ H(Y) and H(Y|X,) ~ %H(Y).

(In contrast, the global strategy puts X; at the top even though it provides much less
average information about Y.) The depth is determined by matching the error rate
of Ty, and the resulting tree is shown in Figure 4. The probability of exiting at the

deepest terminal nodes is nearly one, which makes Ed(T},.) ~ 4.

Example 2: Consider now a less extreme example, still with two classes and two

tests. The prior is po(a) = po(b) = 0.5 and
g1(1]a) = 0.9 and ¢,(1]b) = 0.4

g2(1]a) = 0.6 and g5(1]b) = 0.1.

The maximum depth for Ty, is D = 30 and the tree is constructed the same way as
in Example 1.

The performance of T}, and T, in several cases is given in Figure 5. We adjusted
the parameter A\ to make either H(Y |[Ty,) =~ H(Y|Tio) or Ed(Tyo) ~ Ed(Tic)-
Recall, we estimate Y by the most likely class at the leaves, denoted Vr. In this case
H(Y) =1 and max{c(X1,Y),c(X2,Y)} = 0.21, which leads to the constraint

1< H(Y|T) + 0.21Ed(T).

This is consistent with the values in Figure 5.
Again, there is generally a significant difference in performance between Tj,. and

Tgi0, as well as in the shape of the trees; for instance, Ty, is very unbalanced relative
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P(Yr YY) | HY|T) | Ed(T)
Tioc 0.014 | 0.083 | 10.2
Tyio 0.010 |  0.080 6.6
Tyio 0.001 [ 0.012 | 10.2
Tioe 0.051 | 0.237 5.6
Tyio 0.021 |  0.147 5.4
Tyto 0.038 |  0.228 4.5

Figure 5: Comparing performance of local and global strategies for the model in

Example 2 with maximal depth 30.

Classy | a b c| d| e| f
po(y) 05({01(01(0.1(0.1/0.1

01/0970101]0.1]0.9

gi(1ly) 10.9]0.1]0.90.10.10.1
go(1]y) 10.9]0.1]0.1]09]0.1]0.1
g3(1]y) 10.1]0.9]0.1]01]0.9]0.1
(1]y)

Figure 6: The model in Example 3. There are 6 classes and 4 types of tests.

to Tioc- It seems that the expected depth with balanced priors needs to be larger than
with skewed priors in order to see a very sharp difference. For example, see Figure 5

in the case Ed(Tj,.) = Ed(T,,) = 10.2.

Example 3: Examples with more classes and more tests show the same qualitative
behavior. We use the approximation procedure outlined in Section 5.5.2. in order to
compute Ty, with six classes and four tests; the model is presented in Figure 6 and

the results in Figure 7.
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P(Yr YY) | HY|T) | Ed(T)
Tioc 0.037 | 0.190 6.6
Tyio 0.023 |  0.180 5.4
Tyio 0.010 |  0.087 6.5

Figure 7: Comparing performance of local and global strategies for the model in

Example 3.

8 Discussion

Classification trees are a popular method for addressing problems arising in non-
parametric estimation, especially in domains such as pattern recognition ([4],[19],
[21], [28]) in which the data are often high dimensional. Artificial neural networks
are more popular, but tree-structured decision-making is easier to interpret; another
advantage is the natural way in which “feature selection” is performed during tree
construction [9]. As a result, there is a continuing interest in improving methods for
constructing tree classifiers, especially in the data-driven case in which trees are “in-
duced” from samples in a training set L, i.e., test statistics and conditional entropies
are estimated from L. For example, from time to time new purity measures, split-
ting rules and pruning recipes are proposed and existing ones are compared ([8],[10],
[24],]27]). And recently the dramatic gains from using multiple trees have been doc-
umented and analyzed from the point of view of randomization, negative correlation
and the bias/variance decomposition ([1],[2],[7],[16], [29]).

We have analyzed the limitations of the basic induction method itself, at least
in cases in which the greedy designs are likely to lead to very inefficient trees when
measured by global criteria such as mean path length. Such cases arise when some
classes are very rare and when the training set £ is small; the benefits of choosing
good tests are then accentuated since the amount of data available at a node for

estimating information gains and class likelihoods is rapidly decreasing with depth of
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the node. Indeed, we would argue that the interesting limit in pattern recognition
and other applications is |£| — 0 rather than |£| — oo, and that the most effective
way to introduce problem-specific knowledge into the design of the classifier is by
“hard-wiring” global constraints.

Finally, how might global optimization be relevant for inducing trees either from
data or from more complex models, especially in applications to pattern recognition
and machine learning where assumptions such as independence and repeatability are
usually violated? The natural path would appear to be L — M — Ty, First es-
timate a model from the data and then calculate an efficient tree from the model.
But unless M is severely restricted a priori, it will not be sufficiently elementary
to deduce Ty,. Yet it is precisely the rich dependency structure in the feature vec-
tor which makes the underlying classification problem interesting and challenging.
Perhaps globally optimal strategies which are derived from simplified, approximate
models (for instance assuming conditional independence but using the actual marginal
test statistics) might serve as “blueprints” for recursive tree construction. Given the

disparities we have illustrated, the rewards could be significant.
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